Testing Random Numbers: Theory and Practice

Prof. Michael Mascagni

Applied and Computational Mathematics Division, Information Technology Laboratory National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA AND
Department of Computer Science
Department of Mathematics
Department of Scientific Computing
Graduate Program in Molecular Biophysics Florida State University, Tallahassee, FL 32306 USA

E-mail: mascagni@fsu.eduor mascagni@nist.gov
URL: http://www.cs.fsu.edu/~mascagni

Overview

Chi-Square TestThe Kolmogorov-Smirnov (K-S)TestEmpirical Tests
Equidistribution Test (Frequency Test)Serial Test
Gap Test
Poker Test
Coupon Collector's Test
Permutation Test
Runs Test
Maximum of t Test
Collision Test
Serial Correlation Test
The Spectral Test

Chi-Square Test

Eg. "Throwing 2 dice"
$s \quad: \quad$ Value of the sum of the 2 dice.
$p_{s}:$ Probability.

s	2	3	4	5	6	7	8	9	10	11	12
p_{s}	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

If we throw dice 144 times:

s	2	3	4	5	6	7	8	9	10	11	12
Observed: Y_{s}	2	4	10	12	22	29	21	15	14	9	6
Expected: $n p_{s}$	4	8	12	16	20	24	20	16	12	8	4

Chi-Square Test

Is a pair of dice loaded?
We can't make a definite yes/no statement, but we can give a probabilistic answer. We can form the Chi-Square Statistic.

$$
\begin{gathered}
\chi^{2}=\sum_{1 \leq s \leq k} \frac{\left(Y_{s}-n p_{s}\right)^{2}}{n p_{s}} \\
=\frac{1}{n} \sum_{1 \leq s \leq k}\left(\frac{Y_{s}^{2}}{p_{s}}\right)-n \\
\chi^{2}=k-1: \text { degrees of freedom } \\
k: \quad \text { Number of categories } \\
n: \quad \text { Number of observances }
\end{gathered}
$$

Table of Chi-Square Distribution

Entry in row χ^{2} under column p is x, which means
"The quantity χ^{2} will be less than or equal to x, with approximate probability p, if n is large enough."

Example:

Value of s	2	3	4	5	6	7	8	9	10	11	12
Experiment $1, \mathrm{Y}_{s}$	4	10	10	13	20	18	18	11	13	14	13
Experiment $2, \mathrm{Y}_{s}$	3	7	11	15	19	24	21	17	13	9	5

$$
\chi_{1}^{2}=29 \frac{59}{120} \quad \chi_{2}^{2}=1 \frac{11}{120}
$$

Table of Chi-Square Distribution

$$
\chi_{1}^{2}=29 \frac{59}{120} \quad \chi_{2}^{2}=1 \frac{11}{120}
$$

Discussion:
χ_{1}^{2} is too high, $\chi^{2} 0.1 \%$ of the time.
χ_{2}^{2} is too low, $\chi^{2} 0.01 \%$ of the time.
Both represent x with a significant departure from randomness.
To use Chi-Square distribution table, n should be large. How large should n be?

Rule of thumb: n should be large enough to make each $n p_{s}$ be 5 or greater.

E \quad ac

Chi-Square Test

1. Large number n of independent observations.
2. Count the number of observations on k categories.
3. Compute χ^{2}.
4. Look up Chi-Square distribution table.

$\chi^{2}<1 \%$ or $\chi^{2}>99 \%$	reject
$1 \%<\chi^{2}<5 \%$ or $95 \%<\chi^{2}<99 \%$	suspect
$5 \%<\chi^{2}<10 \%$ or $90 \%<\chi^{2}<95 \%$	almost suspect
otherwise	accept

NTT

The Kolmogorov-Smirnov (K-S) Test

χ^{2} Test : for discrete random data
K-S Test : for continuous random data
Def: $F(x)=P[X \leq x)]$, cumulative distribution function (CDF) for r.v. X
n independent observations of $X: X_{1}, X_{2}, \ldots, X_{n}$
Def: Empirical CDF $F_{n}(x)$ based on the X_{i} 's

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathscr{I}_{[0, x)}\left(x_{i}\right)
$$

where $\mathscr{I}_{[0, x)}$ is the characteristic function of the interval $[0, x)$

The Kolmogorov-Smirnov Test

The K-S Test is based on $F(x)-F_{n}(x)$

$$
K_{n}^{+}=\sqrt{n} \max _{-\infty<x<+\infty}\left(F_{n}(x)-F(x)\right)
$$

maximum deviation when F_{n} is greater than F.

$$
K_{n}^{-}=\sqrt{n} \max _{-\infty<x<+\infty}\left(F(x)-F_{n}(x)\right)
$$

maximum deviation when F_{n} is less than F.
$K_{n}=\max \left(K_{n}^{+}, K_{n}^{-}\right)$, table like Chi-Square to find the percentile, but unlike χ^{2}, the table fits any size of n.

The Kolmogorov - Smirnov Test

Simple procedure to obtain K_{n}^{+}, K_{n}^{-}, to test hypothesis that $X_{i} \sim F$

1. Obtain observations $X_{1}, X_{2}, \ldots, X_{n}$.
2. Rearrange (sort) into ascending order (with renumbering).

$$
X_{1} \leq X_{2} \leq \ldots \leq X_{n}
$$

3. Calculate K_{n}^{+}, K_{n}^{-}

$$
K_{n}^{+}=\sqrt{n} \max _{1 \leq j \leq n}\left(\frac{j}{n}-F\left(X_{j}\right)\right), K_{n}^{-}=\sqrt{n} \max _{1 \leq j \leq n}\left(F\left(X_{j}\right)-\frac{j-1}{n}\right)
$$

The Kolmogorov-Smirnov Test

Dilemma: We need a large n to differentiate F_{n} and F.
Large n will average out local random behavior.
Compromise: Consider a moderate size for n, say 1000.
Make a fairly large number of K_{1000}^{+}on different parts of the random sequence $K_{1000}^{+}(1), K_{1000}^{+}(2), \ldots, K_{1000}^{+}(r)$.
Apply another KS Test. The distribution of K_{n}^{+}is approximated.

$$
F_{\infty}(x)=1-e^{-2 x^{2}}
$$

Significance: Detects both local and global random behavior.

Empirical Tests

Empirical Tests: 10 tests
Test of real number sequence

$$
<\mathcal{U}_{n}>=\mathcal{U}_{0}, \mathcal{U}_{1}, \mathcal{U}_{2} \ldots
$$

Test of integer number sequence

$$
\begin{gathered}
<\mathcal{Y}_{n}>=\mathcal{Y}_{0}, \mathcal{Y}_{1}, \mathcal{Y}_{2} \ldots \\
\mathcal{Y}_{n}=\left\lfloor d \mathcal{U}_{n}\right\rfloor \\
\mathcal{Y}_{n}: \text { integers }[0, d-1]
\end{gathered}
$$

A．Equidistribution Test（Frequency Test）

Two ways：
1．Use χ^{2} test

Count the number of sequence $<\mathcal{Y}_{n}>=\mathcal{Y}_{0}, \mathcal{Y}_{1}, \mathcal{Y}_{2}, \ldots$ falling into each interval k＝d
$p_{s}=\frac{1}{d}$
2．Use KS Test

$$
\text { Test }\left\langle\mathcal{U}_{n}\right\rangle=\mathcal{U}_{0}, \mathcal{U}_{1}, \mathcal{U}_{2}, \ldots
$$

$$
F(x)=x \text { for } 0 \leq x \leq 1
$$

B. Serial Test

- Pairs of successive numbers to be uniformly distributed.
- d^{2} intervals are used.

- Serial Test can be regarded as 2-D frequency test.
- Can be generalized to triples, quadruples, ...

C. Gap Test

Examine length of "gaps" between occurrences of $\mathcal{U}_{j} \in \mathcal{I}=(\alpha, \beta)$, where $0 \leq \alpha<\beta \leq 1$, and $p=\beta-\alpha$. A gap is the length r where Length of $\mathcal{U}_{j}, \mathcal{U}_{j+1}, \ldots$, \mathcal{U}_{j+r} have $\mathcal{U}_{j}, \mathcal{U}_{j+r} \in \mathcal{I}$ and all the other are not. Algorithm:

1. Initialize: $\mathrm{j} \leftarrow-1, \mathrm{~s} \leftarrow 0$
2. $\mathrm{r} \leftarrow 0$
3. if $\left(\alpha \leq \mathcal{U}_{j} \leq \beta\right)$, $\mathfrak{j} \leftarrow \mathrm{j}+1$ else goto 5 .
4. $\mathrm{r} \leftarrow \mathrm{r}+1$, goto 3 .
5. record gap length.
if $\mathrm{r} \geq \mathrm{t}, \mathcal{C O U N T}[\mathrm{t}] \leftarrow \mathcal{C O U N T}[\mathrm{t}]+1$ else $\mathcal{C O U N T}[r] \leftarrow \mathcal{C O U N T}[r]+1$
6. Repeat until n gaps are found.

C. Gap Test

$\mathcal{C O U N T}[0], \mathcal{C O U N T}[1], \ldots, \mathcal{C O U N T}[t]$ should have the following probability:

- $p_{0}=p, p_{1}=p(1-p), p_{2}=p(1-p)^{2}, \ldots, p_{t-1}=p(1-p)^{t-1}, p_{t}=p(1-p)^{t}$

Now, we can apply the χ^{2} test.
Special cases:

- $(\alpha, \beta)=\left(0, \frac{1}{2}\right) \leftarrow$ runs above the mean
- $(\alpha, \beta)=\left(\frac{1}{2}, 1\right) \leftarrow$ runs below the mean

D. Poker Test

Consider 5 successive integers $\left(\mathcal{Y}_{s j}, \mathcal{Y}_{s j+1}, \mathcal{Y}_{s j+2}, \mathcal{Y}_{s j+3}, \mathcal{Y}_{s j+4}\right)$

Pattern	Example	Pattern	Example
All different	abcde	Full house	aaabb
One Pair	aabcd	Four of a kind	aaaab
Two Pairs	aabbc	Five of a kind	aaaaa
Three of a kind	aaabc		

Simplify:

5 different	all different
4 different	one pair
3 different	two pairs or three of a kind
2 different	full house or four of a kind
5 same numbers	five of a kind

D. Poker Test

Generalized:
n groups of k successive numbers (k-tuples) with r different values.

$$
\begin{gathered}
p r=\frac{d(d-1) \ldots(d-r+1)}{d^{k}}\left\{\begin{array}{l}
k \\
r
\end{array}\right\} \\
d=\text { number of categories }
\end{gathered}
$$

Then, the χ^{2} test can be applied.
$\equiv \quad \rightarrow \square \propto$

Stirling Numbers of the Second Kind

- Notation: $S(n, k)$ or $\left\{\begin{array}{l}n \\ k\end{array}\right\}$
- Definition: counts the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets or
- Also counts the number of different equivalence relations with precisely k equivalence classes that can be defined on an n element set
- Obviously, $\left\{\begin{array}{l}n \\ n\end{array}\right\}=1$ and for $n \geq 1,\left\{\begin{array}{l}n \\ 1\end{array}\right\}=1$: the only way to partition an "n"-element set into "n" parts is to put each element of the set into its own part, and the only way to partition a nonempty set into one part is to put all of the elements in the same part.
- They can be calculated using the following explicit formula:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n}
$$

NGT

E.Coupon Collector's Test

In the sequence $\mathcal{Y}_{0}, \mathcal{Y}_{1}, \ldots$, the lengths of the segments $\mathcal{Y}_{j+1}, \mathcal{Y}_{j+2}, \ldots, \mathcal{Y}_{j+r}$ are collected to get a complete set of integers from 0 to $\mathrm{d}-1$.
Algorithm:

1. Initialize $\mathrm{j} \leftarrow-1$, $\mathrm{s} \leftarrow 0, \mathcal{C O U N} \mathcal{T}[r] \leftarrow 0$ for $\mathrm{d} \leq \mathrm{r}<\mathrm{t}$.
2. $\mathrm{q} \leftarrow \mathrm{r} \leftarrow 0, \mathcal{O C C U R S}[\mathrm{k}] \leftarrow 0$ for $0 \leq \mathrm{k}<\mathrm{d}$.
3. $\mathrm{r} \leftarrow \mathrm{r}+1, \mathrm{j} \leftarrow \mathrm{j}+1$
4. Complete Set? $\mathcal{O C C U R S}\left[\mathcal{Y}_{j}\right] \leftarrow 1$ and $\mathrm{q} \leftarrow \mathrm{q}+1$ if $q=d$, a complete set q <d, goto 3.
5. Record the length.
if $r \geq t, \mathcal{C O U N T}[t] \leftarrow \mathcal{C O U N T}[t]+1$ else $\mathcal{C O U N} \mathcal{T}[r] \leftarrow \mathcal{C O U N} \mathcal{T}[r]+1$
6. Repeat until n values are found.

E. Coupon Collector's Test

Chi-Square Test can be applied to $\mathcal{C O U N T}[d], \operatorname{COUNT}[\mathrm{d}+1], \ldots, \mathcal{C O U N T}[\mathrm{t}]$

$$
\begin{gathered}
p_{r}=\frac{d!}{d^{r}}\left\{\begin{array}{l}
r-1 \\
d-1
\end{array}\right\}, d \leq r<t \\
p_{t}=1-\frac{d!}{d^{t-1}}\left\{\begin{array}{c}
t-1 \\
d
\end{array}\right\}
\end{gathered}
$$

$\equiv \quad \rightarrow Q \curvearrowright$

F. Permutation Test

A t-tuple $\left(\mathcal{U}_{j t}, \mathcal{U}_{j t+1}, \ldots, \mathcal{U}_{j t+t-1}\right)$ can have t! possible relative orderings.
For Example: $t=3$
There should be $3!=6$ categories

\[

\]

We can apply χ^{2} test now.

G. Run Test

Examine the length of monotone subsequences.
"Runs up": increasing
"Runs down": decreasing
For Run i, the length of the run is $\mathcal{C O U N} \mathcal{T}[i]$.

Note: χ^{2} test cannot be directly applied because of lack of independence (each segment depends on previous segment).

Then, we need to calculate

$$
\chi^{2}=\frac{1}{n} \sum_{1 \leq i, j \leq 6}\left(\mathcal{C O U N} \mathcal{T}[i]-n b_{i}\right)\left(\mathcal{C O U N T}[j]-n b_{j}\right) a_{i j}
$$

NレT

-Runs Test

G. Runs Test

	a_{12}	a_{13}			a_{16}		[4529.4	9044.9	13568	18091	22615	27892
a_{2}	a_{22}	a_{23}			a_{26}		9044.9	18097	27139	36187	45234	55789
a_{3}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}		13568	27139	40721	54281	67852	83685
a_{4}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}		10891	36187	54281	72414	90470	111580
a	a_{52}	a_{53}	a_{54}	a_{55}	a_{56}		22615	45234	67852	90470	113262	139476
a	a_{62}	a_{63}	a_{64}	a_{65}	a_{66}		27892	55789	83685	111580	139476	172860

$$
\left(\begin{array}{llllll}
b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6}
\end{array}\right)=\left(\begin{array}{llllll}
\frac{1}{6} & \frac{5}{24} & \frac{11}{120} & \frac{19}{720} & \frac{29}{5040} & \frac{1}{890}
\end{array}\right)
$$

Then, χ^{2} should have the same χ^{2} distribution with degree 6 .

H. Maximum-of- t Test

Examine the maximum value of t uniform random variables.
Let $\chi^{2}{ }_{j}=\max \left(\mathcal{U}_{t j}, \mathcal{U}_{t j+1}, \ldots, \mathcal{U}_{t j+t-1}\right)$.
The distribution is $F(x)=X^{t}$
Then, we can apply the Kolmogorov - Smirnov Test here.

三 \longrightarrow Q

I. Collision Test

Suppose we have m urns and n balls, m « .
Most of the balls will fall in an empty urn.
If a ball falls in an urn that already has a ball, we call it a "collision".
A generator passes the collision test only if it doesn't induce too many or too few collisions.

Probability of collisions occurring:

$$
\frac{m(m-1) \ldots(m-n+c+1)}{m^{n}}\left\{\begin{array}{c}
n \\
n-c
\end{array}\right\}
$$

J. Serial Correlation Test

Consider the observations $\left(\mathcal{U}_{0}, \mathcal{U}_{1}, \ldots, \mathcal{U}_{n-1}\right)$ and $\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n-1}, \mathcal{U}_{0}\right)$ Test the correlation between these two tuples.
We compute:

$$
C=\frac{n\left(\mathcal{U}_{0} \mathcal{U}_{1}+\mathcal{U}_{1} \mathcal{U}_{2}+\ldots+\mathcal{U}_{n-2} \mathcal{U}_{n-1}+\mathcal{U}_{n-1} \mathcal{U}_{0}\right)-\left(\mathcal{U}_{0}+\mathcal{U}_{1}+\ldots+\mathcal{U}_{n-1}\right)^{2}}{n\left(\mathcal{U}_{0}^{2}+\mathcal{U}_{1}^{2}+\ldots+\mathcal{U}_{n-1}^{2}\right)-\left(\mathcal{U}_{0}+\mathcal{U}_{1}+\ldots+\mathcal{U}_{n-1}\right)^{2}}
$$

A "good" C should be between $\mu_{n}-2 \delta_{n}$ and $\mu_{n}+2 \delta_{n}$.

$$
\mu_{n}=\frac{-1}{n-1} \quad, \quad \delta_{n}=\frac{1}{n-1} \sqrt{\frac{n(n-3)}{n+1}} \quad, \quad n>2
$$

The Spectral Test

Idea underlying the test: Congruential Generators generate random numbers in grids!

In t-dimensional space, $\left\{\left(\mathcal{U}_{n}, \mathcal{U}_{n+1}, \ldots, \mathcal{U}_{n+t-1}\right)\right\}$
Compute the distance between lines (2D), planes (3D), parallel hyperplanes (>3D).
$1 / \nu_{2}$: Maximum distance between lines.
Two dimensional accuracy.
$1 / \nu_{3}$: Maximum distance between planes.
Three dimensional accuracy.
$1 / \nu_{t}$: Maximum distance between hyperplanes.
t - dimensional accuracy.

The Spectral Test

Differentiate between truly random sequences and periodic sequences.
Truly random sequences: accuracy remains same in all dimensions
Periodic sequences: accuracy decreases as tincreases
Spectral Test is by far the most powerful test.

- All "good" generators pass it.
- All known "bad" generators fail it.

Summary

1. Basic idea of empirical tests:

The combination of random numbers is expected to conform to a specific distribution.
1.1 Build the combination.
1.2 Use χ^{2} or KS test to test the deviation from the expected distribution.
2. We can perform an infinite number of tests.
3. We might be able to construct a test to "kill" a specific generator.

Other resources for RNG Testing

1. FFT, Metropolis, Wolfgang Tests (spectrum).
2. Diehard (http://www.stat.fsu.edu/pub/diehard)
3. SPRNG (implements most of the empirical tests and spectrum tests). http://sprng.cs.fsu.edu
4. TestU01

E

