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1 Introduction

One of the most intriguing aspects of linear elliptic boundary value problems
(BVPs) is their relationship to probability. The discovery of this relationship
dates back to the beginnings of rigorous measure theory, or more specifically
when measure theorists began considering how to place measures on spaces
of continuous functions. The measures placed on these infinite dimensional
spaces are first defined for simple sets of continuous functions with the help
of the fundamental solution of certain linear parabolic partial differential
equations (PDEs). Once these simple “cylinder sets” of continuous functions
can be measured, it is rather easy to extend the measure to the entire space
of continuous functions with standard techniques from measure theory. As
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a consequence of this construction, certain integrals with respect to these
measures (which can be thought of as mathematical expectations with the
measure thought of as a probability density) are solutions to particular linear
parabolic and elliptic problems.

A curiosity of looking at a space of continuous functions with this mea-
sure is that almost all (full measure) of the continuous functions are nowhere
differentiable!. Because of this fact, continuous functions with this measure
(called Wiener measure) are almost all extremely jagged and monstrously
wiggly. Thus it is straight forward to associate these spaces of continuous
functions under Wiener measure with spaces of continuous Brownian mo-
tion paths. This makes perfect sense when one recalls that diffusion can be
thought of as the macroscopic manifestation of microscopic Brownian motion,
and that parabolic PDEs (like the diffusion equation) play a fundamental role
in the construction of these Wiener measures. It turns out that this proba-
bilistic theory for representing the solutions of linear elliptic and parabolic
PDEs has many applications in analysis [2] [4], and as we will see below, in
numerical computation as well [1] [3].

As a simple example of the application of these ideas to computation let
us consider the Dirichlet BVP for the Laplace equation:

—Au(z)=0, z€Q, u(z)=g(x), ze€d (1)

The probabilistic representation of equation 1, often called the Wiener inte-
gral representation, is denoted by:

u(z) = B [g(B(Ts0))] - (2)

The interpretation of equation 2 is that the solution of equation 1 at an
interior point, x, is the expectation of the boundary value at the first hitting
location of the sample path 3(-) started from . The Markov time, 7q, is
the time at which a sample path first encounters the boundary, and is called
the mean first passage time. This quantity is defined for the sample path
B(-) by Taq = infgeat.

An alternate interpretation of equation 2 is as a probabilistic version of
the traditional Green’s function representation of the solution to equation 1.

!Recall the fuss created by Weierstrass’s construction of a single continuous, nowhere
differential function by Fourier series.



This is because equation 2 is an integral of the boundary values against a
boundary mass, p(x,y), the probability of a sample path starting at = and
first encountering the boundary at y. It is an elementary fact that p(z,y)
so defined is the Green’s function of equation 1 [1]. If we think in terms of
Brownian motion, which is intimately related to the Laplacian, then equation
2 states that the solution to equation 1 is the expected value of the first hitting
boundary value of a Brownian motion started at x.

It is rather easy to see that the Wiener integral in equation 2 solves
the Dirichlet problem for the Laplace equation. A function is a solution to
equation 1 if (i) it has the mean value property and (ii) it has the correct
boundary values. In two dimensions a function has the mean value property
if its value at the center of a circle is the average of the function on the circle.
Pick a point, z, in the interior of (2, and using = as the center draw a circle
(call it C) totally within 2. Equation 2 states that the u(x) is the expected
boundary value at the point of first passage. By continuity, any path started
at x will encounter C' before hitting the boundary. Thus u(x) is the expected
first passage boundary value of walks started on C' conditional on where you
first hit C' from walkers started at x. Since Brownian motion is isotropic, a
Brownian path started at = will first encounter any point on C' with equal
probability. Thus u(x) is the average of the first passage boundary values
from walks started on C' (which are the values of u(z) on C' by equation 2)
and so u(x) has the mean value property. In addition, if the boundary is
smooth, we can see that u(z) takes on the appropriate boundary values by
letting = approach the boundary while using the above argument.

This functional integration approach can be used to solve discretizations
of these continuous problems by utilizing random walks in place of Brow-
nian motion. Through this formalism, and extensions of the probability
to different elliptic PDEs and different BVPs, a large class of Monte Carlo
methods for these problems emerge. Implementation of these random walk
based Monte Carlo methods on multiple instruction multiple data (MIMD)
and single instruction multiple data (SIMD) machines will be considered in
the subsequent section. It will be shown how different implementations lead
to different algorithms which in turn lead to different practical and analytic
considerations.



2 Architecture and Implementation

Given that we wish to implement algorithms related to these probabilistic
ideas on a parallel computer, it is incumbent on us to consider what aspects of
these algorithms we wish to exploit in a parallel implementation. In random
walk based algorithms there are two natural ways to use parallelism based
on certain replicated aspects of random walks. Since the discrete versions
of these algorithms are all based on collecting statistics from random walks
over some grid, it is natural to associate processing elements for a parallel
implementation with either the walkers or the places they walk, i.e., the grid
points.

In some sense, the mapping of groups of walkers onto parallel proces-
sors is the most natural parallel decomposition, and is readily mapped onto
a MIMD machine. The second mapping, that of grid points to processors,
maps very naturally onto massively parallel SIMD computers. Below we dis-
cuss how the choice of one mapping over another influences the details of
the algorithm and the performance aspects of the implementations. To make
our discussion more concrete, let us think about MIMD implementations on
either a shared memory MIMD machine (like the Cray C90) or a distributed
memory machine like the IBM SP2. For the massively parallel SIMD imple-
mentation let us keep the rather old Thinking Machines CM-2 or the current
Maspar MP-2 in mind.

The choice of mapping groups of random walkers onto parallel processors
naturally leads us to the following algorithm for the evaluation of first pas-
sage time statistics like those required in equation 2. Each processor starts
with random walkers with different starting locations on the grid. During
each iteration all the walkers take a random step on the grid. Those that
encounter the boundary are removed and their starting locations are scored
with the boundary value of the first passage location, and new walkers are
started somewhere on the grid to replace them. It is obvious that this algo-
rithm faithfully implements the collection of statistics implied in equation 2
in an “embarrassingly” parallel fashion. In fact, this algorithm is such that it
may be implemented asynchronously on independent processors until it be-
comes necessary to gather the statistics from each independent processor into
centralized memory locations. It also makes little difference if we implement
this algorithm on a shared or distributed memory machine (or a loosely cou-
pled group of workstations) since there is no interprocessor communication
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until the statistics are centrally collected.

This idea of exploiting the parallel nature of independent statistical sam-
pling arising from certain Monte Carlo calculations is an old one, and quite
easy to implement in the case of the Dirichlet BVP for the Laplace equation.
The nature of this algorithm also makes the choice of a stopping criterion
rather simple. Since we are statistically sampling the solution to a problem
which has a well behaved underlying stochastic process, the computational
error, which is only due to the statistical sampling error, should have law—of-
large-number behavior. Thus if we have p processors, each of which samples
the solution at every grid point, and we desire an overall variance in the sam-
pling error of size €%, then we may run the p independent processes until all
of them achieve at least an ¢*p sampling variance. Then when we accumulate
the p independent samples from the processors, we will be left with an overall
variance of no greater than (¢’p)/p, by the addition of variance. Finally, we
consider the cost of generating each sample. Since our algorithm advances
walkers from the interior until they hit the boundary, we average one sample
every Tsq (the average length of a walk) iterations per walker. We will refer
to this algorithm as the MIMD or “forward” random walk algorithm.

In contrast, the choice of mapping grid points onto the processor of a mas-
sively parallel SIMD machine, such as the CM-2 or MP-2, leads to a different
set of considerations. In fact, the algorithm described above is an extremely
poor choice on a SIMD machine. This is due to the fact that the CM-2 and
MP-2 are physically an array of processors, each with local memory, upon
which two types of interprocessor communication are implemented. General
interprocessor communication is implemented via the “router” which is a
large multiple slower than comparable communication over nearest neighbor
connections. This later is called “NEWS” communication. Thus the task
of communicating the boundary value at the first hitting location back to
the walker’s starting point, which will generally require the “router”, seri-
ously degrades the above “forward” random walk algorithm’s performance.
Because of this difference between “NEWS” and “router” performance, it is
worthwhile to consider a variation on the above algorithm which abolishes
the need for “router”’—based communication.

If we assume that the grid points in our calculation are such that they
can be embedded into a regular d-dimensional grid, then all nearest—neighbor
communication on this grid can be implemented via the fast “NEWS” com-
munication on a CM-2. If d = 2, this is also true on an MP-2. A sim-



ple variation of the “forward” random walk algorithm allows us to get by
with only nearest—neighbor communication. If, when generating the random
walks from the starting interior points to the boundary, we save the path
taken through the grid, this path can be retraced to bring the boundary
values into the interior via nearest—neighbor only communication. In reality,
this improves the situation very little, as random walks generate extremely
suboptimal routes from the boundary to given interior points. It is, however,
the case that while retracing walks from a given boundary point, every grid
point along the retraced path may be considered as the starting point of a
new “forward” random walk which first encountered the boundary at the
given boundary location. In fact, it can be proven that scoring the boundary
value at each point in the retraced path is probabilistically equivalent to the
“forward” random walk algorithm discussed above [3]. In addition, retracing
has the advantage that we obtain one sample per walker per step. Finally,
it should be obvious that the notion of retracing is superfluous, as it is more
efficient to start our walkers at the boundary.

Thus by trying to avoid an extremely inefficient aspect of a particular
parallel computer’s design, we have been led to a variation on our original
algorithm. This “backward” random walk algorithm is an improvement over
the original “forward” random walk algorithm in two obvious ways: (1) it
requires only nearest—neighbor communication on the computational grid,
and (2) it generates samples at the rate of one per walker per iteration instead
of one per walker per complete random walk (O(7sq)). A not so obvious
difference is based on the fact that on a SIMD machine, the MIMD rationale
for the design of a stopping rule is not at all applicable. When we consider a
more reasonable stopping rule for a SIMD implementation we will encounter
yet another advantage of the “backward” over the “forward” random walk
algorithm.

In a SIMD implementation, it makes much more sense with the “back-
ward” random walk algorithm to start off a large cohort of walkers from the
boundary with their boundary values, and then after some number of itera-
tions terminate all of the walking and compute the statistics. This stopping
rule makes more sense than waiting for an acceptable level of variance at each
grid point, as was suggested for the MIMD implementation. This is because
in the “backward” algorithm we are specifying the end not the beginning of
random walks, and so starting new walkers will not necessarily reduce the
sampling error at specified interior grid points. Since it is more natural in



the SIMD case to consider the termination of all the walks uniformly and
accumulating statistics at that point, one must be able to calculate the ef-
fect this has on the evaluation of the Wiener integral in equation 2. This
effect is precisely due to the fact that by placing a limit on the number of
iterations in the “backward” random walk algorithm, we are sampling the
random walk expected value in equation 2 over only a portion of the entire
space of random walks possible on our grid. We are evaluating equation 2
over only the space of random walks up to a given length equal to the number
of iterations before termination. Fortunately, this truncated expected value
can be explicitly computed. Surprisingly it is a nonlinear object.

It has been shown that this expected value over the space of random
walks up to a given length can be computed as the quotient of two Jacobi
method solutions of related discrete Dirichlet BVPs for the Laplace equation
[3]. In the simple case the discrete Laplacian on the two dimensional square
with a uniform grid, this statistic has an expected value which is the quo-
tient of the Jacobi solution of the BVP with the given boundary values over
the Jacobi solution with unit boundary values. Since unit boundary values
asymptotically yield the constant unit function solution, the asymptotic be-
havior is that of the ordinary Jacobi method. However, for small iteration
numbers, this quotient gives remarkably good empirical convergence results
as demonstrated in the comparative figure below (Figure 1).

As figure 1 shows, the “backward” random walk algorithm has initial
convergence behavior comparable to the method of successive over-relaxation
(SOR) with optimal relaxation parameter.

3 Concluding Comments

It is well known that these Monte Carlo methods are much inferior to many
deterministic methods for these types of problems. However, in very high
dimensions variants of these Monte Carlo methods are often used to solve
problems in quantum mechanics. In addition, the Monte Carlo methods of-
ten serve to motivate the design and analysis of deterministic analogs which
may offer some unique advantages over more conventional algorithms. An-
other property of these Monte Carlo algorithms that may prove useful in real
computations is the fact that with them one may sample the solution at as
few as one grid point.
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Figure 1: Empirical comparison of the Jacobi method, red-black Gauss—
Seidel method, optimal red—black SOR method, the “backward” random
walk method, and the nonlinear quotient method (which is the expected
value of the “backward” method). For the random walk method, iteration
number refers to maximal length of random walks.



We have seen a rather simple example of how implementing a given math-
ematical formulation for a particular problem on different types of parallel
computers not only leads to different implementations, but also to different
questions of the numerical analysis. The MIMD “forward” random walk im-
plementation of these Wiener integral representations naturally motivates a
stopping rule based on a sampling error tolerance. The SIMD “backward”
implementation makes this type of stopping rule awkward, and leads to the
idea of numerically evaluating Wiener integrals over certain natural trunca-
tions of the space of all random walks. The analysis of these SIMD inspired
truncations lead to a nonlinear iterative method that is based on Jacobi
iterations (and hence can be implemented in parallel without grid point col-
oration) and gives initial behavior similar to optimal red—black SOR, without
having to choose a relaxation parameter. Thus we have an object lesson on
how parallel architectures can influence not only the design, but the analysis
of numerical algorithms.
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