Testing Random Numbers: Theory and Practice

Prof. Michael Mascagni

Applied and Computational Mathematics Division, Information Technology Laboratory National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 **USA** AND Department of Computer Science Department of Mathematics Department of Scientific Computing Graduate Program in Molecular Biophysics Florida State University, Tallahassee, FL 32306 **USA**

> E-mail: mascagni@fsu.eduOr mascagni@nist.gov URL: http://www.cs.fsu.edu/~mascagni

Overview

Chi-Square Test The Kolmogorov-Smirnov (K-S)Test **Empirical Tests** Equidistribution Test (Frequency Test) Serial Test Gap Test Poker Test Coupon Collector's Test Permutation Test Runs Test Maximum of t Test Collision Test Serial Correlation Test The Spectral Test

Chi-Square Test

Eg. "Throwing 2 dice"

- *s* : Value of the sum of the 2 dice.
- p_s : Probability.

S	2	3	4	5	6	7	8	9	10	11	12
p_s	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

If we throw dice 144 times:

S	2	3	4	5	6	7	8	9	10	11	12
Observed: Y _s	2	4	10	12	22	29	21	15	14	9	6
Expected: nps	4	8	12	16	20	24	20	16	12	8	4

Chi-Square Test

Is a pair of dice loaded?

We can't make a definite yes/no statement, but we can give a probabilistic answer. We can form the Chi-Square Statistic.

$$\chi^{2} = \sum_{1 \le s \le k} \frac{(Y_{s} - np_{s})^{2}}{np_{s}}$$
$$= \frac{1}{n} \sum_{1 \le s \le k} \left(\frac{Y_{s}^{2}}{p_{s}}\right) - n$$

 $\chi^2 = k - 1$: degrees of freedom

- *k*: Number of categories
- n: Number of observances

- Chi-Square Test

Table of Chi-Square Distribution

Entry in row χ^2 under column *p* is *x*, which means

"The quantity χ^2 will be less than or equal to *x*, with approximate probability *p*, if *n* is large enough."

Example:

Value of s	2	3	4	5	6	7	8	9	10	11	12
Experiment 1, Ys	4	10	10	13	20	18	18	11	13	14	13
Experiment 2, Ys	3	7	11	15	19	24	21	17	13	9	5

$$\chi_1^2 = 29 \frac{59}{120}$$

$$\chi_2^2 = 1 \frac{11}{120}$$

Table of Chi-Square Distribution

$$\chi_1^2 = 29 \frac{59}{120} \qquad \qquad \chi_2^2 = 1 \frac{11}{120}$$

Discussion:

 χ_1^2 is too high, χ^2 0.1% of the time. χ_2^2 is too low, χ^2 0.01% of the time.

Both represent *x* with a significant departure from randomness.

To use Chi-Square distribution table, n should be large. How large should n be?

Rule of thumb: n should be large enough to make each np_s be 5 or greater.

Chi-Square Test

- 1. Large number *n* of independent observations.
- 2. Count the number of observations on k categories.
- 3. Compute χ^2 .
- 4. Look up Chi-Square distribution table.

χ^2 <1% or χ^2 >99%	reject
1%< χ^2 <5% or 95%< χ^2 <99%	suspect
5%< χ^2 <10% or 90%< χ^2 <95%	almost suspect
otherwise	accept

- The Kolmogorov-Smirnov (K-S)Test

The Kolmogorov-Smirnov (K-S) Test

- χ^2 Test : for discrete random data
- K-S Test : for continuous random data

Def: $F(x) = P[X \le x)]$, cumulative distribution function (CDF) for r.v. X

n independent observations of *X*: X_1, X_2, \ldots, X_n

Def: Empirical CDF $F_n(x)$ based on the X_i 's

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathscr{I}_{[0,x]}(x_i)$$

where $\mathscr{I}_{[0,x)}$ is the characteristic function of the interval [0,x)

The Kolmogorov-Smirnov Test

The K-S Test is based on $F(x) - F_n(x)$

$$K_n^+ = \sqrt{n} \max_{-\infty < x < +\infty} \left(F_n(x) - F(x) \right)$$

maximum deviation when F_n is greater than F.

$$K_n^- = \sqrt{n} \max_{-\infty < x < +\infty} \left(F(x) - F_n(x) \right)$$

maximum deviation when F_n is less than F. $K_n = \max(K_n^+, K_n^-)$, table like Chi-Square to find the percentile, but unlike χ^2 , the table fits any size of n.

The Kolmogorov - Smirnov Test

Simple procedure to obtain K_n^+ , K_n^- , to test hypothesis that $X_i \sim F$

- 1. Obtain observations X_1, X_2, \ldots, X_n .
- 2. Rearrange (sort) into ascending order (with renumbering).

$$X_1 \leq X_2 \leq \ldots \leq X_n$$

3. Calculate K_n^+ , K_n^-

$$K_n^+ = \sqrt{n} \max_{1 \le j \le n} \left(\frac{j}{n} - F(X_j) \right), \ K_n^- = \sqrt{n} \max_{1 \le j \le n} \left(F(X_j) - \frac{j-1}{n} \right)$$

The Kolmogorov-Smirnov Test

Dilemma: We need a large n to differentiate F_n and F. Large n will average out local random behavior.

Compromise: Consider a moderate size for *n*, say 1000. Make a fairly large number of K_{1000}^+ on different parts of the random sequence $K_{1000}^+(1), K_{1000}^+(2), \ldots, K_{1000}^+(r)$. Apply another KS Test. The distribution of K_n^+ is approximated.

$$F_{\infty}(x) = 1 - e^{-2x^2}$$

Significance: Detects both local and global random behavior.

Empirical Tests

Empirical Tests: 10 tests

Test of real number sequence

 $<\mathcal{U}_n>=\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2\dots$

Test of integer number sequence

 $\langle \mathcal{Y}_n \rangle = \mathcal{Y}_0, \mathcal{Y}_1, \mathcal{Y}_2 \dots$ $\mathcal{Y}_n = \lfloor d\mathcal{U}_n \rfloor$ $\mathcal{Y}_n : integers[0, d - 1]$

A. Equidistribution Test (Frequency Test)

Two ways:

1. Use χ^2 test

d intervals

Count the number of sequence $\langle \mathcal{Y}_n \rangle = \mathcal{Y}_0, \mathcal{Y}_1, \mathcal{Y}_2, \dots$ falling into each interval k=d $p_s = \frac{1}{d}$

2. Use KS Test Test $\langle U_n \rangle = U_0, U_1, U_2, ...$ F(x) = x for $0 \le x \le 1$

Serial Test

B. Serial Test

- > Pairs of successive numbers to be uniformly distributed.
- d² intervals are used.

$$k = d^2, p_s = 1/d^2$$

- Serial Test can be regarded as 2-D frequency test.
- Can be generalized to triples, quadruples, ...

Empirical Tests

Gap Test

C. Gap Test

Examine length of "gaps" between occurrences of $\mathcal{U}_j \in \mathcal{I} = (\alpha, \beta)$, where $0 \leq \alpha < \beta \leq 1$, and $p = \beta - \alpha$. A gap is the length *r* where Length of $\mathcal{U}_j, \mathcal{U}_{j+1}, \ldots, \mathcal{U}_{j+r}$ have $\mathcal{U}_j, \mathcal{U}_{j+r} \in \mathcal{I}$ and all the other are not. Algorithm:

1. Initialize:
$$j \leftarrow -1$$
, $s \leftarrow 0$

- 3. if $(\alpha \leq U_j \leq \beta)$, $j \leftarrow j+1$ else goto 5.
- 4. $r \leftarrow r+1$, goto 3.
- $\begin{aligned} & \text{5. record gap length.} \\ & \text{if } r \geq t, \, \mathcal{COUNT}[t] \leftarrow \mathcal{COUNT}[t]{+}1 \\ & \text{else } \, \mathcal{COUNT}[r] \leftarrow \mathcal{COUNT}[r]{+}1 \end{aligned}$
- 6. Repeat until *n* gaps are found.

Gap Test

C. Gap Test

 $\mathcal{COUNT}[0], \mathcal{COUNT}[1], \dots, \mathcal{COUNT}[t] \text{ should have the following probability:}$

•
$$p_0 = p, p_1 = p(1-p), p_2 = p(1-p)^2, \dots, p_{t-1} = p(1-p)^{t-1}, p_t = p(1-p)^t$$

Now, we can apply the χ^{2} test.

Special cases:

- $(\alpha,\beta) = (0,\frac{1}{2}) \leftarrow$ runs above the mean
- $(\alpha,\beta) = (\frac{1}{2},1) \leftarrow$ runs below the mean

Empirical Tests

Poker Test

D. Poker Test

Consider 5 successive integers (\mathcal{Y}_{sj} , \mathcal{Y}_{sj+1} , \mathcal{Y}_{sj+2} , \mathcal{Y}_{sj+3} , \mathcal{Y}_{sj+4})

Pattern	Example	Pattern	Example
All different	abcde	Full house	aaabb
One Pair	aabcd	Four of a kind	aaaab
Two Pairs	aabbc	Five of a kind	aaaaa
Three of a kind	aaabc		

Simplify:

5 different	all different	
4 different	one pair	
3 different	two pairs or three of a kind	
2 different	full house or four of a kind	
5 same numbers	five of a kind	
	• • • • • • • • • • • • • • • • • • •	- * 圖 * * 图 * * 图 * - 图

Poker Test

D. Poker Test

Generalized:

n groups of k successive numbers (k - tuples) with r different values.

$$pr = rac{d(d-1)\dots(d-r+1)}{d^k} iggl\{ k \\ r iggr\}$$

d = number of categories

Then, the χ^2 test can be applied.

- Empirical Tests

Poker Test

Stirling Numbers of the Second Kind

- Notation: S(n, k) or $\binom{n}{k}$
- Definition: counts the number of ways to partition a set of *n* labelled objects into *k* nonempty unlabelled subsets **or**
- Also counts the number of different equivalence relations with precisely k equivalence classes that can be defined on an n element set
- Obviously, {ⁿ/_n} = 1 and for n ≥ 1, {ⁿ/₁} = 1: the only way to partition an "n"-element set into "n" parts is to put each element of the set into its own part, and the only way to partition a nonempty set into one part is to put all of the elements in the same part.
- They can be calculated using the following explicit formula:

$${\binom{n}{k}} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {\binom{k}{j}} j^{n}$$

Empirical Tests

Coupon Collector's Test

E.Coupon Collector's Test

In the sequence $\mathcal{Y}_0, \mathcal{Y}_1, \ldots$, the lengths of the segments $\mathcal{Y}_{j+1}, \mathcal{Y}_{j+2}, \ldots, \mathcal{Y}_{j+r}$ are collected to get a complete set of integers from 0 to d-1. Algorithm:

1. Initialize $j \leftarrow -1$, $s \leftarrow 0$, $COUNT[r] \leftarrow 0$ for $d \le r < t$.

2.
$$q \leftarrow r \leftarrow 0$$
, $\mathcal{OCCURS}[k] \leftarrow 0$ for $0 \le k < d$.

- **3**. $r \leftarrow r+1, j \leftarrow j+1$
- Complete Set? OCCURS[𝒴_j] ← 1 and q ← q+1 if q=d, a complete set q <d, goto 3.
- 5. Record the length.

 $\begin{array}{l} \text{if } r \geq t, \, \mathcal{COUNT}[t] \leftarrow \mathcal{COUNT}[t]{+}1 \\ \text{else } \, \mathcal{COUNT}[r] \leftarrow \mathcal{COUNT}[r]{+}1 \end{array} \end{array}$

6. Repeat until n values are found.

- Empirical Tests
 - Coupon Collector's Test

E. Coupon Collector's Test

Chi-Square Test can be applied to COUNT[d], COUNT[d+1], ..., COUNT[t]

$$p_r = rac{d!}{d^r} igg\{ egin{array}{c} r-1 \\ d-1 \igg\}, d \leq r < t \ p_t = 1 - rac{d!}{d^{t-1}} igg\{ egin{array}{c} t-1 \\ d \igg\} \end{array}$$

Permutation Test

F. Permutation Test

A t-tuple $(\mathcal{U}_{jt}, \mathcal{U}_{jt+1}, \dots, \mathcal{U}_{jt+t-1})$ can have t! possible relative orderings.

For Example: t=3There should be 3! = 6 categories

1 <2 <3	2 <1 <3	2 <3 <1
1 <3 <2	3 <1 <2	3 <2 <1

$$k = t!$$
 $p_s = \frac{1}{t!}$

We can apply χ^2 test now.

Testing Random Numbers	
Buns Test	

G. Run Test

Examine the length of monotone subsequences. "Runs up": increasing "Runs down": decreasing For Run *i*, the length of the run is COUNT[i].

$$|\underbrace{129}_{3}|\underbrace{8}_{1}|\underbrace{5}_{1}|\underbrace{367}_{3}|\underbrace{04}_{2}|$$

Note: χ^2 test cannot be directly applied because of lack of independence (each segment depends on previous segment).

Then, we need to calculate

$$\chi^{2} = \frac{1}{n} \sum_{1 \leq i,j \leq 6} \left(\mathcal{COUNT}[i] - nb_{i} \right) \left(\mathcal{COUNT}[j] - nb_{j} \right) a_{ij}$$

Runs Test

G. Runs Test

a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}		[4529.4	9044.9	13568	18091	22615	ך 27892 [
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a ₂₆		9044.9	18097	27139	36187	45234	55789
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}		13568	27139	40721	54281	67852	83685
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}	=	10891	36187	54281	72414	90470	111580
<i>a</i> ₅₁	a 52	a 53	a 54	a 55	<i>a</i> 56		22615	45234	67852	90470	113262	139476
_ <i>a</i> 61	<i>a</i> ₆₂	<i>a</i> ₆₃	<i>a</i> ₆₄	a 65	a_{66}		27892	55789	83685	111580	139476	172860

 $(b_1 \ b_2 \ b_3 \ b_4 \ b_5 \ b_6) = (\frac{1}{6} \ \frac{5}{24} \ \frac{11}{120} \ \frac{19}{720} \ \frac{29}{5040} \ \frac{1}{890})$

Then, χ^2 should have the same χ^2 distribution with degree 6.

- Empirical Tests
 - Maximum of t Test

H. Maximum-of-t Test

Examine the maximum value of *t* uniform random variables.

Let
$$\chi^2_j = \max(\mathcal{U}_{tj}, \mathcal{U}_{tj+1}, \ldots, \mathcal{U}_{tj+t-1}).$$

The distribution is $F(x) = X^t$

Then, we can apply the Kolmogorov - Smirnov Test here.

Collision Test

I. Collision Test

Suppose we have m urns and n balls, m «n. Most of the balls will fall in an empty urn. If a ball falls in an urn that already has a ball, we call it a "collision".

A generator passes the collision test only if it doesn't induce too many or too few collisions.

Probability of *c* collisions occurring:

$$\frac{m(m-1)\dots(m-n+c+1)}{m^n} \begin{Bmatrix} n \\ n-c \end{Bmatrix}$$

-Serial Correlation Test

J. Serial Correlation Test

Consider the observations $(\mathcal{U}_0, \mathcal{U}_1, \dots, \mathcal{U}_{n-1})$ and $(\mathcal{U}_1, \dots, \mathcal{U}_{n-1}, \mathcal{U}_0)$ Test the correlation between these two tuples. We compute:

$$C = \frac{n(\mathcal{U}_0\mathcal{U}_1 + \mathcal{U}_1\mathcal{U}_2 + \ldots + \mathcal{U}_{n-2}\mathcal{U}_{n-1} + \mathcal{U}_{n-1}\mathcal{U}_0) - (\mathcal{U}_0 + \mathcal{U}_1 + \ldots + \mathcal{U}_{n-1})^2}{n(\mathcal{U}_0^2 + \mathcal{U}_1^2 + \ldots + \mathcal{U}_{n-1}) - (\mathcal{U}_0 + \mathcal{U}_1 + \ldots + \mathcal{U}_{n-1})^2}$$

A "good" C should be between μ_n - $2\delta_n$ and μ_n + $2\delta_n$.

$$\mu_n = rac{-1}{n-1}$$
 , $\delta_n = rac{1}{n-1} \sqrt{rac{n(n-3)}{n+1}}$, $n > 2$

The Spectral Test

Idea underlying the test: Congruential Generators generate random numbers in grids!

In t-dimensional space, $\{(\mathcal{U}_n, \mathcal{U}_{n+1}, \ldots, \mathcal{U}_{n+t-1})\}$

Compute the distance between lines (2D), planes (3D), parallel hyperplanes (>3D).

- $1/\nu_2$: Maximum distance between lines. Two dimensional accuracy.
- $1/\nu_3$: Maximum distance between planes. Three dimensional accuracy.
- $1/\nu_t$: Maximum distance between hyperplanes.
 - t dimensional accuracy.

The Spectral Test

Differentiate between truly random sequences and periodic sequences.

Truly random sequences: accuracy remains same in all dimensions Periodic sequences: accuracy decreases as t increases

Spectral Test is by far the most powerful test.

- ► All "good" generators pass it.
- All known "bad" generators fail it.

Summary

- Basic idea of empirical tests: The combination of random numbers is expected to conform to a specific distribution.
 - 1.1 Build the combination.
 - 1.2 Use χ^2 or KS test to test the deviation from the expected distribution.
- 2. We can perform an infinite number of tests.
- 3. We might be able to construct a test to "kill" a specific generator.

Other resources for RNG Testing

- 1. FFT, Metropolis, Wolfgang Tests (spectrum).
- 2. Diehard (http://www.stat.fsu.edu/pub/diehard)
- 3. SPRNG (implements most of the empirical tests and spectrum tests). http://sprng.cs.fsu.edu
- 4. TestU01

