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Early History of Probability Theory

I Probability was first used to understand games of chance

1. Antoine Gombaud, chevalier de Méré, a French nobleman called
on Blaise Pascal and Pierre de Fermat were called on to resolve a
dispute

2. Correspondence between Pascal and Fermat led to Huygens
writing a text on “Probability"

3. Jacob Bernoulli, Abraham de Moivre, and Pierre-Simon, marquis
de Laplace, led development of modern “Probability"

4. 1812: Laplace, Théorie Analytique des Probabilités
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Early History of Probability Theory

Early History of Monte Carlo: Before Los Alamos
I Buffon Needle Problem: Early Monte Carlo (experimental

mathematics)

1. Problem was first stated in 1777 by Georges-Louis Leclerc, comte
de Buffon

2. Involves dropping a needle on a lined surface and can be used to
estimate π

3. Note: Union Capt. Fox did this while in a CSA prison camp, and
produced good results that later turned out to be “fudged”

I In the 1930’s, Fermi used sampling methods to estimate
quantities involved in controlled fission
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I Los Alamos brought together many interesting factors to give
birth to modern Monte Carlo algorithms

1. The Problems: Simulation of neutron histories (neutronics),
hydrodynamics, thermonuclear detonation

2. The People: Enrico Fermi, Stan Ulam, John von Neumann, Nick
Metropolis, Edward Teller, ...

3. The Technology: Massive human computers using hand
calculators, the Fermiac, access to early digital computers

I The Name: Ulam’s uncle would borrow money from the family by
saying that “I just have to go to Monte Carlo”
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I Simulation of neutron histories (neutronics)

1. Given neutron positions/momenta, geometry
2. Compute flux, criticality, fission yield

I Hydrodynamics due to nuclear implosion
I Simulation of thermonuclear reactions: ignition, overall yield

1. All these problems were more easily solved using Monte
Carlo/Lagrangian methods

2. Geometry is problematic for deterministic methods but not for MC
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I Los Alamos brought together many interesting people to work on

the fission problem:

I The Physicists

1. Enrico Fermi: experimental Nuclear Physics and computational
approaches

2. Nick Metropolis: one of the first “computer programmers” for these
problems

3. Edward Teller: more interested in the “super”
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I The Mathematicians

1. Robert Richtmyer: ran the numerical analysis activities at Los
Alamos

2. Stanislaw (Stan) Ulam: became interested in using “statistical
sampling” for many problems

3. John von Neumann: devised Monte Carlo algorithms and helped
develop digital computers
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I Simulation via computation was necessary to make progress at
Los Alamos

I Many different computational techniques were in used

1. Traditional digital computation: hand calculators used by efficient
technicians

2. Analog computers including the Fermiac (picture to follow)
3. Shortly after the war, access to digital computers: ENIAC at

Penn/Army Ballistics Research Laboratory (BRL)
4. Continued development and acquisition of digital computers by

Metropolis including the MANIAC
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An Analog Monte Carlo Computer: The Fermiac

I Neutronics required simulating exponentially distributed flights
based on material cross-sections

I Many neutron histories are required to get statistics
I Fermiac allows simulation of exponential flights inputting the

cross-section manually
I Fermiac is used on a large piece of paper with the geometry

drawn for neutronics simulations
I Fermiac allows an efficient graphical simulation of neutronics
I Parallelism is achievable with the Fermiac
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An Early Digital Computer: The ENIAC

I ENIAC: Electronic Numerical Integrator And Computer

I Funded by US Army with contract signed on June 5, 1943
I Built in secret by the University of Pennsylvania’s Moore School

of Electrical Engineering
I Completed February 14, 1946 in Philadelphia and used until

November 9, 1946
I Moved (with upgrade) to Aberdeen Proving Grounds and began

operations July 29, 1947
I Remained in continuous operation at the Army BRL until 1955
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An Early Digital Computer: The ENIAC

I ENIAC is a completely programmable computer using first a plug
panel

I ENIAC first contained (military rejects!)

1. 17,468 vacuum tubes
2. 7,200 crystal diodes
3. 1,500 relays, 70,000 resistors
4. 10,000 capacitors
5. about 5 million hand-soldered joints

I Clock was 5KHz
I Ended up with a 100-word core memory
I Metropolis would go to BRL to work on the “Los Alamos” problem

on the ENIAC
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Figure: The ENIAC at the University of Pennsylvania
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The Birth of Monte Carlo Methods

I After the was digital computer was perfect for “statistical
sampling”

1. Individual samples were often very simple to program
2. Small memory was not a big constraint for these methods
3. A much better use for digital vs. human computers

I Early Monte Carlo Meetings

1. 1952, Los Angeles: RAND Corp., National Bureau of Standards
(NBS now NIST), Oak Ridge

2. 1954, Gainesville, FL: University of Florida Statistical Lab
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Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x)dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Rectangle: wi = 1
N , xi = i

N
I Trapezoidal: wi = 2

N ,w1 = wN = 1
N , xi = i

N

3. Monte Carlo method has two parts to estimate a numerical
quantity of interest, I

I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The score: f (xi )
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi ), var(I) =
1

N − 1

N∑
i=1

(f (xi )−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi )
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)



MCMs: Early History and The Basics

Monte Carlo Methods

The Birth

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x)dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Rectangle: wi = 1
N , xi = i

N
I Trapezoidal: wi = 2

N ,w1 = wN = 1
N , xi = i

N

3. Monte Carlo method has two parts to estimate a numerical
quantity of interest, I

I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The score: f (xi )
I One averages and uses a confidence interval for an error bound
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Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑N
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi ] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b
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I Methods for partial differential and integral equations

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Note Kac and Ulam both were trained in Lwów
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Monte Carlo Methods

General Concepts of the Monte Carlo Method

Monte Carlo Methods: Numerical Experimental that
Use Random Numbers

I A Monte Carlo method is any process that consumes random
numbers

1. Each calculation is a numerical experiment

I Subject to known and unknown sources of error
I Should be reproducible by peers
I Should be easy to run anew with results that can be combined to

reduce the variance

2. Sources of errors must be controllable/isolatable

I Programming/science errors under your control
I Make possible RNG errors approachable

3. Reproducibility

I Must be able to rerun a calculation with the same numbers
I Across different machines (modulo arithmetic issues)
I Parallel and distributed computers?
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I Parallel and distributed computers?
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Early Random Number Generators on Digital
Computers

I Middle-Square method: von Neumann

1. 10 digit numbers: xn+1 = b x2
n

105 c (mod 1010)
2. Multiplication leads to good mixing
3. Zeros in lead to short periods and cycle collapse

I Linear congruential method: D. H. Lehmer
I xn+1 = axn + c (mod m)

I Good properties with good parameters
I Has become very popular
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1. “Real" random numbers: a mathematical idealization
2. Random numbers based on a “physical source” of randomness
3. Computational Random numbers
1. Pseudorandom numbers: deterministic sequence that passes tests

of randomness
2. Cryptographic numbers: totally unpredictable
3. Quasirandom numbers: very uniform points
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Future Work on Random Numbers

1. Support for new architectures

I Multicore processors: OpenMP-SPRNG
I GPGPU support: LCGs and FLGs

2. Testing Random Numbers

I Hardware random numbers
I Cryptographic test suites
I Support for new RNG suites

3. Applications

I Monte Carlo on new architectures
I Reproducibility and system integrity
I Computational resilience and fault tolerance

4. Commercialization of SPRNG
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