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Introduction and Motivation

Introduction and Motivation

I Monte Carlo methods compute quantities of interest by statistical sampling
1. Partial results are combined to produce a mean and variance used to publish a confidence

interval
2. The partial results are independent, identically distributed (i.i.d.) random variables with

finite mean and variance, if the Monte Carlo methods is constructed correctly
3. These results are summed up in a sample mean and variance, and under the

assumptions above, the mean should be normally distributed as per the De Finetti version
the Central Limit Theorem (CLT)

I There are many methods that can be used to detect outliers when the underlying
distribution is normal

1. For sample size, N ≤ 30, one can use Dixon’s Q-test
2. For larger sample sizes, N > 30, one can use the significance test of Pearson and Hartley
3. The last will be a general technique for detecting and removing outliers based on

Chauvenet’s criterion
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Introduction and Motivation

I The consideration of outlier identification and removal leads naturally to other topics
I Topics not considered here

1. Construction of confidence intervals
2. Using p-values based on the confidence interval parameters to identify outliers

I We will consider the related problem of goodness of fit, specifically whether observed
data fit particular distributions

1. Discrete Distributions: χ2 test
2. Continuous Distributions

2.1 The Kolmogorov-Smirnov Test
2.2 The Anderson-Darling Test
2.3 The Shapiro-Wilk Test

3. Combining different goodness of fitness tests
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A Version of the Central Limit Theorem

I Let X1,X2, . . . ,XN be a sequence of i.i.d. random variables with
1. E[Xi ] = µ
2. Var[Xi ] = σ2 <∞

I Consider the sample mean

SN =
X1 + X2 + · · ·+ XN

N
=

1
N

N∑
i=1

Xi

I Then as N approaches infinity

lim
n→∞

√
n(SN − µ)

in distribution−−−−−−−−−−→ N(0, σ2)

I This is the DeFinetti version of the CLT, and is sufficient for our purposes in Monte
Carlo
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Why Are Partial Results from Monte Carlo Approximately Normal?

I Given a quantity of interest, Z , one may be able to define a Monte Carlo method to
compute it based on

1. A random/stochastic process that can be realized, S
2. An estimator of Z , EstZ (S) with the following properties

2.1 E[EstZ (S)] = Z + b, where b is the known bias, when b = 0 we have an unbiased estimator
2.2 Var[EstZ (S)] <∞, the estimator has finite variance

I With such an estimator, the various samples, Z1,Z2, . . . , satisfy the conditions for the
CLT stated previously

I The sample mean, 1
N

∑N
i=1 Zi , will be approximately Gaussian in distribution

I Thus, to work with outliers in Monte Carlo, it suffices to use methods geared to the
normal distribution
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Monte Carlo Errors and Elementary Statistics
I Given that we want to compute Z , and the we have a stochastic process and

estimator that produces our Monte Carlo estimates: Z1,Z2, . . . , we compute via the
following three running sums N,Z

′
and Z

′′
:

1. N = N + 1: the number of samples
2. Z

′
= Z

′
+ Zi : the running sum

3. Z
′′

= Z
′′

+ (Zi ∗ Zi ): the running sum of squares
I Then we compute the sample mean and variance as

1. Z̄ = 1
N

∑N
i=1 Zi = Z

′

N

2. Var[Z ] = 1
N−1

∑N
i=1

(
Zi − Z̄

)2
= 1

N−1

∑N
i=1 Z 2

i − 2Zi Z̄ + Z̄ 2 = 1
N−1

(
Z
′′
− Z̄ 2

)
I From above we know that Z̄ should be approximately normal with mean and variance

given by their estimates
I It is customary to publish Monte Carlo errors as the sample mean plus or minus the

square root of the variance of the sample mean: Z̄ ±
√

Var[Z ]/N1/2

I This last value is called the standard error, and provides the variance to construct a
confidence interval bases on normal theory for the Monte Carlo estimate
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Dixon’s Q-test: Detection of a Single Outlier

Theory
I In a set of i.i.d. computations, one or more of the values may differ considerably from

the majority of the rest
I In this case there is always a strong motivation to eliminate those deviant values and

not to include them in any subsequent calculation
I This is permitted only if the suspect values can be “legitimately” characterized as

outliers
I Usually, an outlier is defined as an observation that is generated from a different

model or a different distribution than was the main “body” of data
I Although this definition implies that an outlier may be found anywhere within the

range of observations, it is natural to suspect and examine as possible outliers only
the extreme values.
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Dixon’s Q-test

Dixon’s Q-test: Detection of a Single Outlier

Theory (Cont.)
I The Dixon’s Q-test is the simpler test of this type
I This test allows us to examine if one (and only one) observation from a small set of

replicate observations (typically 3 to 30) can be “legitimately” rejected or not
I The Q-test is based on the statistical distribution of "sub-range ratios" of ordered data

samples, drawn from the same normal population
I A normal distribution of data is assumed whenever this test is applied. In case of the

detection and rejection of an outlier, Q-test cannot be reapplied on the set of the
remaining observations



Finding Outliers in Monte Carlo Computations

Some Tests for Outliers

Dixon’s Q-test

Dixon’s Q-test: Detection of a Single Outlier

Practice
The test is very simple and it is applied as follows:

1. The N values comprising the set of observations under examination are arranged in
ascending order: x1 < x2 < · · · < xN

2. The statistic experimental Q-value (Qexp) is calculated. This is a ratio defined as the
difference of the suspect value from its nearest one divided by the range of the values
(Q: rejection quotient). Thus, for testing x1 or xN (as possible outliers) we use the
following Qexp values:

Qexp =
x2 − x1

xN − x1
or Qexp =

xN − xN−1

xN − x1
(1)
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Dixon’s Q-test

Dixon’s Q-test: Detection of a Single Outlier

Practice (Cont.)

3. The obtained Qexp value is compared to a critical Q-value (Qcrit ) found in tables. This
critical value should correspond to the confidence level (α) we have decided to run
the test (usually: α =95%) Note: Q-test is a significance test.

4. If Qexp > Qcrit , then the suspect value can be characterized as an outlier and it can be
rejected, if not, the suspect value must be retained and used in all subsequent
calculations

5. The null hypothesis associated to Q-test is as follows:“There is no a significant
difference between the suspect value and the rest of them, any differences must be
exclusively attributed to random errors”

I A table containing the critical Q values for different N and α follows
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Dixon’s Q-test

A Table of Critical Values of Q Depending on N and α

N α=0.001 α=0.002 α=0.005 α=0.01 α=0.02 α=0.05 α=0.1 α=0.2
3 0.999 0.998 0.994 0.988 0.976 0.941 0.886 0.782
4 0.964 0.949 0.921 0.889 0.847 0.766 0.679 0.561
5 0.895 0.869 0.824 0.782 0.729 0.643 0.559 0.452
6 0.822 0.792 0.744 0.698 0.646 0.563 0.484 0.387
7 0.763 0.731 0.681 0.636 0.587 0.507 0.433 0.344
8 0.716 0.682 0.633 0.591 0.542 0.467 0.398 0.314
9 0.675 0.644 0.596 0.555 0.508 0.436 0.370 0.291
10 0.647 0.614 0.568 0.527 0.482 0.412 0.349 0.274
15 0.544 0.515 0.473 0.438 0.398 0.338 0.284 0.220
20 0.491 0.464 0.426 0.393 0.356 0.300 0.251 0.193
25 0.455 0.430 0.395 0.364 0.329 0.277 0.230 0.176
30 0.430 0.407 0.371 0.342 0.310 0.260 0.216 0.165

Table: A Table of Qcrit for Dixon’s Q-Test
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Grubb’s Significance Test

Grubb’s Significance Test

I Grubb’s test detects one outlier at a time from X1,X2, . . . ,XN assumed normal
I It is based on distinguishing between the following hypotheses:

1. H0: There are no outliers in X1,X2, . . . ,XN (null hypothesis)
2. H1: The is at least one outlier in X1,X2, . . . ,XN

I With knowledge of µ and σ2 from the N data points, the test statistic is:

G =

max
i=1,...,N

|Xi − µ|

σ

I For the two-sided test, the null hypothesis is rejected at significance level α if

G >
N − 1√

N

√√√√ t2
α
2N ,N−2

N − 2 + t2
α
2N ,N−2

where t α
2N ,N−2 denotes the critical value of the t-distribution with N − 2 degrees of

freedom at a significance level of α
2N
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Pearson and Hartley’s Significance Test

Pearson and Hartley’s Significance Test

I For random samples larger than 30 objects, possible outliers may be identified by
using the significance thresholds of Pearson and Hartley

I The test statistic q has to be calculated as follows:

q =

∣∣∣∣X1 − µ̄
σ̄

∣∣∣∣ , where

1. X1 is the object to be tested
2. X1,X2, . . . ,XN are the data
3. µ̄ is the computed mean of all objects (including the value of X1)
4. σ̄2 is the computed variance of all the objects

I X1 is regarded to be an outlier if the q exceeds the critical threshold qcrit for a given
level of significance α and a sample size N
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Pearson and Hartley’s Significance Test

Pearson and Hartley’s Significance Test
N qcrit , α = 0.05 qcrit , α = 0.01 N qcrit , α = 0.05 qcrit , α = 0.01
1 1.645 2.326 55 3.111 3.564
2 1.955 2.575 60 3.137 3.587
3 2.121 2.712 65 3.160 3.607
4 2.234 2.806 70 3.182 3.627
5 2.319 2.877 80 3.220 3.661
6 2.386 2.934 90 3.254 3.691
8 2.490 3.022 100 3.283 3.718
10 2.568 3.089 200 3.474 3.889
15 2.705 3.207 300 3.581 3.987
20 2.799 3.289 400 3.656 4.054
25 2.870 3.351 500 3.713 4.106
30 2.928 3.402 600 3.758 4.148
35 2.975 3.444 700 3.797 4.183
40 3.016 3.479 800 3.830 4.214
45 3.051 3.511 900 3.859 4.240
50 3.083 3.539 1000 3.884 4.264

Table: qcrit for Various N ’s and Significance α = 0.05 and α = 0.01
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Chauvenet’s Criterion

Chauvenet’s Criterion
Procedure

I You have a data set: X1,X2, . . .XN that is assumed to be N(µ, σ2)

I You want to throw away all observations which are outliers
I This is how you do it using Chauvenet’s criterion:

1. Calculate µ and σ2 from the N data points, and let Z = |Xi−µ|
σ

2. If N × erfc(Z/
√

2) < 1
2 , then we reject xi

3. Repeat the previous until all points pass the rejection criterion, using only the non-rejected
points

4. Report the final µ, σ2, and N
I When the dust settles, you have two data sets: The set of all good data points, and

the set of “bad” points

Please note that the erfc(·) is the complimentary error function:
erfc(y) = 2√

π

∫∞
y e−t2

dt = 1− erf(y), where erf(y) = 2√
π

∫ y
−∞ e−t2

dt , if Z ∼ N(0,1), then

P[α < Z < β] = 1
2

[
erf
(
α√

2

)
− erf

(
β√
2

)]
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What are Goodness of Fit Tests?

I Outliers are problematic items in a data set, and the removal of outliers has many
applications

1. Cleaning up data so that statistical tests can compute representative values
2. Detecting stochastic computations that are either very unusual or have been corrupted by

faults, and hence making them more fault tolerant
I Goodness of fit tests are similar to tests for detecting outliers, but here the assumption

is that the entire data set are i.i.d. random variables from a certain distribution
I Goodness of fit tests exist for both discrete and continuous probability distributions

1. Discrete: Chi-squared test
2. Continuous: Kolmogorov-Smirnov, Anderson-Darling, and Shapiro-Wilk (note all are

expected distribution function (EDF) tests)
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The Chi-Squared Goodness of Fit Test

The Chi-Squared Goodness of Fit Test

The χ2 test is for discrete probability distributions, consider the problem of rolling two
six-sided dice, which has 36 possible outcomes of which the die totals are the integers
2-12

s : Value of the total of the 2 dice
ps : Probability of a certain total occurring

s 2 3 4 5 6 7 8 9 10 11 12
ps

1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

If we throw dice N = 144 times, here is a possible outcome:

s 2 3 4 5 6 7 8 9 10 11 12
Observed: Ys 2 4 10 12 22 29 21 15 14 9 6

Expected: Nps 4 8 12 16 20 24 20 16 12 8 4
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The Chi-Squared Goodness of Fit Test

The Chi-Squared Goodness of Fit Test

Is a pair of dice loaded? Is this result consistent with the standard discrete distribution?

We can’t make a definite yes/no statement, but we can give a probabilistic answer using
the χ2 statistic:

χ2 =
∑

1≤s≤k

(Ys − Nps)2

Nps
=

1
N

∑
1≤s≤k

(
Y 2

s

ps

)
− N

Recall that:
∑

1≤s≤k Ys = N and
∑

1≤s≤k ps = 1

k : Number of bins
N : Number of observations

ν = k − 1 : degrees of freedom (one less than the number of bins)
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The Chi-Squared Goodness of Fit Test

The Chi-Squared Goodness of Fit Test

Consider the following sets of data from 144 rolls:

Value of s 2 3 4 5 6 7 8 9 10 11 12
Experiment 1 Ys 4 10 10 13 20 18 18 11 13 14 13
Experiment 2 Ys 3 7 11 15 19 24 21 17 13 9 5

χ2
1 = 29

59
120

χ2
2 = 1

11
120

We look these values up in χ2 table with ν = 10 degrees of freedom:
χ2

1 is too high, this value occurs by chance 0.1% of the time
χ2

2 is too low, this value occurs by chance 0.01% of the time
Both indicate a significant departure from randomness

Rule of thumb: To use the χ2 test N should be large enough to make each Nps ≥ 5
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The Chi-Squared Goodness of Fit Test

The Chi-Squared Goodness of Fit Test

The general recipe for the Chi-Squared Goodness of fit test
1. N independent observations
2. Count the number of observations in in the k categories (bins)
3. Compute χ2

4. Look up χ2 Chi-Squared distribution table with ν = k − 1 d.o.f.

χ2<1% or χ2>99% reject
1%<χ2<5% or 95%<χ2<99% suspect

5%<χ2<10% or 90%<χ2<95% almost suspect
otherwise accept
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The Chi-Squared Goodness of Fit Test

The Chi-Squared Goodness of Fit Test

I Why is the χ2 distributed as a Chi-squared with ν = k − 1 degrees of freedom? This
is Pearson’s argument

1. If η1, η2, . . . , ηN ∼ N(0, 1) then Q =
∑N

i=1 η
2
i is Chi-squared distributed with N degrees of

freedom
2. Consider fi , i = 1, . . .N to be i.i.d. Binomial random variables, and consider m =

∑N
i=1 fi

3. E [m] = Np, and var [m] = Np(1− p) = Npq, so that χ = m−Np√
Npq

will have mean zero and

unit variance
3.1 Laplace and DeMoivre, in an early version of the Central Limit Theorem, showed that

χ→ N(0, 1)

3.2 Thus χ2 = (m−Np)2

(Npq)
= (m−Np)2

(Np)
+ (N−m−Nq)2

(Nq)
→ χ2(2)

3.3 Since χ2 =
∑N

i=1
(Oi−Ei )

2

Ei
is the sum of squares of approximate normals from the multinomial

extension from binomial distribution, it is approximately χ2(N − 1) since∑N
i=1 Oi =

∑N
i=1 Ei = N removes one d.o.f.
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The Chi-Squared Goodness of Fit Test

A Table of Chi-Squared Percentages
P[X ≤ x ] =

∫ x

0

1
Γ(ν/2)2ν/2

yν/2−1e−ν/2 dx

ν 0.01 0.025 0.05 0.25 0.50 0.75 0.95 0.975 0.99
1 0.000 0.001 0.004 0.102 0.455 1.323 3.841 5.024 6.635
2 0.020 0.051 0.103 0.575 1.386 2.773 5.991 7.378 9.210
3 0.115 0.216 0.352 1.213 2.366 4.108 7.815 9.348 11.345
4 0.297 0.484 0.711 1.923 3.357 5.385 9.488 11.143 13.277
5 0.554 0.831 1.145 2.675 4.351 6.626 11.070 12.833 15.086
6 0.872 1.237 1.635 3.455 5.348 7.841 12.592 14.449 16.812
7 1.239 1.690 2.167 4.255 6.346 9.037 14.067 16.013 18.475
8 1.646 2.180 2.733 5.071 7.344 10.219 15.507 17.535 20.090
9 2.088 2.700 3.325 5.899 8.343 11.389 16.919 19.023 21.666

10 2.558 3.247 3.940 6.737 9.342 12.549 18.307 20.483 23.209
11 3.053 3.816 4.575 7.584 10.341 13.701 19.675 21.920 24.725
12 3.571 4.404 5.226 8.438 11.340 14.845 21.026 23.337 26.217
15 5.229 6.262 7.261 11.037 14.339 18.245 24.996 27.488 30.578
20 8.260 9.591 10.851 15.445 18.338 23.828 31.410 34.170 37.566
30 14.953 16.791 18.493 24.478 29.336 34.800 43.773 46.979 50.892
50 29.707 32.357 34.764 42.942 49.335 56.334 67.505 71.420 76.154

n > 30 ν +
√

2νxp + 2
3 x2

p − 2
3 + O(ν−1/2)

xp −2.326 −1.960 −1.645 −0.675 0.00 0.6745 1.6449 1.9600 2.3263
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The Kolmogorov-Smirnov Test
Chi-Squared (χ2): testing data from discrete distributions
Kolmogorov-Smirnov (K-S): testing data from continuous distributions

I N i.i.d. observations of the random variable X : X1,X2, . . . ,XN

I X has as cumulative density function (CDF): F (x) = P(X ≤ x)
I X1,X2, . . . ,XN define the empirical CDF (ECDF) FN(x):

FN(x) =
1
N

N∑
i=1

χ(−∞,x ](Xi ),where

χI(y) =

{
1, y ∈ I
0, y 6∈ I

is the indicator function of the interval I ⊂ R

I Then we define the following measure of deviation of the ECDF from the exact
(hypothesized) CDF:

D∗N = sup
x
|FN(x)− F (x)|
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The Kolmogorov-Smirnov Goodness of Fit Test

A Graph Illustrating How the K-S Statistic is Computed
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The Kolmogorov-Smirnov Goodness of Fit Test

The Kolmogorov-Smirnov Test
I When X ∼ U[0,1) we have

F (x) =


0, x < 0
x , 0 ≤ x ≤ 1
1, x > 1

and so D∗N = sup
x
|FN(x)− F (x)|

is the star-discrepancy, which is used in quasirandom number generation
I The use of the∞-norm (sup-norm) is the standard topology used in probability for

studying distributions via their CDFs
I The standard, two-sided K-S statistic is KN =

√
ND∗N

1. As N →∞ we get the asymptotic distribution K∞
2. Kolmogorov showed that

K∞ = sup
t∈[0,1]

|B(t)|,where Bt := (Wt | W1 = 0), t ∈ [0, 1]

is the Brownian Bridge process, using Donsker’s theorem
3. More generally

√
nDn

n→∞−−−→ supt |B(F (t))|
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The Kolmogorov-Smirnov Goodness of Fit Test

The Kolmogorov-Smirnov Test

Non-central variants of the K-S test based on differences between F (x) and FN(x)

K +
N =

√
N max
−∞<x<+∞

(FN(x)− F (x))

maximum deviation when FN is greater than F (·)

K−N =
√

N max
−∞<x<+∞

(F (x)− FN(x))

maximum deviation when Fn is less than F (·)
We get a table similar to χ2 to find the percentile, but unlike χ2, the table fits any size of N

Note that KN =
√

ND∗N = max(K−N ,K
+
N )
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The Kolmogorov-Smirnov Goodness of Fit Test

The Kolmogorov-Smirnov Test
Simple procedure to obtain K +

N ,K
−
N used the test the null hypothesis

H0: The X1,X2, . . . ,XN are drawn from the CDF F (·)

1. Obtain observations X̄1, X̄2, . . . , X̄N
2. Sort them into X1 ≤ X2 ≤ . . . ≤ XN
3. We use the fact that FN(Xj ) = j

N to calculate K +
N ,K

−
N as follows:

K +
N =

√
N max

1≤j≤N

(
j
N
− F (Xj )

)
K−N =

√
N max

1≤j≤N

(
F (Xj )−

j − 1
N

)
4. The asymptotic distribution of max(K +

N ,K
−
N ) is given by

F∞(x) = 1− 2
∞∑

k=1

(−1)k−1e−2k2x2
=

√
2π
x

∞∑
k=1

e−(2k−1)2π2/(8x2)
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The Kolmogorov-Smirnov Goodness of Fit Test

Table of Selected Percentiles of the Distributions of K +
n and K−n

p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%
n = 1 0.01000 0.05000 0.2500 0.5000 0.7500 0.9500 0.9900
n = 2 0.01400 0.06749 0.2929 0.5176 0.7071 1.0980 1.2728
n = 3 0.01699 0.07919 0.3112 0.5147 0.7539 1.1017 1.3589
n = 4 0.01943 0.08789 0.3202 0.5110 0.7642 1.1304 1.3777
n = 5 0.02152 0.09471 0.3249 0.5245 0.7674 1.1392 1.4024
n = 6 0.02336 0.1002 0.3272 0.5319 0.7703 1.1463 1.4144
n = 7 0.02501 0.1048 0.3280 0.5364 0.7755 1.1537 1.4246
n = 8 0.02650 0.1086 0.3280 0.5392 0.7797 1.1586 1.4327
n = 9 0.02786 0.1119 0.3274 0.5411 0.7825 1.1624 1.4388

n = 10 0.02912 0.1147 0.3297 0.5426 0.7845 1.1658 1.4440
n = 11 0.03028 0.1172 0.3330 0.5439 0.7863 1.1688 1.4484
n = 12 0.03137 0.1193 0.3357 0.5453 0.7880 1.1714 1.4521
n = 15 0.03424 0.1244 0.3412 0.5500 0.7926 1.1773 1.4606
n = 20 0.03807 0.1298 0.3461 0.5547 0.7975 1.1839 1.4698
n = 30 0.04354 0.1351 0.3509 0.5605 0.8036 1.1916 1.4801
n > 30 yp − 1

6 n−1/2 + O(1/n), where y2
p = 1

2 ln(1/(1− p))

yp 0.07089 0.1601 0.3793 0.5887 0.8326 1.2239 1.5174
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The Anderson-Darling Goodness of Fit Test

The Anderson-Darling Goodness of Fit Test

I The Anderson-Darling (A-D) test is a goodness of fit test, like the better known
Kolmogorov-Smirnov test, but it has many of the same building blocks

1. Data, X1,X2, . . .XN , that has FN as it’s ECDF: FN(x) = 1
N

∑N
i=1 χ(−∞,x ](Xi )

2. The CDF we hypothesize fits the data, F (x)

I A-D is a quadratic empirical distribution function statistic of the form:

N
∫ ∞
−∞

(FN(x)− F (x))2 w(x) dF (x),

where the weight function for A-D is w(x) = [F (x) (1− F (x))]−1, which places extra
emphasis on the tails of the distribution

I Thus the A-D statistic, A is given by:

A = N
∫ ∞
−∞

(FN(x)− F (x))2

F (x) (1− F (x))
dF (x)
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The Anderson-Darling Goodness of Fit Test

I A-D test assesses whether a sample comes from a specified distribution
I A-D makes use of the fact that, when given that the data comes from the

hypothesized underlying distribution the frequency of the data can be assumed to
follow a uniform distribution

I The data can be then tested for uniformity with a distance test (Shapiro 1980)
I The formula for the A-D test statistic A to assess if data {X1 < · · · < XN} comes from

a distribution with CDF of F

A2 = −N − S, where, S =
N∑

i=1

2i − 1
N

[ln(F (Xi )) + ln (1− F (Xn+1−i ))]

I The test statistic can then be compared against the critical values of the known
theoretical distribution

I Note that no parameters are estimated in relation to the CDF with this version of A-D
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The Shapiro-Wilk Goodness of Fit Test

I Shapiro-Wilk (S-W) test checks whether X1 ≤ X2 ≤ . . . ≤ XN comes from a normally
distributed population

I We then form the the following statistic

W =

(∑N
i=1 aiXi

)2

∑N
i=1(Xi − X )2

, using

(a1, . . . ,aN) =
mTV−1

(mTV−1V−1m)1/2

1. Here m = (m1, . . . ,mN) are the expected values of the order statistics of N i.i.d. N(0, 1)
random variables: X1 ≤ X2 ≤ . . . ≤ XN

2. V is the covariance matrix of those order statistics
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Combining Goodness of Fitness Tests

I Given that we have a powerful tool to check for goodness of fit of continuous
distributions

1. The Kolmogorov-Smirnov test
2. The Anderson-Darling test

I And we know the distribution of the K-S and χ2 statistic, and many others
I One can apply several different goodness of fit tests to improve the ability to evaluate

large samples
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Combining Goodness of Fitness Tests

I Consider large amounts of data available for the χ2 test
1. Assume we have N samples for the χ2 test with ν degrees of freedom, and N is

appropriate based on the rule of thumb, etc.
2. Also assume that we have r batches of N samples, and they create the following set of

statistics: χ2(1), χ2(2), . . . , χ2(r)

I One can now use the K-S test to see if χ2(1), χ2(2), . . . , χ2(r) with the null hypothesis
that they are from F (·) that is χ2 distributed with ν degrees of freedom
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Combining Goodness of Fitness Tests

I Dilemma: We need a large N to tell FN from F when they differ, but a large N in K-S
will average out local random behavior

I Compromise: Consider a moderate size for N, say 1000, appropriate for a single K-S
test

1. Compute a fairly large number of K +
1000 on r different parts of the random sequence

K +
1000(1),K +

1000(2), . . . ,K +
1000(r)

2. Apply the K-S test to he distribution of K +
N , which is approximated by

F1000(x) ≈ F∞(x) = P(K ≤ x) ≈ 1− e−2x2

I Significance: Detects both local and global random behavior
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