Numerical Methods 1

CHAPTER 14

Numerical Methods for
Neuronal Modeling
Michael V. Mascagni

Center for Computing Sciences, I.D.A.
17100 Science Drive
Bowie, Maryland 20715-4300
Tel:(301) 805-7421
e-mail: na.mascagni@na-net.onrl.gov

Arthur S. Sherman

National Institutes of Health
BSA Building, Suite 350
Bethesda, MD 20892-2690
e-mail: Arthur_Sherman@nih.gov

14.1 Introduction

In this chapter we will discuss some practical and technical aspects of numerical
methods that can be used to solve the equations that neuronal modelers fre-
quently encounter. We will consider numerical methods for ordinary differential
equations (ODEs) and for partial differential equations (PDEs) through exam-
ples. A typical case where ODEs arise in neuronal modeling is when one uses a
single lumped-soma compartmental model to describe a neuron. Arguably the
most famous PDE system in neuronal modeling is the phenomenological model
of the squid giant axon due to Hodgkin and Huxley.

The difference between ODEs and PDEs is that ODEs are equations in which
the rate of change of an unknown function of a single variable is prescribed,
usually the derivative with respect to time. In contrast, PDEs involve the rates
of change of the solution with respect to two or more independent variables, such
as time and space. The numerical methods we will discuss for both ODEs and
PDEs involve replacing the derivatives in the differential equations with finite
difference approximations to these derivatives. This reduces the differential
equations to algebraic equations. The two major classes of finite difference
methods we will discuss are characterized by whether the resulting algebraic
equations explicitly or implicitly define the solution at the new time value.
We will see that the method of solution for explicit and implicit methods will
vary considerably, as will the properties of the solutions of the resulting finite

2 Chapter 14

difference equations.

To simplify our exposition, we will use the Hodgkin-Huxley equations as
illustrative examples for the numerical methods we discuss. If one space clamps
a section of a squid giant axon the membrane potential will no longer depend on
the spatial location within the clamped region. This reduces the original PDE
to a system of ODEs, and leads us to model the membrane potential with the
following system of ODEs:

dv
C = ~Gnam*h(V = Ena) = G (V = Bx) = Giear (V =~ Brear), (14.1)

where
dm
E = (1 — m)am(V) - mﬁm(v)7
% = (1—han(V) = hBu(V), (14.2)
dn
= = (1=man(V) —nf(V).

In addition to this relation for current balance, Hodgkin and Huxley provided
expressions for the rate functions ., (V), an(V), an(V), Bn(V), Br(V), and
Bn(V). (Hodgkin and Huxley, 1952).

If instead of space clamping the Loligo giant axon, one allows the voltage
across the membrane of the axon also to vary with longitudinal distance along
the axon, z, then the membrane potential satisfies a PDE. This PDE is similar
to the space clamped ODE case except that eq. 14.1 is replaced with

2
68—‘; = %ZTZ ~ Inam®h(V — Ena) — (14.3)
g (V = Ex) = Giear(V = Bicat)-

Below we will consider the complete mathematical description of these two
problems related to the squid giant axon and their numerical solution. It is
important to note that the Hodgkin-Huxley systems are useful examples for
numerical computation in two complementary ways. First, the Hodgkin-Huxley
models are very complex, and so provide a realistic and challenging system
to test our proposed numerical methods. Numerical methods that work on
the Hodgkin-Huxley systems should work equally well on other equations the
neuronal modeler may wish to explore. Secondly, the Hodgkin-Huxley equations
are basic expressions of current conservation. Thus modification of our formulse
for the numerical solution of the Hodgkin-Huxley system to accommodate other
neuronal models is straightforward provided the models are also explicitly based
on electrical properties of nerve, and the kinetics associated with the individual
ionic currents can be described with first order kinetic equations as in eqs. 14.2.

14.1.1 Numerical Preliminaries

We begin with a discussion of sources of numerical error, both those that affect
numerical calculations in general and those that arise specifically in solving

Numerical Methods 3

differential equations. The fundamental reason for error (loss of accuracy) is
the finite nature of computers, which limits their ability to represent inherently
infinite processes. Irrational numbers, like v/2, transcendental numbers, like
m and e, and repeating decimals, like 1/3, can only be represented to finite
precision. Even exactly represented numbers are subject to round-off error
when they are added or multiplied together. For further discussion of these
issues consult a general numerical analysis text, such as Golub and Ortega
(1992). Numerical methods for ODEs and PDEs involve, in addition, finite
approximations of the infinite limiting processes that define derivatives and
integrals. These approximations introduce truncation or discretization error.
Even if one solves the discretized problem exactly, the answer is still only an
approximation to the original continuous problem.

In order to analyze how the above sources of error are handled by particular
numerical methods for ODEs and PDEs, three concepts have been introduced,
stability, consistency, and convergence. The most fundamental is convergence,
which means that the error between the numerical solution and the exact solu-
tion can be made as small as we please. We will be discussing finite difference
methods where space and time are discretized with numerical time step, At,
and a spatial mesh size, Az. Thus demonstrating convergence for a finite differ-
ence method means showing that the numerical solution differs from the exact
solution by a term which goes to zero as At and Az go to zero.

In the establishment of general convergence theory, the concepts of stability
and consistency of a numerical method also have emerged as fundamental. As
the name implies, consistency of a numerical method ensures that the numeri-
cal solution solves a discrete problem that is the same as the desired continuous
problem. For finite difference methods, this amounts to determining whether
the difference equations, when applied to the exact solution to the continuous
problem, produce only a small approximation (truncation) error. If this trunca-
tion error goes to zero as At and Az go to zero, then the numerical method is
consistent. This definition for consistency sounds suspiciously like the definition
for convergence. However, a method can be consistent and yet not convergent.
This is because consistency only demands that the exact solution satisfy the
finite difference equations with a truncation error which formally goes to zero.
Convergence demands that the numerical and exact solutions can be made to
differ by an arbitrarily small amount at every point in time and space. Conver-
gence is a more restrictive definition.

Stability is the concept that fills the gap between consistency and conver-
gence. We call a finite difference method stable if the solution to the finite
difference equations remains bounded as the grid parameters go to zero. It is
a notable fact that some consistent finite difference methods are not stable. In
these cases the numerical solution may grow without bound even when the an-
alytic solution to the same problem might actually be quite small. A method
with this type of behavior is obviously not convergent. We should note that
some stable finite difference solutions can exhibit small oscillations about the
exact solution and still be of great utility. Therefore we can appreciate the
importance of using finite difference methods that give solutions which do not

4 Chapter 14

grow without bound.

One of the most remarkable results in the analysis of finite difference meth-
ods for differential equations is the Lax Equivalence Theorem (Richtmyer and
Morton, 1967), which states that a finite difference method for linear ODEs or
PDEs is convergent if and only if it is both consistent and stable. Thus for these
linear problems, the two concepts of consistency and stability are complemen-
tary. Because of this elegant relationship between these three concepts for linear
problems, numerical methods for nonlinear problems also discuss consistency
and stability in the context of establishing numerical convergence; however, in
these nonlinear cases there is no general Lax Equivalence Theorem. Technical
treatments of this theory can be found in Isaacson and Keller (1966), Richtmyer
and Morton (1967), and Sod (1985).

14.2 Methods for ODEs

The theory for the numerical solution of ODEs is very well established, and
the rigorous analysis of many classes of numerical methods has an extensive
literature (see for example Gear, 1971a; Lambert, 1973). We will distinguish
numerical methods for ODEs based on a property of ODEs themselves, known
as stiffness. Stiffness measures the difficulty of solving an ODE numerically,
in much the same way that the condition number of a matrix measures the
difficulty of numerically solving the associated system of linear equations (see
Appendix A). Stiff systems are characterized by disparate time scales. Non-
stiff systems can be solved by ezplicit methods which are relatively simple (i.e.
can be coded by an amateur), while stiff systems require more complex implicit
methods (usually from a professionally written package).

Methods can also be classified by how the accuracy depends on the step
size, At, usually expressed in “big Oh” notation (Lin and Segel, 1988, pp. 112
- 113). For example, a method is O((At)?) accurate if the solution differs from
the exact solution to the ODE by an amount that goes to zero like (At)?, as
At goes to zero. Thus if we halve At the error decreases by a factor of (5)2.
Higher order methods are more accurate, but generally are more complicated to
implement than lower order methods and require more work per time step. Thus
a practical decision must be made weighing the numerical accuracy requirement
versus the overall cost of both implementing and using a particular method.

A more precise analysis leads to a distinction between local and global trun-
cation errors. The local truncation error is the error between the numerical
solution and the exact solution after a single time step. Recalling the definition
of consistency, it is the local truncation error that must go to zero as At goes to
zero for a method to be consistent. One can generally compute the local trunca-
tion error from the Taylor series expansion of the solution. A method is called
p-order accurate if the local truncation error is O((At)?). The global truncation
error is the difference between the computed solution and the exact solution at
a given time, t = T = nAt. This is the error that must go to zero as At goes
to zero for a method to be convergent. In general, one cannot merely use the

Numerical Methods 5

Taylor series to calculate the global truncation error explicitly, but it can be
shown that if the local truncation error is O((At)?) then the global truncation
error of a convergent method will also be O((At)P) (Stoer and Bulirsch, 1980).

We conclude with the mathematical setting and uniform notation for de-
scribing numerical methods. The Hodgkin-Huxley ODE model, eqs. 14.1 and
14.2, is a system of four first-order ODEs. We can define the four dimensional
vector of functions, U = (V,m, h,n), and rewrite eqs. 14.1 and 14.2 to obtain
the single vector differential equation

dU =+ =

7 =F(U, t). (14.4)
Here ﬁ([j) is a vector-valued right hand side corresponding to the right hand
sides in egs. 14.1 and 14.2 with eq. 14.1 rewritten by dividing through by C. In
general it is always possible to rewrite any system of ODEs as a single system of
first-order ODEs, even when we begin with ODEs which have second or higher
order derivatives (Boyce and DiPrima, p. 319 — 320). This is important because
almost all numerical methods are designed to handle first-order systems.

Eq. 14.4 only tells us how the unknown functions change with time; we must
know the initial values of these functions in order to compute a particular solu-
tion. Together, the equations and initial conditions constitute an initial value
problem (IVP), where given initial values, the solution is thereafter uniquely
determined.

14.2.1 Runge-Kutta Methods
All ODE algorithms begin by discretizing time. Let us denote " = nAt and

Un = U(nAt). Then the simplest method of all, which follows directly from
the difference-quotient approximation to the derivative, is the forward Euler

method:

[j’n—l—l _ U’n oo
— = FU"™, t"). 14.5
- (@,) (14.5)
An alternative form of the difference quotient gives the backward Euler method:
Fn41 _ i N
T =R,), (146)

Both are examples of first-order Runge-Kutta methods. If we rewrite eq. 14.5
as Untl = U + AtF(U™, t") we see that the forward Euler method gives us
an explicit formula for U+ in terms of the known U™. If we rewrite eq. 14.6
with the known quantities on the right and the unknowns on the left we get
Untl — AtF(U™!, t"t1) = U". This is not an expression which can be simply
evaluated to obtain Tjn‘H, instead this is an equation whose solution implicitly
defines U1, In general some numerical method for solving non-linear alge-
braic equations, such as Newton’s method or functional iteration (Conte and
de Boor, 1980), must be used to advance to the next time step. This puts im-
plicit methods at a distinct disadvantage, but, as we will see below, stability
considerations often make them the method of choice.

6 Chapter 14

Forward Euler approximates the time derivative with its value at the be-
ginning of the time step, and backward Euler at the end of the time step. By
analogy to the trapezoidal rule for numerical quadrature, one can obtain second-
order accuracy by using their average:

— — A = = =
gt = gn 4 7t [F@", t) + F(O",)], (14.7)

This method is also implicit, and one often uses instead the following second-
order Runge-Kutta method, also known as Heun’s method:

[7”+1 = U—n + % [El + EQ] , wWhere,
B o= FO",), (14.8)
Eg = ﬁ([jn + AtEl, tn+1).

Note that second-order accuracy is obtained at the cost of two evaluations of
F per time step. By going to four function evaluations we can get fourth-order
accuracy:

g+l = pin g % [k1 + 2k» + 2k + k4], where,
E1 = ﬁ(ﬁna tn)a
P, = B+ %Atlgl, {n+1/2), (14.9)
ks = FO" + 1Atk tmt1/?),
ks = F(0"+ Atks, t™+).

Heun’s method can also be viewed as a predictor-corrector version of the
trapezoidal rule. That is, one first estimates gn+l by taking a forward Euler
step. Then the estimate is improved, or corrected, by taking a trapezoidal rule
step. Further improvement can be made by correcting again, but it is usually
preferable to reduce At if more accuracy is desired.

These methods work well when stiffness is not an issue. Therefore, the
primary criterion in choosing between them is computational efficiency. There
are no hard and fast rules for this, but here are a few rules of thumb. A measure
of computational effort is the total number of evaluations of the right hand side
functions. Suppose we wish to solve an IVP with initial conditions given at
t =0, up to a time ¢t = T. If M = T /At is the number of time steps, and K is
the number of function evaluations per time step for a given numerical method,
then the most efficient choice of numerical method minimizes the product M K.
Higher order methods reduce M but increase K. Unless Fis very expensive
to evaluate, the higher order method generally turns out to be much more
efficient. Fifth order Runge-Kutta, however, requires siz function evaluations,
partially explaining the popularity of the fourth-order method. Also, as we shall
see, achieving better than second order accuracy is problematic for PDE’s, and
trapezoidal-rule based methods are the norm.

Numerical Methods 7

14.2.2 Multi-Step Methods

The biggest weakness of Runge-Kutta methods is the cost of multiple function
evaluations between each time step, whose results are never used again. Multi-
step methods attempt to remedy this by approximating the derivative by a
combination of the function values at several previous time steps. Defining
Fk = F(U*, tk), the explicit, 4-step Adams-Bashforth method has the form

U™ = U + At[co F™ + et F" 1 4 aF™ 2 + s F* 3. (14.10)

while the implicit, 4-step Adams-Moulton method uses the function values at
t7tl .. t""2. The coefficients are chosen so as to interpolate F at the several
time points with a polynomial (Golub and Ortega, 1992), which is only valid if
the solution is smooth.

The Adams-Bashforth and Adams-Moulton methods are often used as a
predictor-corrector pair, efficiently attaining fourth-order accuracy with only
two function evaluations per time step. One complication, however, is obtaining
the initial time points to start the calculation. Generally, a few Runge-Kutta
steps are used.

14.2.3 Methods with Adaptive Step Size

The efficiency of both Runge-Kutta and multi-step methods can be enormously
enhanced by using adaptive step size control. Adaptive methods exploit known
formula for the local truncation errors of given methods to estimate the global
truncation error. By using this information as a criterion for either increasing or
decreasing At, a computation can be carried out to within a user specified error
tolerance with as large a step size as possible at each time step. In addition to
efficiency, this also provides an estimate of the error in the solution.

A wuseful class of adaptive Runge-Kutta methods is based on the ideas of
Fehlberg (Press et al., 1992), who figured out how to combine the results of
six function evaluations to obtain two Runge-Kutta methods. One matches the
Taylor series of the solution to fourth order, and the other to fifth order. The
difference between the two extrapolated solutions is then the fifth term of the
Taylor series of the solution, and serves as a good estimate for the error in the
fourth order method.

The increased efficiency is of particular value if one is interested in the long
time behavior of the system, which requires carrying out calculations until either
periodic repetitive firing is observed, or the system reaches a stable steady-
state. Also, many neurons are capable of bursting oscillations, characterized
by alternating spiking and quiescent periods. An adaptive method will take
small steps during the active phase and long steps during the silent phase. As
a beneficial side effect, graphical display of the output will be adaptive as well,
because many data points are saved when the solution is varying rapidly and
few when it is not.

8 Chapter 14

14.2.4 Qualitative Analysis of Stiffness

A system of ODEs, or a single ODE, is said to be stiff if the solution contains a
wide range of characteristic time scales. The problem with a wide range of time
scales can be appreciated through a simple illustration. Suppose the fastest
time scale in an ODE has duration 7, while the slowest has v. If v/7 is large,
then a numerical time step, At, small enough to resolve phenomena on the 7
time scale requires /7 steps to resolve phenomena on the v time scale. This
is not a problem if the phenomena on the 7 time scale is of interest; however,
if the 7 time scale is of little interest it would seem an obvious strategy to
choose At = «. For explicit methods, this is a numerical disaster because the
inaccuracy in resolving the 7 time scale leads to catastrophic instabilities often
resulting in wild oscillations in the computed solution.

We can gain insight into this phenomenon by examining the stability prop-
erties of some simple methods, applied to the trivial, scalar equation,

du
—_— =— 14.11
==, (14.11)

with k > 0. The forward Euler iteration for this equation is
U™t = U™(1 — kAt). (14.12)

In order for the numerical solution to decay, as does the true solution, we must
have —1 < 1 — kAt < 1. Therefore, At must satisfy

At < % (14.13)
Monotonic decay requires 1 — kAt > 0, or At < % That is, At must be less than
the time constant. For § < At < 2, U™ is multiplied by a negative factor, so the
solution undergoes a damped oscillation. These constraints are reasonable but
lead to problems when there are multiple time constants. Consider the general
linear system of two equations with solution

U(t) = Ae=1% + Be~t, (14.14)

where A and B are constant vectors that depend on the initial conditions.
After a brief time, the first term contributes negligibly to the solution, but the
forward Euler method must satisfy the condition of eq. 14.13 for the fastest rate
constant, or the solution will blow up.

In contrast, the backwards Euler iteration for eq. 14.11,

1

n+1l __ n
vtt=u 1+ kAt

(14.15)
decays monotonically for all £ > 0. If At is chosen too large, the solution will
be inaccurate, but it will not explode. Indeed, the solution will prematurely
equilibrate to its steady-state value, 0. This is exactly the behavior we want

Numerical Methods 9

when solving eq. 14.14. If At is chosen appropriate to the slow time scale, the
fast component will be solved inaccurately (taken to steady-state), but the total
error of the solution will be small.

We can obtain second-order accuracy with the trapezoidal rule, which gives
the iteration
1— kAt

n+l _ yrn
vt =vu 1+ kAt

(14.16)
This is also stable for all At, but we pay a price for the increased accuracy: The
factor multiplying U™ approaches —1 as k — oco. For large k, the solution does
not decay monotonically, but will exhibit damped ringing oscillations.

14.2.5 Methods for Stiff Systems

The space clamped Hodgkin-Huxley ODE model is not particularly stiff. How-
ever, it is fairly easy to encounter extremely stiff ODEs that are simply related
to egs. 14.1 and 14.2. If one incorporates the space-clamped Hodgkin-Huxley
ODEs into a compartmental model of a neuron, the resulting multicompartment
system will generally be stiff, with the stiffness increasing with the number of
compartments in the single neuron model. The reason for this is the corre-
spondence between compartmental models of neurons and the so-called method
of lines for the numerical solution of PDE models for the same neurons. This
relationship between compartmental models and PDE models will be explained
in detail in Appendix A along with an explicit calculation of the stiffness of a
compartmental model of passive dendritic cable.

Stiffness can also occur in point neurons. A model of the bullfrog sympa-
thetic ganglion cell includes ionic currents with the familiar millisecond time
scale along with slow currents with time scales in the hundreds of milliseconds.
Some bursting neurons, like R-15, have slow currents and/or other processes,
like Ca?* accumulation, that vary on a time scale of seconds.

In general, explicit finite difference methods are susceptible to stiffness, while
implicit methods are not. Thus the implicit versions of the ODE methods
mentioned above, even backwards Euler, are viable candidates for integrating
stiff ODEs. However, one might as well take advantage of the Gear method
(Gear, 1971b; Lambert, 1973), which is actually a family of methods of various
orders. Both At and the order are varied to satisfy the error criteria most
efficiently. The methods are implicit multi-step methods like Adams-Moulton,
but are based on backward differentiation formuleze. These use old values of U ,
rather than ﬁ([j) and only evaluate F' at the future time point. The gth order
method has the form

Ut — qoU" — U — ... — aq_lﬁ”_(q_l) = Atbqﬁ”“. (14.17)
The implicit algebraic equations are solved by Newton’s method, which requires

information about the derivative of F (the Jacobian), either supplied by the user
or approximated internally by the Gear solver using finite differences.

10 Chapter 14

Note that since these are variable-order methods they do not have the start-
ing problem of the Adams methods. They begin with a one-step, first order
method and increase the order as time points are accumulated.

14.2.6 Boundary Value Problems

Another class of mathematical problems that involves ODEs is the boundary
value problem (BVP). For example, one can get an idea of spatial effects while
avoiding the full complexity of PDEs by letting the PDE settle down to a steady-
state, leaving space, x, as the sole independent variable. If we set all the time
derivatives in eqs. 14.2 and 14.3 to zero, we obtain the following system of
ODEs:

e = v (V) e (V)(V ~ Bya) +
?KTLOO(V)‘i(V - EK) + gleak (V - Elea,k);
where meo(V) = an(V)/(an(V)+ Bn(V)), (14.18)

and similarly for the other dimensionless variables ho, and ns,. The oo subscript
indicates that they no longer obey differential equations but are instantaneous
functions of membrane potential.

Suppose we want the steady-state solution for a Hodgkin-Huxley axon of
length L. Initial conditions are no longer required, but we must now specify
boundary conditions. A simple choice is

V)=V’ v(L)=VE, (14.19)

corresponding to a two-point voltage clamp, at x = 0 and = = L.

One approach to solving eqs. 14.18 and 14.19 is the shooting method, which
converts the BVP to an IVP, with “time” running from 0 to L. Since eq. 14.18
is a second order ODE, proper “initial” conditions are to specify V(0) and
dV (0)/dz. We know that V(0) = V°, and we a value for dV (0)/dz that will
make V(L) = VE. See Conte and de Boor (1980, pp. 412 — 416) for further
details.

Although more efficient methods would be used today, it is an interesting
historical note that Hodgkin and Huxley solved the problem of determining
the wave speed of the axon potential as a shooting problem. For a steadily
progressing pulse of unvarying shape, the solution is a function of the variable
z = x — 0t, where 0 is the wave speed. Hodgkin and Huxley therefore used the
substitution V(z,t) = ¢(z) to convert the PDE eq. 14.3 into a second-order
ODE in 2z with boundary conditions ¢(z) — 0 as z — +oo. This leads to an
algorithm for determining the wave speed: For 8 too small, ¢ diverges to oo,
for 0 too large ¢ diverges to —oo. Successive shooting trials allowed Hodgkin
and Huxley to bracket the value of 6 precisely. This recovery of the speed of
the traveling pulse from space- and voltage-clamped currents was the capstone
of their achievement that led to the Nobel prize.

Numerical Methods 11

More often eqgs. 14.18 and 14.19 are solved by the method of finite differences.
We introduce a spatial grid with uniform width Az = L/N, and with g = 0
and zx = L. Defining V; = V(i Az) we use the Taylor series to derive a finite
difference approximation to the second spatial derivative:

av d*V (Ax)? " d*V (Az)® d*V (Ax)*

Vi = Vit Av+ g

dz de2 2 de3 3! dt a4 T

(14.20)

where all the derivatives are evaluated at z;. Combining the two equations we

solve for ‘57‘2/ (z5):

d2—V(m-) _ Vi =2Vit Vi
de? ™ (Az)?

+ O(Az?). (14.21)

Using this O((Az)?) accurate approximation we replace eqs. 14.18 and 14.19
with the following nonlinear tridiagonal system of algebraic equations:

a Vigr —2Vi+ Vi

2R (Az)? = Inaoo(Vi)*hoo (Vi) (Vi — Ena) + (14.22)
yKnoo(‘/z)él(V; o EK) + gleak(‘/i - Eleak),
% = V07 VN = VL.

Methods for the solution of difference equations of this form will be treated in
the section on PDEs, but note that with the boundary values Vj and Vi given,
eq. 14.22 completely defines Vi,...,Vy_1.

The general problem of numerically solving the BVP for ODEs has many
complications, including singular solutions, unstable solutions, and periodic and
translational boundary conditions. A good resource is the monograph by Keller
(1976).

14.2.7 Problems with Discontinuities

Discontinuities in solutions or their derivatives pose special challenges for nu-
merical methods. Unfortunately, they occur naturally in simulations of voltage-
clamping, applied current pulses, channel noise, and integrate and fire neurons.
In the first two cases, the events are often imposed by the user and occur with
modest frequency. Naive use of Adams methods can fail here because they try to
fit a smooth solution to the discontinuity. The remedy is to stop and restart the
calculation at each event, which is clumsy and incurs extra overhead. Robust
implementations of the variable-order Gear algorithm can detect discontinuities
and restart automatically with a first-order method. It is more efficient, how-
ever, to instruct the solver explicitly to restart. Fixed step-size Runge-Kutta
methods sail through discontinuities, but accuracy may be reduced unless the
jumps are arranged to occur at time-step boundaries.

Channel noise and other stochastic simulations pose a harder problem, be-
cause the transitions occur frequently and unpredictably. If events are con-
strained to time-step boundaries, the simulation can only be first order accurate,

12 Chapter 14

forcing use of small steps. Alternatively, one may use knowledge that transitions
are, say, exponentially distributed to integrate from event to event (Clay and
DeFelice, 1983). However, if the population size is large, this will also result
in small steps. One can then reformulate the problem as a continuous diffu-
sion and solve the stochastic differential equations (Fox and Lu, 1994). Special
Runge-Kutta methods have been developed to solve these with second or higher
order accuracy (Kloeden et al., 1993).

Integrate and fire networks raise similar issues, with the additional complica-
tion that each element’s firing can influence the other elements. Fixed step-size
integration is again only first-order accurate, regardless of the accuracy between
events, and can also artifactually synchronize the elements. The safest approach
is to determine numerically or analytically when the next unit will fire, integrate
up to that time, and calculate the interactions (Tsodyks et al., 1993). As for
stochastic problems, one can smooth out the discontinuities for large networks
by solving for the distribution of firing events (Kuramoto, 1991).

14.2.8 Guide to Method Selection and Packages

For ODEs stiffness is the critical factor to consider when choosing between al-
ternative numerical methods. In general, a compartmental model of a neuron
will yield a rather stiff system of ODEs, so an implicit method should be used to
avoid numerical instabilities. Gear’s adaptive time step method is particularly
attractive. Popular public-domain packages in FORTRAN include DDRIV and sev-
eral variants of the subroutine LSODE. An updated version of LSODE, CVODE, is
available in C. These packages can be downloaded from netlib. General com-
mercial libraries, such as IMSL (Visual Numerics, Inc.), and NAGLIB (Numer-
ical Algorithms Group Ltd.) also have FORTRAN and C routines for ODEs (and
PDEs). A single source for information on all of these is GAMS, the Guide
to Available Mathematical Software maintained by the National Institutes of
Standards and Technology. GAMS includes a problem decision tree and links
to online documentation, example driver programs and provider information.
In contrast, small systems of ODEs, or a system of ODEs that does not have
direct coupling between its domains may not be very stiff, so it may be compu-
tationally cheaper to use an explicit method, such as one of the Runge-Kutta
methods. Explicit second or fourth order methods that are easy to write oneself
may be adequate. However, adaptive methods usually pay off handsomely, and
are well worth the effort to acquire or program one. Public-domain and com-
mercial packages for both fixed and variable-step Runge-Kutta methods can be
obtained from the same sources as above. For do-it-yourselfers, Press et al.
(1992) give a detailed explanation and code for Runge-Kutta Fehlberg, as well
as a number of other methods. Most Gear packages include options for Adams
methods and have well-tested heuristics for scaling variables and estimating er-
rors, making them good general purpose solvers. The Adams implementations
are also variable order, hence self-starting and robust on discontinuities, and
do not need to evaluate the Jacobian, so they can be faster than Gear on non-
stiff problems. Some packages (eg. LSODA) attempt to automatically evaluate

Numerical Methods 13

stiffness and switch between Gear and Adams.

If one is unsure about the stiffness of a particular ODE system whose nu-
merical solution is required, it may be worthwhile to begin with a low-order
explicit method, like the second order Runge-Kutta method and use it on a test
problem where the solution’s behavior is known. If the method produces good
results, one may not need to look any further for a numerical method. However,
if the solution shows unexpected oscillatory behavior or requires a time step
much smaller than the time scale of interest in order to avoid such instability,
one should suspect stiffness.

Packages for boundary value problems can be obtained from the same sources
as above. In addition, the program AUTO (Doedel, 1991), designed primarily for
bifurcation calculations (the study of how solutions change as parameter are
varied) also can be used as a BVP solver.

Complete interactive programs that handle the allocation of memory, data
input and output, and graphics are an increasingly popular solution. The user
need only define the problem and choose an appropriate numerical method. Two
programs available for Unix workstations are dstool, which has a variable step-
size Runge-Kutta solver, and xpp which has a Gear solver and allows automatic
detection of and restarting at discontinuities. In addition xpp can solve BVPs
by the shooting method and features an interactive interface to AUTO. Both
dstool and xpp are general differential equation solvers, and differ from the
compartmental modeling programs described in the PDE section in that they are
equation-oriented, not object-oriented. That is, one must specify the problem in
terms of equations, rather than in terms of channels and cable properties. DOS
PC users can consider PHASER (Koc¢ak, 1989) or PHASEPLANE (Ermentrout, 1990),
a predecessor of xpp, and LOCBIF. Macintosh users can try MacMath (Hubbard
and West, 1992), for systems of two or three variables. General interactive
mathematics packages such as Maple, Mathematica, Matlab, and Mlab, also
have tools for solving differential equations with graphics.

Details on the packages mentioned in this section and information on how
to obtain them can be found at http://mrb.niddk.nih.gov/sherman.

We have downplayed the convergence of numerical methods for ODEs, be-
cause the convergence theory for ODE methods is relatively straightforward.
Even naive methods like forward Euler will converge for well-posed ODE prob-
lems provided that At is chosen sufficiently small. However, this glibness with
convergence will not carry over to our discussion of numerical methods for PDEs.

14.3 Methods for PDEs

In general, numerical methods for PDEs are not as well understood as numeri-
cal methods for ODEs, largely because of the greater mathematical complexity
of PDEs. In contrast to the numerical methods for ODEs, much of the intu-
ition accumulated for understanding and choosing PDE methods has come from
studying methods for solving linear PDEs. For this reason we will begin our
discussion not with the example of the Hodgkin-Huxley equations, but with its

14 Chapter 14

linear counterpart, the passive cable equation from dendritic modeling. This
equation is
oV a 0’V
0t 2R 822
Here g is the passive membrane conductance per unit area.

—gV. (14.23)

14.3.1 Finite Difference Methods

Two popular methods for numerically solving PDEs are finite difference and
finite element methods. Finite element methods in many cases reduce to finite
difference methods. This is especially so for many neuronal models, where often
only one spatial dimension is used in the PDEs. However, in cases where a model
results in PDEs with more than one spatial dimension, finite element methods
and more advanced finite difference methods should be considered. We describe
only finite difference methods in this chapter. As with these methods for ODEs,
finite difference methods for PDEs employ finite difference approximations of
the derivatives in the PDEs to reduce the differential equations to algebraic
equations. The Hodgkin-Huxley system as well as the linear cable equation
are PDEs of the parabolic type, and the methods we will discuss will also be
generally applicable to other parabolic PDEs, such as the heat and diffusion
equations, Douglas (1961).

In treating parabolic PDEs, it is customary to first introduce the discretiza-
tion of the spatial variables. This is called the method of lines, and reduces
the PDEs to a system of coupled ODEs. In Appendix A we will see how con-
ceptually close the method of lines for PDEs is to compartmental modeling. If
we replace the continuous variable, z, with a uniformly spaced grid of length
Az = L/N with N +1 grid points over L spatial units, then the method of lines
transforms eq. 14.23 into the following coupled system of ODEs:

AV, a Vg —2Vi+ Vi

dt 2R (Ar)?

This system is stiff, with the stiffness increasing with N. Eq. 14.24 is the
example we will use in Appendix A to explicitly compute the numerical stiffness
of a simple compartmental model ODE formulation.

Since eq. 14.24 is stiff, we should use an implicit method to solve it. One
could use an ODE package described previously to solve such a system. However,
these packages may or may not be able to solve the systems as efficiently as
using a simple temporal discretization permits. Thus we will present three
finite difference methods for the numerical solution of these parabolic PDEs:
forward Euler, backward Euler, and Crank-Nicolson. We will initially present
them for the linear cable eqs. 14.23, and then in a later section we discuss
the modifications necessary to numerically solve the nonlinear Hodgkin-Huxley
PDE system.

All three of these finite difference methods use the O((Az)?) finite difference
approximation to the second spatial derivative that we have previously intro-
duced. The difference between these three methods is only in the manner in

—gVi, i=0,... ,N. (14.24)

Numerical Methods 15

which the time derivative on the left hand side of eq. 14.23 is discretized. Let
us now define the computational grid which we will use with all the PDE finite
difference methods. The time variable will be replaced by a discrete set of time
values with a uniform spacing of At. V;" refers to V(iAz,nAt).

The forward Euler method uses the most naive time discretization. The
typical form of this discretization is:

V-Vt e VI -2V
At 2R (Az)?

C gvim. (14.25)
If we define the constants ¢ = aAt/2RC(Az)? and v = gAt/C, then this
equation can be rewritten as

Vi = oV 4+ (1= 20 —)V + 0V, (14.26)

The error in using the forward Euler method is O(At) + O((Az)?) (Isaacson
and Keller, 1966).

From eq. 14.26 we see that the forward Euler method is an explicit method
since Vi”Jrl is explicitly defined by the right hand side terms, which are known.
The forward Euler method is also very easy to implement; however, it has
numerical properties which are quite undesirable. The worst of these is that
it is numerically unstable when o > 1/2, which means that stability requires
At < RC(Ax)?/a. Thus, if we wish to achieve higher spatial accuracy in our
numerical solution by decreasing Ax by a factor (), we must also then decrease
At by a factor of Q2 to assure we maintain numerical stability. Thus the amount
of work that must be done to obtain a solution up to a fixed time is multiplied
by @ to achieve a factor Q finer spatial grid.

If in eq. 14.25, the left hand side time difference is set equal to the right
hand side at time value n + 1 we obtain the backward Euler method

1 n+1 n+1 n+1
Vi e _ iVi—H -2V + VG

= — gyt 14.2
¢ 2R (Az)? 9vi (14.27)
We can rewrite these equations as
—oV 4 (14 20 + 1)V — oVt = v, (14.28)

Unlike eq. 14.26, this equation does not explicitly define the values at that
new time step in terms of the values at the old time step. Thus the backward
Euler method is an implicit method, and a linear system of equations must be
solved at each time step. The type of linear equation that must be solved is
called a tridiagonal linear system, since the left hand side of eq. 14.28 involves
the unknown voltage and its two nearest neighbors on the grid. In a following
section we will discuss the numerical solution of tridiagonal linear systems of
equations, with special emphasis on efficiency.

Even though the backward Euler method involves the solution of a tridiag-
onal linear system at each time step, it is considered superior to the forward
Euler method for these types of PDE problems. One reason for this is that

16 Chapter 14

one can solve the tridiagonal system which arises at each time step in the back-
ward Euler method in O(N) arithmetic operations, which is the same order of
complexity as for the forward Euler method. More importantly, the backward
Euler method does not suffer from numerical instability like the forward Euler
method. Thus we can choose the grid parameters At and Az independently
and not have to worry if some combination violates a stability inequality. Also,
if the accuracy in one of the grid parameters is insufficient, we may refine that
variable without having to readjust the other grid parameter. One of the ad-
vantages of this independence in At and Az for the backward Euler method is
the possibility of using a rather large At to explore qualitatively the behavior of
a system at little computational expense. When interesting behavior is noted,
a smaller At can be used to reexamine the phenomena of interest with greater
numerical accuracy. We note that the backward Euler method has the same
numerical accuracy as the forward Euler method, namely O(At) + O((Ax)?).

The last method we present is called the Crank-Nicolson method (Crank
and Nicolson, 1947). This method is related to both the Euler methods as its
right hand side is the average of the two Euler right hand sides:

Vit -y 1/ a Vi -2V v
C—F%— = 5(% A —gVrtt + (14.29)
a Vi, =2Vi"+ V4, .

2R (Az)2 vit).

Unlike the Euler methods, the Crank-Nicolson method has numerical accuracy
which is O((At)?) + O((Az)?). The rationale for this is the same as that de-
scribed in the discussion of the trapezoidal rule for ODEs.

Let us rearrange eq. 14.29 by placing the values at the old time level on the
right and the new values on the left

_%V;’f{l +(Q+o+ %)Vi"“ - %Vi’f{l = (14.30)
g v n g
3 i11+(1_0-_§)vi +§Vi711'

Here o and ~ are as previously defined. As with the backward Euler method,
this equation implicitly defines the new values as the solution to a tridiagonal
system of linear equations. In addition, this method is unconditionally stable
for any choice of the grid parameters At and Az. One subtle difference from
the backward Euler method is that in some sense the Crank-Nicolson method
is closer to numerical instability. This is observed in Crank-Nicolson numer-
ical solutions where damped oscillations and over/undershoot are seen where
none are expected even when large values of o are used. This ringing is rarely
seen with the backward Euler method as it is much more heavily damping than
Crank-Nicolson. This behavior is analogous to that described for the corre-
sponding ODE methods described in the previous ODE discussion, see especially
eq. 14.16.

An interesting implementational detail exploits a useful relationship between
the the backward Euler and the Crank-Nicolson solution. If V;”H are the so-

Numerical Methods 17

lution voltages to the backward Euler equations (14.28) starting with voltages
Vi, then 2V, — V™ is the solution to the Crank-Nicolson equations starting
with voltages V;". Thus it is a trivial task to modify a computer program for the
solution of these PDEs from an O(At) backward Euler solver to an O((At)?)
Crank-Nicolson solver by modifying a single line of code!

14.3.2 Boundary Conditions

Because PDEs involve derivatives with respect to more than one independent
variable, specifying initial conditions is more complicated. Initial values must be
given at all values of z. In addition, one must specify boundary conditions at the
endpoints of neuronal processes. These types of initial-boundary value problems
(IBVPs) have been shown rigorously to be well-posed mathematically, meaning
that their solutions are unique, depend continuously on the initial and boundary
conditions, and remain bounded above and below for all time (Mascagni, 1989a).

We have already encountered a common boundary condition in our discus-
sion of BVPs for ODEs which arise from steady-state computations for PDE
problems. Eq. 14.19 specifies the voltage at two ends of a neural cable. This
type of boundary condition, where the solution value is specified at the end
points, is called a Dirichlet boundary condition. As we will see below, bound-
ary conditions of the Dirichlet type are quite easy to incorporate into finite
difference methods for PDEs.

The second common type of boundary condition is the Neumann boundary
condition. Instead of specifying the solution value at the end points, as with
the Dirichlet boundary conditions, Neumann boundary conditions specify the
first spatial derivative of the solution at the end points. Neumann boundary
conditions occur very naturally in neuronal modeling. Since 0V [0z is pro-
portional to the longitudinal current through a cable, specifying a Neumann
boundary conditions for neuronal cable models amounts to specifying the longi-
tudinal current values at the end points. For example, the following Neumann
boundary conditions for the Hodgkin-Huxley PDE system, eqs. 14.2 and 14.3:

oV(0) RI 9V(L)
dx ~ wa?’ Oz

=0, (14.31)

biophysically corresponds to injecting I microamps of current at z = 0, and
demanding that no current pass out the x = L end. The Neumann boundary
condition at £ = L is commonly called a “no leak” or “sealed end” boundary
condition in neuronal modeling (Jack, Nobel, and Tsien, 1983). Incidentally,
“open” or “killed” end are other names for zero Dirichlet boundary conditions.
Neumann boundary conditions are more complicated than Dirichlet boundary
conditions to incorporate into finite difference methods to solve PDE IBVPs,
but only slightly so.

Both the Dirichlet and Neumann boundary conditions are linear boundary
conditions, in the sense that linear PDEs with these boundary conditions obey
a superposition property with respect to the boundary conditions. A more

18 Chapter 14

unusual type of linear boundary condition involves a linear combination of the
Dirichlet and Neumann boundary conditions as follows:

v (0) oV (L)
ao ox ox

Since we know that Neumann boundary conditions are biophysical statements
about the currents at the cable ends, it is clear that these mixed boundary
conditions are merely a statement that the voltage at the end points obeys a
linear or ohmic current voltage relationship. The difficulty of implementing
a finite difference method for a PDE IBVP with this sort of mixed boundary
conditions is only slightly greater than handling simply a Neumann boundary
condition. Finally we mention that by making the coefficients, a and 3 from eq.
14.32, nonlinear functions of the end point voltages, we can impose a nonlinear
current voltage relationship at the end points. An example of a computation
with this type of nonlinear boundary condition is due to Baer and Tier (1986).
They considered the effects of a Fitzhugh-Nagumo patch which formed the end
of a dendritic cylinder as a model of an active membrane site within a passive
dendrite. Li et al. (1995) used a similar approach to study the interaction of
intracellular calcium handling with membrane ion channels and pumps, rep-
resenting the former with a diffusion equation and the latter as a nonlinear
boundary condition.

We must comment on how the different BVPs which we have just discussed
can be incorporated into the previously discussed finite difference methods. The
Dirichlet boundary conditions are the simplest to handle, since they directly
prescribe the boundary values. Thus in the forward Euler method, we use the
known end point values, Vp and Vy, in the equations for V"™ and V*]. In
the two implicit methods discussed, knowing V4 and Vi allows us to reduce the
number of equations to be solved from N + 1 to N — 1. We simply place the
terms involving the known boundary values onto the right hand sides of the
equations for V,"*! and VIGJ_F}, and solve the resulting tridiagonal system. For

+V(0) = Bo, ar + V(L) = BL. (14.32)

example, in the backward Euler case, the equation for V;"*! is —o V"t + (20 +
Y+ DM — gVt = VP, Since V't is known, we can rewrite this equation
as —o V™ + (20 + v+ DV = oV + V4™, We do the same for Vi1 A
similar manipulation can be used to incorporate Dirichlet boundary conditions
into the Crank-Nicolson method.

It is a only bit more difficult to handle Neumann boundary conditions. We
would like the manner in which we incorporate the Neumann boundary condi-
tions to preserve two properties of our numerical methods. First, since all of our
numerical methods are O((Ax)?) spatially accurate, we ask that the boundary
condition incorporation be at least this accurate. Secondly, we ask that the neat
tridiagonal form of the linear equations which arise from the implicit methods
be maintained. These two requirements are in a sense competing; however, it
is possible to achieve both through the following construction. Consider Neu-
mann boundary conditions from eq. 14.31 for the forward Euler method. A
second order accurate finite difference formula for the first derivative that only
involves two points is the centered difference approximation (Dahlquist and

Numerical Methods 19

Bjorck, 1974). If we wish to approximate the first derivative at = 0 using
the centered difference formula, we need to know the value of V' at z = +Aux;
however, our computational grid does not include the point at x = —Az. If we
pretend to know V at this point we can achieve both of the previous paragraph’s
goals (Sod, 1985; Cooley and Dodge, 1966). Knowing both V; and V_; gives
us the centered difference formula %‘;‘1 = 8\(;;0) up to O((Az)?). Since the
Neumann boundary condition specifies the value of m;g)), this can be used to
write the unknown V_; in terms of the given derivative value and V;. Thus the

equation for V"™ for the forward Euler method can be rewritten as:

Vot =V + (1 - 20 =)V + 0oV = (14.33)
oVi'+ (1 =20 —)V5" + (V" + 2Ama‘g—f)). (14.34)

Since 8%50) is specified in the boundary condition, the right hand side is com-

pletely known. One can follow the same procedure for V]GH.

Since the implicit methods require the solution of a tridiagonal system of
linear equations, we can use this same centered difference approximation of
%—Z to incorporate Neumann boundary conditions into the tridiagonal systems.
Using the same rationale as above, we can solve for V™! and V]Gﬁ using the
centered difference approximation and then substitute these expressions into
the V5 and Vi equations. Since we use the centered difference approximation
to the derivative, this construction maintains the tridiagonal structure of the
equations. This is because we incorporate the centered difference approximation
only at the two end points. For example, the first equation from the backward
Euler system for the IBVP for eq. 14.23 with Neumann boundary conditions,
egs. 14.31, is:

2RIocAx

(1420 +7)Vgt! — 20V =V + —3

(14.35)

The same problem discretized via Crank-Nicolson yields a first equation of:

(1 Yo+ %) Vet — gyt = (1 —o-— %)VO" +oVi + %. (14.36)

Knowing how to incorporate both Dirichlet and Neumann boundary condi-
tions into our three PDE methods, it is relatively easy to combine these tech-
niques to allow mixed boundary conditions as in equation (14.32). Using the
two extra grid points, V_; and V41, we can discretize equation (14.32) up to
O((Az)?) as follows:

V-V VN 1-V,
ao(it)+ Vo= an (P) v = (143)

We notice that both these equations involve the grid’s end points and their two
neighboring points. As with our treatment of the Neumann boundary condi-
tions, these equations can be solved for the values at V_; and V41 and the

20 Chapter 14

resulting expressions substituted into the equations for V4 and Vu. This is el-
ementary for the forward Euler method, and for the two implicit methods it is
clear that a linear tridiagonal system of equations is again the final result.

14.3.3 Spatial Variation

Recall that the Hodgkin-Huxley PDE models the giant axon of the squid Loligo.
A basic assumption is that the electrotonic properties of the squid’s neuronal
membrane are uniform and do not depend on the longitudinal location along the
axon. While this is an adequate assumption for that preparation, one should
be able to incorporate spatial variation of the neuronal membrane into PDE
models. We now discuss how to express longitudinal variation in membrane
properties in the linear cable PDE system, as well as how to incorporate this
spatial variation into discretizations while preserving O((Az)?) spatial accuracy.

In the linear cable model PDE; one can incorporate spatial variation in
both the ionic conductance, g, and the membrane capacitance, C, in the most
trivial way: make them functions of z. The hard part is what to do when
the denritic radius, a, and the specific axoplasmic resistivity, R, are functions
of z. One cannot just make them functions of xz in eq. 14.23, because that
does not preserve the biophysical meaning of this equation. Eq. 14.23 is a
statement of the instantaneous conservation of charge along the membrane, and
the term (a/2R)0?V/0x? represents the total membrane current per unit area.
This expression was originally obtained by using current conservation for an
infinitesimal slice of dendrite and the differential form of Ohm’s law. To see
how to rewrite this term when a and R depend on z we must go back to this
derivation.

The expression for total membrane current per unit are can be written as:

2 2
a®V._ 19 (ﬂ 5_V>. (14.38)
2R 022 2madx\ R Oz

The term in parentheses is the axial current. Eq. 14.38 restates conservation of
charge by stating that the divergence of the axial current equals the total mem-
brane current. The constants in this expression convert the axial current, which
is per unit cross sectional area, into the membrane current per unit membrane
area. Using eq. 14.38, we can rewrite the linear cable equation, eq. 14.23, to

allow spatial variation in all the cable parameters:

oV 1 0 <7m2(a:) ov

Cl) 5 = R(z) oz

5t = Trale) 75) — g(z)V. (14.39)

One performs the analogous substitution with the Hodgkin-Huxley PDE model,
egs. 14.2 and 14.3, to incorporate spatial variation in that case. Strictly speak-
ing, one should replace the factor a(z) in the denominator of eq. 14.39 by
a(z)/1 + a'(z)? and make the corresponding change in eq. 14.40 to account for
the increased membrane area of a tapered cable. See Jack et al, 1983, p. 150.
However, eq. 14.39 is usually quantitatively adequate because a’(z)? < 1.

Numerical Methods 21

Now we must consider how to convert these spatially varying continuous
models into finite difference equations with O((Az)?) accuracy. In eq. 14.39,
spatial dependence is only problematic when we try to discretize the term for
the total membrane current per unit area. This term involves the derivative of
a derivative, and so we proceed by discretizing the derivatives one at a time.
A first order approximation to the first derivative is dV/0z = (Viy1 — Vi) /Ax.
Applying this expression twice to the total membrane current term in eq. 14.39
gives us

(“a?+1/2 (‘/i-}-l—‘/i) _ 7”’?—1/2 (Vi—Vi_1))
1 9 (ma*(x)dVY 1 \ Birpd A Ri_i2 \ Az
2ma(x) 83:(R(z) 83:) = 2ra; Ax '

(14.40)
The value at grid point index 7 + 1/2 refers to the numerical value of the indexed
function at x + Az/2, as i — 1/2 refers to z — Axz/2. Even though the spatial
grid does not include these points, it is reasonable to ask for the value of the
continuously defined variables a(x) and R(z) at these points. However, if these
intermediate values are not available, one can substitute the average of the
values at the two flanking grid points in this discretization.

The spatial discretization of the troublesome second derivative term for the
total membrane current given in eq. 14.40 can be shown to yield an O((Ax)?) ac-
curate finite difference approximation (Cooley and Dodge, 1966). Thus one can
use the discretization in eq. 14.39 to solve a spatially dependent problem with
one of the finite difference methods we have already described with the same
numerical accuracy. These discretizations lead to the same types of equations
as in the constant coefficient case. One can incorporate boundary conditions
exactly as in the constant coefficient case, and so we can think of these spa-
tially dependent coefficient problems as being no more complicated than their
constant coefficient counterparts. Even so, we have yet to describe the solution
of tridiagonal linear systems that arise in all our implicit discretizations.

14.3.4 Solving Tridiagonal Linear Systems

We will discuss only one algorithm for the solution of tridiagonal linear systems
of equations, Gaussian elimination. Gaussian elimination is also called LU de-
composition, as well as forward elimination with back substitution. Gaussian
elimination has many variants which are specialized for efficiency on specific
classes of matrices (Golub and Van Loan, 1985). A special variant, called the
Thomas algorithm, requires O(M) mathematical operations to solve a tridiag-
onal system with M unknowns. The Thomas algorithm is numerically stable
when the tridiagonal system has the property of diagonal dominance. Since all
the tridiagonal systems that arise in finite difference solution of the PDEs we
have discussed share are diagonally dominant, we can use the Thomas algo-
rithm, which does not involve pivoting, to solve these systems. To say that a
matrix is diagonally dominant means that the magnitude of the diagonal dom-
inates the sum of the magnitudes of the off diagonal elements in each row of

22 Chapter 14

the matrix. It is evident from eqs. 14.28 and 14.30 that for the finite difference
PDE approximations we have discussed, the tridiagonal systems that arise are
diagonally dominant. In general, O((Az)?) finite difference approximations to
well posed parabolic PDEs will be diagonally dominant.

Let us denote our tridiagonal system as

LV, 1+ D;V;+UViy1 =R;, 1<i¢<M, (14.41)

with L; = Upy = 0. The Gaussian elimination algorithm without pivoting pro-
ceeds by using adjacent equations in eq. 14.41 to eliminate the subdiagonal
unknowns in a step known as forward elimination. One may think of this pro-
cedure as sweeping through the equations and redefining the constants L;, D;,
U;, and R; as follows:

Dy =D.,U; =U/D1,Ry = Ry /Dy,

Di=D;—L;Vi 1, i=23,...,M, (14.42)
Ri=(R;— LiVi_1)/D;, i=2,3,..., M,

U, =U;/D;;, i=23,...,M—1.

This forward elimination procedure succeeds in reducing the original tridiagonal
system into an equivalent bidiagonal system. This bidiagonal system can then
be solved by a procedure called backwards substitution:

VN = Rn, (14.43)
Vi= Ri—UVip1, i=M—1,M,...,1. (14.44)

We notice that this procedure requires only five arrays of length M, those for
L,D,U,R, and V. Since we overwrite these arrays with the Thomas algorithm,
the coefficients for the tridiagonal systems must be recomputed for each time
step. In addition, it is obvious from the definition of the algorithm that this
procedure requires O(M) arithmetic operations, as it is defined with several
“loops”, each with a fixed number of arithmetic operations per iteration, and
of length no more than M.

14.3.5 Branching

Many of the models we use for individual neurons incorporate branching ana-
tomical data. We consider two numerical procedures for solving PDE neuronal
models with branching. Both assume that we employ an implicit finite differ-
ence method to the PDEs, and so we will really be considering how to solve the
tridiagonal-like linear systems which arise from these discretizations. The first
method we consider uses a careful numbering of the unknowns on the branching
structure to reduce the resulting linear system to what is essentially a single
tridiagonal system. The second method uses the technique of domain decom-
position to reduce the solution of the single system of equations on the entire
branched structure to the solution of many smaller tridiagonal systems.

Numerical Methods 23

fff

Figure 14.1: Example of branch and grid point numbering of a branched neu-
ronal structure and the resulting linear equation structure which arises with
nearest neighbor finite difference discretization. After Hines (1984).

Hines (1984) describes an enumeration of the grid points in a branching cable
structure that leads to direct solution of the resulting finite difference equations
which is equivalent in complexity to the Thomas algorithm. We illustrate with
the example in figure 1, which is a diagram of a neuronal structure with 6
branches. We first choose a branch which is connected at only one end, and
designate this as the “trunk”. (A natural choice in a dendritic tree would be the
most proximal branch to the soma.) The “trunk” will be the highest numbered
branch, in our example branch 6. The grid points in the “trunk” are ordered
from the branch point towards the free end. We next number the branches which
connect to the “trunk”. Those that are only connected to the “trunk” receive
the largest numbers while those with two connections are numbered lowest. The
grid points in each branch are ordered towards the “trunk”. Now we designate
all branches connected at both ends as new “trunks” and continue the branch
and grid point enumeration recursively.

Forward elimination in the branching case is exactly the same as in the
nonbranching case except that we must also eliminate all the far off-diagonal
elements associated with the several nearest neighbor grid points at a branch
point. We proceed in order within the branches. Our chosen enumeration en-
sures that the only far sub-diagonal element on a branch is associated with the

24 Chapter 14

last point. The order of elimination of the branches is also important for assur-
ing that no new off diagonal elements are created. One must carry out forward
elimination on all daughter branches before doing so to their parents. We there-
fore start with the lowest numbered branches (the twigs), and sweep towards
the trunk. With the numbering in our example, we can upper-triangularize the
branches in order, from 1 to 6, although other orderings, such as 1, 2, 4, 5, 3,
6, are also permissible.

We then proceed to back substitution, marching backwards through the un-
knowns along each branch. The only far super-diagonal elements are associated
with the first point. The order of the branches in back substitution is essentially
the reverse of their order in forward elimination: We must process each parent
branch before its children. In our example we can simply proceed in reverse
order from 6 to 1, although again other orderings are permissible.

Since this method is a mere reworking of Gaussian elimination without piv-
oting it is obvious that O(M) arithmetic operations and O(M) storage are
required to solve a branched structure with M grid points. If the rules above
are observed, fill-in can be avoided. On the other hand, if the ordering along
branch 1 is reversed, fill-in will result.

The second approach to branching is to solve small tridiagonal systems on
the individual branches and form the solution on the entire branching structure
out of a linear combination of these local solutions. This technique is known
generally as domain decomposition, which is the solution of a problem on one
domain by solving smaller problems on subdomains and then building up the
whole solution from these smaller parts. Since we are solving a linear equation,
we can exploit linear superposition. The simplest example of domain decompo-
sition for a branching one-dimensional structure is illustrated in figure 2. Here
we take a single cable and assume that an interior grid point is in fact a branch
point. If we assume the value of the solution at the branch point, Vg, is zero,
we can solve the tridiagonal systems for the voltages on both branches. We call
these solutions V;? and V;? for left and right. In general the value at the branch
point will not be zero. To take this into account call V;' and V;! the solutions to
the tridiagonal systems on each branch with the right hand side zero except for
the contribution from Vg, = 1. By the principle of superposition, the solution
on the left branch is V}° + Vg, V;!, while V) + Vg, V,!, gives the solution on the
right. A single equation for Vg, involves the nearest neighbors on the left and
right branch. This then gives us the value for Vg, which is used to give us the
complete solution on each branch via superposition.

In case a branch point is connected to more than two branches, the above
procedure still produces the solution on each branch. In this case the solution
is a linear combination of three tridiagonal solutions. The solution to the tridi-
agonal system with normal right hand side but with both branch end points
zero; the solution with zero right hand side with one branch point one; and
the solution with the other branch point one. Thus we can use this domain
decomposition method to solve the equations on any branching structure. Since
we only solve several tridiagonal systems to obtain the overall solution, the
arithmetic complexity for a structure with M unknowns is still O(M).

Numerical Methods 25

Left Branch Right Branch

/

Branch Point

N\

Figure 14.2: An example of domain decomposition for a branching one-
dimensional structure using the simplest geometry.

14.3.6 Nonlinear Equations

Up to now we have only considered finite difference methods for linear PDEs.
As we know, many of the most interesting PDE models in neuroscience are
highly nonlinear, e.g. the Hodgkin and Huxley model. It is a trivial matter
to use the forward Euler method on the Hodgkin-Huxley equations. One need
only evaluate the nonlinear currents at the old time step value to do so. This
involves the computation of the dimensionless variables at the old time value.
The forward Euler equation for m?*! is simply

mitt = mi 4+ At[(1 = mP)am (Vi) —mi Bm (V)] (14.45)

= [l Atan (V) + B(V)] + At (V7).

The expressions for A7t! and n'*" are analogous. The finite difference equation
for the voltage via the forward Euler method is then

Vit = o (Vi + Vi) + (1= 20 = 9f) Vi + o} (14.46)

Here o= aAt/2RC(A:E)2’ ’Vzn = (At/C) (yNa(mzn)thn + gK(nzn)4 + yleak); a‘nd
w? = (At/C) (gNa(m?)gh?ENa + §K(n?)4EK + gleakEleak) -

Generalizing the two implicit methods we have discussed to nonlinear equa-
tions raises more complicated issues. Because implicit methods require the
solution of difference equations, when applied to nonlinear PDEs nonlinear dif-
ference equations arise. The Hodgkin-Huxley equations have a property that we
will call “conditionally linearity.” Conditionally linear means that the PDE for
the voltage, eq. 14.3, is a linear PDE if the values of the dimensionless variables

26 Chapter 14

are known. Similarly, the rate equations for the dimensionless variables, egs.
14.2, are linear ODEs given values for V.

This is a fairly generic property of nonlinear neuronal models; however, it is
by no means universal. The nonlinearities in eq. 14.3 are associated with the
nonlinear ionic currents. These nonlinear currents are modeled as the product
of a nonlinear ionic conductance and the difference between the membrane po-
tential and the ionic reversal potential. Since the nonlinear ionic conductances
are not directly functions of voltage, eq. 14.3 is conditionally linear. Therefore
if we can model our nonlinear ionic currents as the products of the difference
between the membrane voltage and the ionic reversal potential and nonlinear
ionic conductances which are not directly functions of the membrane conduc-
tance, we will have nonlinear PDE models of neurons which are conditionally
linear.

What are the computational benefits of conditional linearity? Simply stated,
the benefits are the separation of the complicated nonlinear problem into two
simpler linear problems. This is ramified in different ways for the backward Eu-
ler and Crank-Nicolson methods. For the backward Euler method, separability
gives us an algorithm for iterative solution of the nonlinear difference equa-
tions encountered at each time step via functional or Picard iteration. With
Crank-Nicolson, separability reduces the nonlinear equations into a single set of
linear equations that can be solved at each time step through a staggered step
procedure.

If we use the backward Euler method to discretize the Hodgkin-Huxley PDE,
eq. 14.3, we arrive at the following system of nonlinear equations:

—oViT + (1 + 20 + 4tV — oV = VP W (14.47)
Here the definition of y; and w; is as above. These nonlinear difference equations
must be solved for the values of V1. To make matters worse, if we use the
backward Euler discretization on the dimensionless variables as well, then eq.
14.47 must be solved in conjunction with the nonlinear difference equations that
arise. The equations for m are:

mm

n+1 _ 7
4 = + 14.48
™ 15 MoV 1 B (V7] (14.48)
Ata, (VM)

T+ Atlan (V) + B (V)]

Equations for h and n are identical in form to eq. 14.48.

The backward Euler method for the Hodgkin-Huxley system requires the
simultaneous solution of eq. 14.47 and three equations of the form of eq. 14.48
at each time step. We can hope to solve these nonlinear equations with the
following iterative algorithm: 1. Solve eq. 14.47 with the previously known
dimensionless variable values to give new voltage values. 2. Solve the dimen-
sionless variable equations, eq. 14.48 etc., using the new voltage values to give
new dimensionless variable values. 3. Repeat steps 1 and 2 until voltage and

Numerical Methods 27

dimensionless variable values have converged. The starting values for this iter-
ative procedure are the values of the unknowns at the previous time step. Since
these equations are conditionally linear and hence separable, the equations to
be solved in steps 1 and 2 will always be linear. The voltage equations be-
come a single linear tridiagonal system, and the equations for the dimensionless
variables are reduced to explicit expressions for the new values. This iterative
procedure is sometimes called a Picard, fixed-point, or functional iteration. For
the backward Euler method applied to the Hodgkin-Huxley equations this itera-
tion method has been proven to converge provided that At is chosen sufficiently
small (Mascagni, 1987a).

As with the backward Euler method, the Crank-Nicolson method applied to
the Hodgkin-Huxley equations leads to nonlinear equations:

n+1

o v n o
—Vi o+)V - SV = (14.49)

n n+1 n
% i11+(1_0_%)‘/'i"+%v£1+%
These must be solved concurrently with the difference equations for the dimen-
sionless variables. If we wish to maintain an overall accuracy of O((At)?), we
must use a method of at least second order accuracy for the rate equations. Of
course we know that the trapezoidal rule is second order accurate and is the
ODE analog of the Crank-Nicolson method. Applying the trapezoidal rule to
the equation for m gives us:

1= A2 (V) 4 B (V)
m; n+1/2 n+1/2
1+ At/2[am(V;)+ Bm(V;)]
Ata, (V)

2

Lot A2 (V) + B (V)

n+1
%

m + (14.50)

We have used the values V"2

g in the above expression to simplify the form of
these difference equations while maintaining the desired second order accuracy.
One can use the average of the voltage at the nth and n + 1st time step to
estimate the value at time value n 4+ 1/2, or one may use another method we
discuss below.

Eqgs. 14.49 and 14.50 and the analogous equations for h and n are a compli-
cated set of simultaneous nonlinear equations. The fact that these equations are
conditionally linear can be exploited to give us an iterative algorithm for their
simultaneous solution. There is no rigorous proof for the convergence of this
method for the Crank-Nicolson method, but it is believed that the techniques
used in the proof of the backward Euler case can be easily extended to this case.
We should note that the iterative solution method described for the backward
Euler method can be used to solve the nonlinear equations we get with the
Crank-Nicolson discretization. In fact, this method was used by Cooley and
Dodge (1966), in a predictor-corrector variant of the method we described, to
do the first systematic numerical simulation of the Hodgkin-Huxley equations.

28 Chapter 14

Another approach to these equations, which exploits their conditional lin-
earity and results in no iteration, is to use an implementational detail we have
previously mentioned and the second order accuracy of the trapezoidal rule.
Recall that if V™ *! is the backward Euler solution to the linear cable equation,
eq. 14.23, then 2V"t! — V™ is the Crank-Nicolson solution. If one uses eqs.
14.47 with w"** replaced with w"™/2, then 2"+ — V™ gives us a second order
accurate solution to the Hodgkin-Huxley equations. Note that the definition of
w depends on the time level, n, only through the dimensionless variables. Thus
we need only compute the values m™/2, h"™/2 and n*'/? to obtain w /2.
This procedure requires values of the dimensionless variables at the midpoints
of the time levels used in the voltage equations. If one were to solve the dimen-
sionless variable equations at only the midpoint values, and the voltage values
at the usual values, then they could be combined to give an overall second order
method. This staggering of two time grids also simplifies the solution of the dif-
ference equations. Since the Hodgkin-Huxley equations are conditionally linear,
this grid staggering leads to solving a single tridiagonal system for the voltage
equation and evaluating the explicit equations for the dimensionless variables a
single time to advance the solution A¢t. One complication is the computation
of the unknowns on the two time grids staggered by At/2. One can accomplish
this by starting either the voltage or dimensionless variable equations with a
At/2 sized time step and then proceeding as normal.

With the backward Euler and Crank-Nicolson discretizations of the Hodgkin-
Huxley equations we have shown two different ways in which conditional lin-
earity can be exploited to simplify the numerical solution of these nonlinear
systems. Similarly, one can use the staggering method we presented for the
Crank-Nicolson method with the backward Euler equations. However, since
staggering is used to maintain O((At)?) accuracy in Crank-Nicolson, no stag-
gering is required with the O(At) backward Euler method. Thus the minor
complication of the staggered grids for Crank-Nicolson disappears if we are
happy with using backward Euler. Thus one obtains an O(At) implicit solution
without iteration.

A warning must be made for users of the staggering method with Crank-
Nicolson. This method is efficient and produces an O((At)?) solution to non-
linear problems without iteration. However, this is true only if the equations
are conditionally linear. If one had a cable model that was not conditionally
linear, then this method would not be assured of producing an O((At)?) solu-
tion. For example, if some ionic currents are explicitly nonlinear functions of
the voltage, then the model is not conditionally linear. The nonlinear equations
arising from the implicit discretization can be solved using a functional (Picard)
iteration or Newton’s method. Alternatively, one can restore conditional linear-
ity by expanding the nonlinear currents in a Taylor series and evaluating their
first derivatives at the half time points along with the conductances. An option
based on this idea is included in Neuron.

Experience in computing solutions to the Hodgkin-Huxley PDEs has shown
that the majority of the effort is spent in the evaluation of the a and f rate

Numerical Methods 29

functions associated with the dimensionless variables. Because of this fact, it is
considered prudent to use a lookup table to speed up the repeated evaluation
of these functions. If one examines the equations for the advancement of the
dimensionless variables, eqs. 14.45, 14.48, and 14.50, one will notice that they
are all of the form m™™! = m"K;(V,At) + Ko(V,At). Thus we need only
evaluate the two function, K; and K3, for each dimensionless variable at each
time step. The functions K; and Ks, which involve combinations of the a and
[functions, can be tabulated for the purpose of speed. If one does not plan to
change the time step size, At, during a computation, the functions K; and K,
can be tabulated once for all during the initialization of the computation.

It is most convenient to construct the lookup table over a wide range of pos-
sible voltage values using a uniform voltage increment. Experience has shown
that the voltage range of —100 millivolts to 150 millivolts with a step of 0.1
millivolt will give sufficient accuracy for the Hodgkin-Huxley equations. With
piecewise quadratic interpolation, experience has shown that a step as large as
4.0 millivolts can be used with no degradation in the overall accuracy. Inter-
polation with equally spaced points in a lookup table is handled quite well in
Conte and de Boor, (1980).

Unlike linear PDEs, there is no neat Lax Equivalence Theorem for finite
difference methods applied to nonlinear PDEs. The analysis of these methods
must instead proceed via a case by case approach. Fortunately, convergence of
the backward Euler method for the Hodgkin-Huxley equations has been proven
(Mascagni, 1987a). In addition, there is a considerable body of results on
the convergence of the Crank-Nicolson method for many classes of nonlinear
parabolic PDEs (Douglas, 1961; Lees, 1959; Rose, 1956). It appears that for
both the backward Euler and Crank-Nicolson methods, no relationship between
At and Az need hold; however, it is known for the backward Fuler method and
likewise conjectured for the Crank-Nicolson method that convergence occurs for
all values of At smaller than a certain maximal value (Mascagni, 1987a).

14.3.7 Networks

Synthesizing the results of the previous six sections gives us the ability to nu-
merically simulate a single arbitrarily branched neuronal model with spatial
variation and nonlinear ionic kinetics. This is already a significant capability;
however, with new developments in computer technology, it is possible to solve
problems of much greater complexity than merely a single neuron. The new
technical capabilities provide us with the opportunity to model several hundred
very complicated neurons which are synaptically connected to one another. The
neuronal modeler should bear these new developments in mind when considering
what types of questions to ask and what type of models to build.

The key to modeling a network of neurons is the selection of a model for
synaptic conduction that is both biophysically satisfying and is compatible with
the finite difference approach for the numerical solution of the nerve equations.
To a large extent this is a matter of personal taste. A general guideline for
this selection is that a deterministic model of synaptic conduction is most easily

30 Chapter 14

incorporated into a numerical scheme involving finite difference approximations
to nerve equations. For example, such a model might be the initiation of a
characteristic postsynaptic conduction change in response to the presynaptic
arrival of an action potential. This could be further embellished with a stochastic
determination of the shape of the elicited postsynaptic conductance change. The
types of models of this general form which cause numerical and implementational
difficulties are those in which the repertoire of possible postsynaptic conductance
time courses is large. In a computation that has many interacting neuronal
elements, the accurate determination of the postsynaptic membrane potential
requires the summation over the recent synaptic events. If there are potentially
many varied forms which these synaptic events effect the postsynaptic potential,
a considerable amount of computer memory must be used to implement the
complicated bookkeeping task underlying the determination of the postsynaptic
membrane potential. In a network of p neurons which are totally interconnected,
O(p?) contributions to the postsynaptic potentials must be calculated each time
step. This quadratic scaling with the number of neurons quickly dominates the
memory requirements of the computation, and it does so even more quickly
when a considerable amount of memory is required to store a single postsynaptic
event.

14.3.8 Concluding Remarks and Suggestions for PDEs

In deciding on one of these methods over another, considerations similar to those
discussed for choosing finite difference methods for ODEs arise. In general, it
takes no more computational work to use an implicit method than an explicit
method, so one should use either the backward Euler or Crank-Nicolson method.
The backward Euler method with iteration has been used with great success for
investigating certain problems (Mascagni, 1987b), and the observed solutions
remain qualitatively correct for rather large values of At. The Crank-Nicolson
method without iteration was first described in its entirety by Hines (1984).
This method has also been used with great success for certain computations
(Mascagni, 1989b). The authors have observed that with the Crank-Nicolson
method one cannot use values of At as large as with the backward Euler method
due to ringing instabilities. This is true, for example, when modeling a voltage-
clamp step, which introduces high-frequency Fourier components into the solu-
tion. In circumstances where using a large At is necessary and one is willing to
sacrifice quantitative accuracy, the backward FEuler method is preferable to the
Crank-Nicolson method. However, when accuracy is vital it is recommended
that the second order accurate method be used, taking care to use At small
enough to prevent ringing instabilities from contaminating the computation.
An alternative way to damp instabilities that avoids the complication of im-
plicit equations is the exponential Fuler method. However, it can be shown
that the method converges only if At/(Az)? — 0, a condition that is far more
restrictive than the stability condition for forward Euler. Thus, the solutions do
not blow up, but they may be highly inaccurate.

One can also use one of the several neural simulation packages that include

Numerical Methods 31

solvers for compartmental or PDE models. These include GENESIS and Neuron
for Unix workstations and Nodus for Macintosh. Neuron is also available for
Windows. GENESIS and Neuron include the backward Euler and Crank-Nicolson
methods, and so are efficient on stiff problems. The time required to learn
these packages may be greater than writing a simple solver for a particular
problem. However, they permit the user to define the problem in terms of
objects that are natural to neural modeling, such as channels and geometrical
features, rather than through equations. Also, once learned, these packages
allow much flexibility to change the problem and to perform many numerical
experiments. Finally, most of these packages have capabilities for producing
highly useful graphical output. As for the ODE packages, further information
can be found on the Web at URL: http://mrb.niddk.nih.gov/sherman.

There are several other problems that might arise in neuronal modeling that
produce PDEs for which we have not discussed methods of solution. In fact, we
really have only treated one-dimensional parabolic PDE models. In some cases
more than one spatial dimension must be included into a PDE model. Then,
one can use finite element methods or extensions of the finite difference methods
we have presented here. Whether a finite element or finite difference method
is used, the resulting diagonally dominant system that arises from an implicit
discretization is pentadiagonal in two dimensions and heptadiagonal in three.
The diagonals are not contiguous, however, introducing problems of fill-in that
can ruin the sparsity of the matrices. There are special variants of Gaussian
elimination for the efficient solution of such problems. However, a particularly
efficient method in the finite difference case is the Alternating Direction Implicit
method (Richtmyer and Morton, 1967; Press et al., 1992). The ADI method
produces an implicit solution to a two- or three-dimensional problem by solving
several one-dimensional problems alternately in each of the dimensions.

There are also methods for solving PDEs that offer higher order accuracy in
space and/or time. Methods that are higher order in space complicate both the
matrix equations that must be solved at each time step and boundary conditions.
Thus they are not often used. Methods that are higher order in time can be
obtained by using the method of lines with a high-order ODE solver. A version
of the Gear algorithm, for example, may be appropriate for problems in which
stiffness originates in the kinetics of the problem, rather than from diffusion
term of the PDE. However, one must also bear in mind that working hard to
refine the temporal discretization is wasted if the spatial accuracy remains at
O((Ax)?). Thus it is important to balance spatial and temporal accuracy when
solving PDE neuronal models.

14.4 Final Comments

We have surveyed the current wisdom on the best solutions to what might be
called the easy problems in neuronal modeling. Small systems of ODEs, even
stiff ones, can be solved very efficiently to high accuracy. PDE’s are naturally
more difficult, but reasonable methods (i.e. second-order accurate, O(N) work)

32 Chapter 14

are available for one-dimensional problems, including branched neurons. It is
of course not difficult to come up with problems that will confound the best
algorithms on the fastest computers, e.g. any problem with stiff kinetics in two
or three spatial dimensions. We have consciously avoided venturing into these
areas, both because of our own limitations and the limitations of the field as a
whole.

In addition to the particular advice we have sprinkled throughout, we con-
clude here with some general concepts that are relevant to problems on all scales
of difficulty. Numerical methods are fallible. Some may have considerable artifi-
cial intelligence built into them, but in the end there is no alternative to a deep
knowledge of the particular physical problem on the part of the investigator.
General dynamical systems theory can be very helpful because it categorizes
possible and impossible behaviors.

There is no algorithm that solves all problems, and the user must know
enough to adapt the tool to the job. It also pays to solve a problem by more
than one method. That means supplementing numerical methods with analyt-
ical methods and also using more than one numerical method. In addition to
catching routine errors, this may uncover very subtle ones. In one small but
illuminating example that we know of, an instability in the dynamical system
was sensitive to numerical error introduced by the Gear method, but not Runge-
Kutta, leading to discovery of a new class of phenomena (Sherman and Rinzel,
1992). No computer program can be expected to anticipate such cases. Ulti-
mately computational science is isomorphic to all of science, and can no more
than all of science ever be complete.

14.5 Appendix A: Stiffness

Let us consider the PDE model of the squid axon, eqs. 14.2 and 14.3, to illustrate
the method of lines and their relationship to compartmental models. In eq.
14.3, the right hand side has a term involving a second spatial derivative. If
we replace the continuous z-axis with a uniform grid of width Az, and replace
the term 02V /0x? with the familiar O((Az)?) finite difference approximation
(Vig1 — 2V; + Vi_1)/(Ax)?, the PDE is reduced to a system of coupled ODEs.
This is the method of lines, where a single PDE is reduced to a system of
ODEs by discretizing all but one of the independent variables in the PDE.
The resulting method of lines ODE system for the Hodgkin-Huxley PDE model
is stiff. This fact is well known from results for the method of lines for the
PDE which describes diffusion, 8V /0t = 82V /dx?, which displays the same
qualitative stiffness properties.

A compartmental model which uses individual ODE models for each com-
partment and where neighboring compartments are resistively coupled is equiva-
lent to a method of lines discretization of some PDE model. This is easily seen by
observing that we can rewrite our difference formula for the second derivative as
((Vig1 —Vi)/ Az — (Vi —V;_1)/Az) / Az. Now assume that the spatial discretiza-
tion is no longer uniform. If the distance between grid point 1+ 1 and 7 is denoted

Numerical Methods 33

by Az, while the distance between grid point 7 and i — 1 is called Azs, then the
second order accurate approximation to the second derivative on this nonuni-
form grid is given as ((Viy1 — Vi)/Az1 — (V; — Vic1)/Aza) [((Azy + Az2)/2).
This can be rewritten as LV;_1 + DV, +UV;41, where L, D, and U are constants.
This is exactly the form that one encounters in nearest neighbor resistively cou-
pled compartmental models units, where the ODE at one compartment depends
on the voltage values of the central and the two flanking compartments.

We will now perform an elementary calculation that will explicitly compute
the stiffness of a linear compartmental cable model. In our above mentioned
example on the method of lines, eqs. 14.24, we arrived at a system of coupled
linear ODEs to describe the time evolution of a linear compartmental model.
These ODEs came from a PDE model of a passive cable, and so we must impose
certain boundary conditions to correctly specify the mathematical problem. For
simplicity, let us assume that we desire the solution to eq. 14.24 with zero
Dirichlet boundary conditions, i.e. Vo = Vy = 0. If we define the vector of
voltages on the grid to be V = (Vi, V4, ..., Vn_1), we can rewrite eq. 14.24 as
the following linear system of ODEs:

av
dt

The matrix A is a tridiagonal matrix with the additional property that A
is Toeplitz. A Toeplitz matrix has constant diagonals. Thus if the elements
of A are denoted as a;;, then a;; = K4 whenever ¢ — j = d for A Toeplitz.
Hence our Toeplitz, tridiagonal A has a/2RC(Az)? on both off diagonals and
—(a/RC(Ax)? + g/C) along the main diagonal. Since eq. 14.51 is a linear
system of ODEs, the general solution to this system can be expressed as a linear
combination of exponential functions of the form e*, where) is an eigenvalue of
the matrix A. Since we are interested in computing the stiffness of this system,
which we recall is the ratio of the largest to smallest time scale in the problem,
we need only compute Ax_1/A1, which is the ratio of the largest to the smallest
eigenvalue of A. It should be noted that this ratio of eigenvalues is exactly the
lo-norm condition number of this matrix (Stoer and Bulirsch, 1980).

The eigenvalues of the tridiagonal Toeplitz matrix A are known to be (Isaac-
son and Keller, 1966):

AV. (14.51)

2
Mk = s sin’(

g - _
ROA)? +5 k=1..,N-1 (14.52)

T
oV

Thus the numerical stiffness is given by:

g sin?(YZ0m) 4

sin® (5%) + p

, (14.53)

— 2
where p = 29E(A2)" The constant p is a parameter which measures the dissipa-

tion of this particular cable model. Large values of p mean the system relaxes
due to this dissipation much faster than due to diffusion.

34 Chapter 14

With this explicit formula for the stiffness, we can ask what happens to the
stiffness of this system as we vary certain parameters, namely p and N. Since
0 < sin®(z) < 1, if p is large, then eq. 14.53 has a numerical value close to 1, and
so the system is in fact not very stiff. Thus, if the system is very dissipative, it
is numerically well behaved. On the other hand, if p is small, then the stiffness
is approximately the ratio of the sine terms in eq. 14.53. It can be shown that
sin%%)/sinz(%) = O(N?) as N gets large. Thus for small values of p,
the stiffness gets extremely large as we increase the number of compartments in
our cable model. In fact, it grows as the square of the number of compartments
in our models. Thus we see that compartmental models can be very stiff when
there is little dissipation via the membrane conductance. Paradoxically this
stiffness increases as we use smaller and smaller compartments to better resolve
spatial details. This relationship of stiffness to the number of compartments
is related to the inequality that must be satisfied for numerical stability of the
forward Euler method for these PDEs (Lambert, 1973).

Acknowledgments

The authors would like to thank David Golomb, Larry Abbott, Misha Tsodyks,
and David Hansel for discussions of integrate and fire problems, and Paul
Smolen, Todd Geldon, and Mike Vanier for calculations with the exponential
Euler method.

14.6 References

Back, A., Guckenheimer, J., Myers, M., Wicklin, F. and Worfolk, P. (1992)
dstool: Computer assisted exploration of dynamical systems. Notices of the
Am. Math. Soc. 39:303 — 309.

Baer, S. M., and Tier, C. (1986) An analysis of a dendritic neuron model with
an active membrane site. J. Math. Biol. 23: 137-161.

Boyce, W. E. and DiPrima, R. C. (1992) Elementary Differential Equations and
Boundary Value Problems, John Wiley and Sons, Inc., New York.

Clay, J. R., and DeFelice, L. J. (1983) Relationship between membrane ex-
citability and single channel open-close kinetics. Biophys. J. 42: 151-157.

Conte, S. D., and de Boor, C. (1980), Elementary Numerical Analysis An Algo-
rithmic Approach, Third Edition, McGraw-Hill Book Company, New York.

Cooley, J.W., Dodge, F.A. (1966) Digital computer solutions for excitation and
propagation of the nerve impulse. Biophys. J. 6: 583-599.

Crank, J. and Nicolson, P. (1947) A practical method for numerical evaluation
of solutions of partial differential equations of the heat conduction type.
Proc. Camb. Phil. Soc. 43: 50—67.

Dahlquist, G. and Bjorck, A. (1974) Numerical Methods, Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Numerical Methods 35

Doedel, E. J., Keller, H. B., and Kernévez, J. P. (1991) Numerical analysis and
control of bifurcation problems, Part I: Bifurcation in finite dimensions.
Int. J. Bifurcation and Chaos 1: 493-520.

Douglas, J. Jr. (1961) A survey of numerical methods for parabolic differential
equations. In: Advances in Computers, vol. 2, ed. F. Alt, Academic Press,
New York, pp. 1-54.

Ermentrout, B. (1990) PhasePlane: The Dynamical Systems Tool, Brooks/Cole,
Pacific Grove, California.

Fox, R. F., and Lu, Y.-N. (1994) Emergent collective behavior in large numbers
of globally coupled independently stochastic ion channels, Phys. Rev. E
49: 3421-3431.

Gear, C. W. (1971a) Numerical Initial Value Problems in Ordinary Differential
FEquations, Prentice-Hall, Englewood Cliffs, New Jersey.

Gear, C. W. (1971b) The automatic integration of ordinary differential equa-
tions. Comm. ACM 14: 176-179.

Golub, G. H. and Ortega, J. M. (1992) Scientific Computing and Differential
Equations, Academic Press, Boston.

Golub, G. H, and Van Loan, C. F. (1985) Matriz Computations, Johns Hopkins
University Press, Baltimore.

Hines, M. (1984) Efficient computation of branched nerve equations. Int. J.
Bio-Medical Computing 15: 69-76.

Hodgkin, A.L. and Huxley, A.F. (1952) A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Phys-
iol. (London) 117: 500-544.

Hubbard, J. H. and West, B. (1992) MacMath: A Dynamical Systems Software
Package for the Macintosh, Springer-Verlag, New York.

Isaacson, E. and Keller, H. B. (1966) Analysis of Numerical Methods, John
Wiley and Sons, Inc., New York.

Jack, J.J.B., Noble, D., and Tsien, R.W. (1983) Electrical Current Flow in
FExcitable Cells, Second Edition, Clarendon Press, Oxford.

John, F. (1952) On integration of parabolic differential equations by difference
methods. Comm. Pure Appl. Math. 5: 155-211.

John, F. (1982) Partial Differential Equations, Fourth Edition, Springer-Verlag,
Heidelberg.

Keller, H. B. (1976) Numerical Solution of Two Point Boundary Problems,
CMBS-NSF Regional Conference Series in Applied Mathematics, number
24, STAM, Philadelphia.

Kloeden, P., Platen, E., and Schurz, H. (1993) Numerical Solution of Stochas-
tic Differential Equations Through Computer Experiments, Springer-Verlag,
Heidelberg.

Kogak, H. (1989) Differential and Difference Equations through Computer Ex-
periments, Springer-Verlag, New York.

Kuramoto, Y. (1991) Collective synchronization of pulse-coupled oscillators and
excitable units. Physica D 50: 15-30.

Lambert, J. D. (1973) Computational Methods in Ordinary Differential Equa-
tions, John Wiley and Sons, Inc., New York.

36 Chapter 14

Lees, M. (1959) Approximate solution of parabolic equations. J. SIAM 7: 167-
183.

Li, Y.-X., Rinzel, J., Vergara, L., and Stojilkovi¢, S. S. (1995) Spontaneous
electrical and calcium oscillations in unstimulated pituitary gonadotrophs.
Biophys. J. 69: 785-795.

Lin, C. C. and Segel, L. A. (1988) Mathematics Applied to Deterministic Prob-
lems in the Natural Sciences, STAM, Philadelphia.

Mascagni, M. (1987a) Negative Feedback in Neural Networks, Doctoral Disser-
tation in Mathematics, Courant Institute of Mathematical Sciences, New
York University.

Mascagni, M. (1987b) Computer simulation of negative feedback in neurons.
Soc. for Neurosci. Abst. 13: 375.4.

Mascagni, M. (1989a) An initial-boundary value problem of physiological sig-
nificance for equations of nerve conduction, Comm. Pure Appl. Math. 42:
213-227.

Mascagni, M. (1989b) Animation’s role in modeling the nervous system, Iris
Universe Winter 1989: 6-18.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., (1992)
Numerical Recipes: The Art of Scientific Computing, second edition, Cam-
bridge University Press, Cambridge.

Richtmyer, R. D. and Morton, K. W. (1967) Difference Methods for Initial-
Value Problems, second edition, Interscience Publishers, division of John
Wiley and Sons, Inc., New York.

Rose, M. E. (1956) On the integration of nonlinear parabolic equations by im-
plicit methods. Quart. Appl. Math. 15: 237-248.

Sherman, A. and Rinzel, J. (1992) Rhythmogenic effects of weak electrotonic
coupling in neuronal models, Proc. Natl. Acad. Sci. USA 89: 2471-2474.

Sod, G. A. (1985) Numerical Methods in Fluid Dynamics: Initial and Initial
Boundary-Value Problems, Cambridge University Press, Cambridge.

Stoer, J. and Bulirsch, R. (1980) Introduction to Numerical Analysis, Springer
Verlag, Heidelberg.

Tsodyks M., Mit’kov, 1., and Sompolinsky, H. (1993) Pattern of Synchrony in
Inhomogeneous Networks of Oscillators with Pulse Interactions. Phys. Rev.
Lett. 71, 1280-1283.

