
Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods and Partial Differential
Equations: Algorithms and Implications for

High-Performance Computing

Prof. Michael Mascagni

Department of Computer Science
Department of Mathematics

Department of Scientific Computing
Graduate Program in Molecular Biophysics

Florida State University, Tallahassee, FL 32306 USA
AND

Applied and Computational Mathematics Division, Information Technology Laboratory
National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA

E-mail: mascagni@fsu.edu or mascagni@math.ethz.ch
or mascagni@nist.gov

URL: http://www.cs.fsu.edu/∼mascagni
Research supported by ARO, DOE, NASA, NATO, NIST, and NSF

with equipment donated by Intel and Nvidia

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Outline of the Talk
Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs
Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method
Parallelization
Architectural Implications
Random Number Considerations
Problems in Electrostatics/Materials
Various Acceleration Techniques for Elliptic PDEs
Biochemical Problems

Monte Carlo Estimates
Monte Carlo Estimates
Computational Geometry
Correlated and Uncorrelated Sampling

Computational Results
Conclusions and Future Work

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Outline of the Talk
Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs
Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method
Parallelization
Architectural Implications
Random Number Considerations
Problems in Electrostatics/Materials
Various Acceleration Techniques for Elliptic PDEs
Biochemical Problems

Monte Carlo Estimates
Monte Carlo Estimates
Computational Geometry
Correlated and Uncorrelated Sampling

Computational Results
Conclusions and Future Work

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Outline of the Talk
Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs
Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method
Parallelization
Architectural Implications
Random Number Considerations
Problems in Electrostatics/Materials
Various Acceleration Techniques for Elliptic PDEs
Biochemical Problems

Monte Carlo Estimates
Monte Carlo Estimates
Computational Geometry
Correlated and Uncorrelated Sampling

Computational Results
Conclusions and Future Work

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Outline of the Talk
Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs
Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method
Parallelization
Architectural Implications
Random Number Considerations
Problems in Electrostatics/Materials
Various Acceleration Techniques for Elliptic PDEs
Biochemical Problems

Monte Carlo Estimates
Monte Carlo Estimates
Computational Geometry
Correlated and Uncorrelated Sampling

Computational Results
Conclusions and Future Work

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Outline of the Talk
Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs
Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method
Parallelization
Architectural Implications
Random Number Considerations
Problems in Electrostatics/Materials
Various Acceleration Techniques for Elliptic PDEs
Biochemical Problems

Monte Carlo Estimates
Monte Carlo Estimates
Computational Geometry
Correlated and Uncorrelated Sampling

Computational Results
Conclusions and Future Work

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Dedicated to My Probability Professors at Courant:
Raghu Varadhan and Monroe Donsker

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Early History of MCMs for PDEs

1. Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has
probabilistic interpretations and MC algorithms for linear elliptic
and parabolic problems

2. Fermi/Ulam/von Neumann: Atomic bomb calculations were done
using Monte Carlo methods for neutron transport, their success
inspired much post-War work especially in nuclear reactor design

3. Kac and Donsker: Used large deviation calculations to estimate
eigenvalues of a linear Schrödinger equation

4. Forsythe and Leibler: Derived a MCM for solving special linear
systems related to discrete elliptic PDE problems

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Early History of MCMs for PDEs

1. Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has
probabilistic interpretations and MC algorithms for linear elliptic
and parabolic problems

2. Fermi/Ulam/von Neumann: Atomic bomb calculations were done
using Monte Carlo methods for neutron transport, their success
inspired much post-War work especially in nuclear reactor design

3. Kac and Donsker: Used large deviation calculations to estimate
eigenvalues of a linear Schrödinger equation

4. Forsythe and Leibler: Derived a MCM for solving special linear
systems related to discrete elliptic PDE problems

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Early History of MCMs for PDEs

1. Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has
probabilistic interpretations and MC algorithms for linear elliptic
and parabolic problems

2. Fermi/Ulam/von Neumann: Atomic bomb calculations were done
using Monte Carlo methods for neutron transport, their success
inspired much post-War work especially in nuclear reactor design

3. Kac and Donsker: Used large deviation calculations to estimate
eigenvalues of a linear Schrödinger equation

4. Forsythe and Leibler: Derived a MCM for solving special linear
systems related to discrete elliptic PDE problems

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Early History of MCMs for PDEs

1. Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has
probabilistic interpretations and MC algorithms for linear elliptic
and parabolic problems

2. Fermi/Ulam/von Neumann: Atomic bomb calculations were done
using Monte Carlo methods for neutron transport, their success
inspired much post-War work especially in nuclear reactor design

3. Kac and Donsker: Used large deviation calculations to estimate
eigenvalues of a linear Schrödinger equation

4. Forsythe and Leibler: Derived a MCM for solving special linear
systems related to discrete elliptic PDE problems

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi)
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi), var(I) =
1

N − 1

N∑
i=1

(f (xi)−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi)
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi)
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi), var(I) =
1

N − 1

N∑
i=1

(f (xi)−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi)
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi)
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi), var(I) =
1

N − 1

N∑
i=1

(f (xi)−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi)
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi)
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi), var(I) =
1

N − 1

N∑
i=1

(f (xi)−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi)
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi)
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi), var(I) =
1

N − 1

N∑
i=1

(f (xi)−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi)
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi)
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi), var(I) =
1

N − 1

N∑
i=1

(f (xi)−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi)
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi)
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi), var(I) =
1

N − 1

N∑
i=1

(f (xi)−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi)
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi)
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi), var(I) =
1

N − 1

N∑
i=1

(f (xi)−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi)
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Back to our canonical elliptic boundary value problem:

1
2

∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

I Distribution of z is uniform on the sphere
I Mean of the values of u(z) over the sphere is u(x)

I u(x) has mean-value property and harmonic
I Also, u(x) satisfies the boundary condition

u(x) = Ex [f (X x(t∂Ω))] (1)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Back to our canonical elliptic boundary value problem:

1
2

∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

I Distribution of z is uniform on the sphere
I Mean of the values of u(z) over the sphere is u(x)

I u(x) has mean-value property and harmonic
I Also, u(x) satisfies the boundary condition

u(x) = Ex [f (X x(t∂Ω))] (1)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Back to our canonical elliptic boundary value problem:

1
2

∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

I Distribution of z is uniform on the sphere
I Mean of the values of u(z) over the sphere is u(x)

I u(x) has mean-value property and harmonic
I Also, u(x) satisfies the boundary condition

u(x) = Ex [f (X x(t∂Ω))] (1)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Back to our canonical elliptic boundary value problem:

1
2

∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

I Distribution of z is uniform on the sphere
I Mean of the values of u(z) over the sphere is u(x)

I u(x) has mean-value property and harmonic
I Also, u(x) satisfies the boundary condition

u(x) = Ex [f (X x(t∂Ω))] (1)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

x; starting point

z
first passage location

��

������������

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Reinterpreting as an average of the boundary values

u(x) =

∫
∂Ω

p(x , y) f (y) dy (2)

Another representation in terms of an integral over the boundary

u(x) =

∫
∂Ω

∂g(x , y)

∂n
f (y) dy (3)

g(x , y) – Green’s function of the Dirichlet problem in Ω

=⇒ p(x , y) =
∂g(x , y)

∂n
(4)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

‘Walk on Spheres’ (WOS) and ‘Green’s Function First
Passage’ (GFFP) Algorithms

I Green’s function is known
=⇒ direct simulation of exit points and computation of the
solution through averaging boundary values

I Green’s function is unknown
=⇒ simulation of exit points from standard subdomains of Ω,
e.g. spheres
=⇒ Markov chain of ‘Walk on Spheres’ (or GFFP algorithm)
x0 = x , x1, . . . , xN
xi → ∂Ω and hits ε-shell is N = O(| ln(ε)|) steps
xN simulates exit point from Ω with O(ε) accuracy

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

‘Walk on Spheres’ (WOS) and ‘Green’s Function First
Passage’ (GFFP) Algorithms

I Green’s function is known
=⇒ direct simulation of exit points and computation of the
solution through averaging boundary values

I Green’s function is unknown
=⇒ simulation of exit points from standard subdomains of Ω,
e.g. spheres
=⇒ Markov chain of ‘Walk on Spheres’ (or GFFP algorithm)
x0 = x , x1, . . . , xN
xi → ∂Ω and hits ε-shell is N = O(| ln(ε)|) steps
xN simulates exit point from Ω with O(ε) accuracy

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

‘Walk on Spheres’ (WOS) and ‘Green’s Function First
Passage’ (GFFP) Algorithms

x; starting point

Ω

first−passage location

ϵ

∂Ω

Xx(τ∂Ω)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

Timing with WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Memory and Communication

I Often the Monte Carlo method deals with the geometry without
discretization, much less memory is needed to represent the
entire problem

I Mean and variance are computed by calculating a running (1)
sum, (2) sum of squares, and (3) samples

I Independent sampling means that one can do AS MUCH
computation per core as you wish before even these three values
need be communicated (tuning the level of
compute-boundedness)

I It’s even OK with adaptivity
1. Initial variance estimate to guess at N given tolerance, ε
2. The N samples can be computed with a static or dynamic parallel

work allocation

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Memory and Communication

I Often the Monte Carlo method deals with the geometry without
discretization, much less memory is needed to represent the
entire problem

I Mean and variance are computed by calculating a running (1)
sum, (2) sum of squares, and (3) samples

I Independent sampling means that one can do AS MUCH
computation per core as you wish before even these three values
need be communicated (tuning the level of
compute-boundedness)

I It’s even OK with adaptivity
1. Initial variance estimate to guess at N given tolerance, ε
2. The N samples can be computed with a static or dynamic parallel

work allocation

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Memory and Communication

I Often the Monte Carlo method deals with the geometry without
discretization, much less memory is needed to represent the
entire problem

I Mean and variance are computed by calculating a running (1)
sum, (2) sum of squares, and (3) samples

I Independent sampling means that one can do AS MUCH
computation per core as you wish before even these three values
need be communicated (tuning the level of
compute-boundedness)

I It’s even OK with adaptivity
1. Initial variance estimate to guess at N given tolerance, ε
2. The N samples can be computed with a static or dynamic parallel

work allocation

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Memory and Communication

I Often the Monte Carlo method deals with the geometry without
discretization, much less memory is needed to represent the
entire problem

I Mean and variance are computed by calculating a running (1)
sum, (2) sum of squares, and (3) samples

I Independent sampling means that one can do AS MUCH
computation per core as you wish before even these three values
need be communicated (tuning the level of
compute-boundedness)

I It’s even OK with adaptivity
1. Initial variance estimate to guess at N given tolerance, ε
2. The N samples can be computed with a static or dynamic parallel

work allocation

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Memory and Communication

I Often the Monte Carlo method deals with the geometry without
discretization, much less memory is needed to represent the
entire problem

I Mean and variance are computed by calculating a running (1)
sum, (2) sum of squares, and (3) samples

I Independent sampling means that one can do AS MUCH
computation per core as you wish before even these three values
need be communicated (tuning the level of
compute-boundedness)

I It’s even OK with adaptivity
1. Initial variance estimate to guess at N given tolerance, ε
2. The N samples can be computed with a static or dynamic parallel

work allocation

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Memory and Communication

I Often the Monte Carlo method deals with the geometry without
discretization, much less memory is needed to represent the
entire problem

I Mean and variance are computed by calculating a running (1)
sum, (2) sum of squares, and (3) samples

I Independent sampling means that one can do AS MUCH
computation per core as you wish before even these three values
need be communicated (tuning the level of
compute-boundedness)

I It’s even OK with adaptivity
1. Initial variance estimate to guess at N given tolerance, ε
2. The N samples can be computed with a static or dynamic parallel

work allocation

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Porous Media: Complicated Interfaces

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold conductor (Ω)at unit potential

u = 1, then C = total charge on conductor (surface)
I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞ (5)

I Recall u(x) = Ex [f (X x(t∂Ω))] = probability of walker starting at x
hitting Ω before escaping to infinity

I Charge density is first passage probability
I Capacitance (relative to a sphere) is probability of walker starting

at x (random chosen on sphere) hitting Ω before escaping to
infinity

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold conductor (Ω)at unit potential

u = 1, then C = total charge on conductor (surface)
I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞ (5)

I Recall u(x) = Ex [f (X x(t∂Ω))] = probability of walker starting at x
hitting Ω before escaping to infinity

I Charge density is first passage probability
I Capacitance (relative to a sphere) is probability of walker starting

at x (random chosen on sphere) hitting Ω before escaping to
infinity

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold conductor (Ω)at unit potential

u = 1, then C = total charge on conductor (surface)
I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞ (5)

I Recall u(x) = Ex [f (X x(t∂Ω))] = probability of walker starting at x
hitting Ω before escaping to infinity

I Charge density is first passage probability
I Capacitance (relative to a sphere) is probability of walker starting

at x (random chosen on sphere) hitting Ω before escaping to
infinity

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold conductor (Ω)at unit potential

u = 1, then C = total charge on conductor (surface)
I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞ (5)

I Recall u(x) = Ex [f (X x(t∂Ω))] = probability of walker starting at x
hitting Ω before escaping to infinity

I Charge density is first passage probability
I Capacitance (relative to a sphere) is probability of walker starting

at x (random chosen on sphere) hitting Ω before escaping to
infinity

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold conductor (Ω)at unit potential

u = 1, then C = total charge on conductor (surface)
I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞ (5)

I Recall u(x) = Ex [f (X x(t∂Ω))] = probability of walker starting at x
hitting Ω before escaping to infinity

I Charge density is first passage probability
I Capacitance (relative to a sphere) is probability of walker starting

at x (random chosen on sphere) hitting Ω before escaping to
infinity

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold conductor (Ω)at unit potential

u = 1, then C = total charge on conductor (surface)
I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞ (5)

I Recall u(x) = Ex [f (X x(t∂Ω))] = probability of walker starting at x
hitting Ω before escaping to infinity

I Charge density is first passage probability
I Capacitance (relative to a sphere) is probability of walker starting

at x (random chosen on sphere) hitting Ω before escaping to
infinity

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Various Laplacian Green’s Functions for Green’s
Function First Passage (GFFP)

O
O

O

Putting back (a) Void space(b) Intersecting(c)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Escape to∞ in A Single Step

I Probability that a diffusing particle at r0 > b will escape to infinity

Pesc = 1− b
r0

= 1− α (6)

I Putting-back distribution density function

ω(θ, φ) =
1− α2

4π[1− 2α cos θ + α2]3/2 (7)

I (b, θ, φ) ; spherical coordinates of the new position when the old
position is put on the polar axis

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Escape to∞ in A Single Step

I Probability that a diffusing particle at r0 > b will escape to infinity

Pesc = 1− b
r0

= 1− α (6)

I Putting-back distribution density function

ω(θ, φ) =
1− α2

4π[1− 2α cos θ + α2]3/2 (7)

I (b, θ, φ) ; spherical coordinates of the new position when the old
position is put on the polar axis

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Escape to∞ in A Single Step

I Probability that a diffusing particle at r0 > b will escape to infinity

Pesc = 1− b
r0

= 1− α (6)

I Putting-back distribution density function

ω(θ, φ) =
1− α2

4π[1− 2α cos θ + α2]3/2 (7)

I (b, θ, φ) ; spherical coordinates of the new position when the old
position is put on the polar axis

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

The Simulation-Tabulation (S-T) Method for
Generalization

I Green’s function for the non-intersected surface of a sphere
located on the surface of a reflecting sphere

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Solc-Stockmayer Model without Potential

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Another S-T Application: Mean Trapping Rate

In a domain of nonoverlapping spherical traps :

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Charge Density on a Circular Disk via Last-Passage

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Charge Density on the Circular Disk

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Unit Cube Edge Distribution

Figure: First- and last-passage edge computations

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Walk on the Boundary Algorithm

I µ(y) = − 1
4π

∂φ

∂n
(y) ; surface charge density

I φ(x) =

∫
∂Ω

1
|x − y |

µ(y)dσ(y) ; electrostatic potential

Limit properties of the normal derivative (x → y outside of Ω):

µ(y) =

∫
∂Ω

n(y) · (y − y ′)
2π|y − y ′|3

µ(y ′)dσ(y ′)

By the ergodic theorem (convex Ω)∫
∂Ω

v(y)π∞(y)dσ(y) = lim
N→∞

1
N

N∑
n=1

v(yn)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Walk on the Boundary Algorithm

I µ(y) = − 1
4π

∂φ

∂n
(y) ; surface charge density

I φ(x) =

∫
∂Ω

1
|x − y |

µ(y)dσ(y) ; electrostatic potential

Limit properties of the normal derivative (x → y outside of Ω):

µ(y) =

∫
∂Ω

n(y) · (y − y ′)
2π|y − y ′|3

µ(y ′)dσ(y ′)

By the ergodic theorem (convex Ω)∫
∂Ω

v(y)π∞(y)dσ(y) = lim
N→∞

1
N

N∑
n=1

v(yn)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Walk on the Boundary Algorithm

I π∞ - stationary distribution of Markov chain {yn} with transition

density p(yn → yn+1) =
n(yn+1) · (yn+1 − yn)

2π|yn+1 − yn|3
I µ = Cπ∞
I C - capacitance if φ|∂Ω = 1
I φ(x) = 1 for x ∈ Ω

C = (lim
N→∞

1
N

N∑
n=1

v(yn))−1 for v(y) =
1

x − y

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Walk on the Boundary Algorithm

I π∞ - stationary distribution of Markov chain {yn} with transition

density p(yn → yn+1) =
n(yn+1) · (yn+1 − yn)

2π|yn+1 − yn|3
I µ = Cπ∞
I C - capacitance if φ|∂Ω = 1
I φ(x) = 1 for x ∈ Ω

C = (lim
N→∞

1
N

N∑
n=1

v(yn))−1 for v(y) =
1

x − y

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Walk on the Boundary Algorithm

I π∞ - stationary distribution of Markov chain {yn} with transition

density p(yn → yn+1) =
n(yn+1) · (yn+1 − yn)

2π|yn+1 − yn|3
I µ = Cπ∞
I C - capacitance if φ|∂Ω = 1
I φ(x) = 1 for x ∈ Ω

C = (lim
N→∞

1
N

N∑
n=1

v(yn))−1 for v(y) =
1

x − y

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Walk on the Boundary Algorithm

I π∞ - stationary distribution of Markov chain {yn} with transition

density p(yn → yn+1) =
n(yn+1) · (yn+1 − yn)

2π|yn+1 − yn|3
I µ = Cπ∞
I C - capacitance if φ|∂Ω = 1
I φ(x) = 1 for x ∈ Ω

C = (lim
N→∞

1
N

N∑
n=1

v(yn))−1 for v(y) =
1

x − y

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Capacitance of the Unit Cube

Reitan-Higgins (1951) 0.6555
Greenspan-Silverman (1965) 0.661

Cochran (1967) 0.6596
Goto-Shi-Yoshida (1992) 0.6615897 ± 5 × 10−7

Conjectured Hubbard-Douglas (1993) 0.65946...
Douglas-Zhou-Hubbard (1994) 0.6632 ± 0.0003
Given-Hubbard-Douglas (1997) 0.660675 ± 0.00001

Read (1997) 0.6606785± 0.000003
First passage method (2001) 0.660683± 0.000005

Walk on boundary algorithm (2002) 0.6606780± 0.0000004

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Mathematical Model: Molecular Geometry

Figure: Biomolecule with dielectric εi and region region Gi is in solution with
dielectric εe and region Ge. On the boundary of the biomolecule, electrostatic
potential and normal component of dielectric displacement continue

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Mathematical Model: Partial Differential Equations

I Poisson equation for the electrostatic potential, Φi , and point
charges, Qm, inside a molecule (in CGS units):

εi ∆Φi (x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

I For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

I For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Mathematical Model: Partial Differential Equations

I Poisson equation for the electrostatic potential, Φi , and point
charges, Qm, inside a molecule (in CGS units):

εi ∆Φi (x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

I For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

I For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Mathematical Model: Partial Differential Equations

I Poisson equation for the electrostatic potential, Φi , and point
charges, Qm, inside a molecule (in CGS units):

εi ∆Φi (x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

I For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

I For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Electrostatic Potential and Energy

I Point values of the potential: Φ(x) = Φrf (x) + Φc(x)
Here, singular part of Φ:

Φc(x) =
M∑

m=1

Qm

|x − x (m)|

I Reaction field electrostatic free energy of a molecule is linear
combination of point values of the regular part of the electrostatic
potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

I Electrostatic solvation free energy = difference between the
energy for a molecule in solvent with a given salt concentration
and the energy for the same molecule in vacuum:

∆Gelec
solv = Wrf (εi , εe, κ)−Wrf (εi ,1,0)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Electrostatic Potential and Energy

I Point values of the potential: Φ(x) = Φrf (x) + Φc(x)
Here, singular part of Φ:

Φc(x) =
M∑

m=1

Qm

|x − x (m)|

I Reaction field electrostatic free energy of a molecule is linear
combination of point values of the regular part of the electrostatic
potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

I Electrostatic solvation free energy = difference between the
energy for a molecule in solvent with a given salt concentration
and the energy for the same molecule in vacuum:

∆Gelec
solv = Wrf (εi , εe, κ)−Wrf (εi ,1,0)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Electrostatic Potential and Energy

I Point values of the potential: Φ(x) = Φrf (x) + Φc(x)
Here, singular part of Φ:

Φc(x) =
M∑

m=1

Qm

|x − x (m)|

I Reaction field electrostatic free energy of a molecule is linear
combination of point values of the regular part of the electrostatic
potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

I Electrostatic solvation free energy = difference between the
energy for a molecule in solvent with a given salt concentration
and the energy for the same molecule in vacuum:

∆Gelec
solv = Wrf (εi , εe, κ)−Wrf (εi ,1,0)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Feynman-Kac Formula

I If we set f (x) = 0 and have g(x) 6= 0, the solution is

u(y) = E
[∫ τ∂Ω

0
g(βy (s)) ds

]
I By linear superposition, the solution to Poisson equation is given

probabilistically as

u(y) = E
[∫ τ∂Ω

0
g(βy (s)) ds + f (βy (τ∂Ω))

]
I The linearized Poisson-Boltzmann equation is given by

∆u(x)−κ2u(x) = 0, x ∈ Ω, u(x) = f (x), x ∈ ∂Ω, u → 0 as |x | → ∞

and has Wiener integral representation:

u(y) = E
[
f (βy (τ∂Ω))e−

∫ τ∂Ω
0 κ2 ds

]

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Feynman-Kac Formula

I If we set f (x) = 0 and have g(x) 6= 0, the solution is

u(y) = E
[∫ τ∂Ω

0
g(βy (s)) ds

]
I By linear superposition, the solution to Poisson equation is given

probabilistically as

u(y) = E
[∫ τ∂Ω

0
g(βy (s)) ds + f (βy (τ∂Ω))

]
I The linearized Poisson-Boltzmann equation is given by

∆u(x)−κ2u(x) = 0, x ∈ Ω, u(x) = f (x), x ∈ ∂Ω, u → 0 as |x | → ∞

and has Wiener integral representation:

u(y) = E
[
f (βy (τ∂Ω))e−

∫ τ∂Ω
0 κ2 ds

]

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Feynman-Kac Formula

I If we set f (x) = 0 and have g(x) 6= 0, the solution is

u(y) = E
[∫ τ∂Ω

0
g(βy (s)) ds

]
I By linear superposition, the solution to Poisson equation is given

probabilistically as

u(y) = E
[∫ τ∂Ω

0
g(βy (s)) ds + f (βy (τ∂Ω))

]
I The linearized Poisson-Boltzmann equation is given by

∆u(x)−κ2u(x) = 0, x ∈ Ω, u(x) = f (x), x ∈ ∂Ω, u → 0 as |x | → ∞

and has Wiener integral representation:

u(y) = E
[
f (βy (τ∂Ω))e−

∫ τ∂Ω
0 κ2 ds

]

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di), where q(κ,di) =
κdi

sinh(κdi)
to deal

with LPBE

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di), where q(κ,di) =
κdi

sinh(κdi)
to deal

with LPBE

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di), where q(κ,di) =
κdi

sinh(κdi)
to deal

with LPBE

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di), where q(κ,di) =
κdi

sinh(κdi)
to deal

with LPBE

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di), where q(κ,di) =
κdi

sinh(κdi)
to deal

with LPBE

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di), where q(κ,di) =
κdi

sinh(κdi)
to deal

with LPBE

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di), where q(κ,di) =
κdi

sinh(κdi)
to deal

with LPBE

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i)2

|xi − xi+1|3

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i)2

|xi − xi+1|3

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i)2

|xi − xi+1|3

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i)2

|xi − xi+1|3

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i)2

|xi − xi+1|3

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i)2

|xi − xi+1|3

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i)2

|xi − xi+1|3

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

Monte Carlo Estimates

I The estimate for the reaction-field potential point value:
ξ[Φrf](x (m)) = −Φc(x∗1)

+

Nins∑
j=2

Fj (κ) (Φc(x ins
j)− Φc(x∗j,ins)) (8)

I Here {x∗j,ins} is a sequence of boundary points, after which the
random walker moves inside the domain, Gi , to x ins

j
I The estimate for the reaction-field energy:

ξ[Wrf] =
1
2

M∑
m=1

Qm ξ[Φrf](x (m)) (9)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

Monte Carlo Estimates

I The estimate for the reaction-field potential point value:
ξ[Φrf](x (m)) = −Φc(x∗1)

+

Nins∑
j=2

Fj (κ) (Φc(x ins
j)− Φc(x∗j,ins)) (8)

I Here {x∗j,ins} is a sequence of boundary points, after which the
random walker moves inside the domain, Gi , to x ins

j
I The estimate for the reaction-field energy:

ξ[Wrf] =
1
2

M∑
m=1

Qm ξ[Φrf](x (m)) (9)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

Monte Carlo Estimates

I The estimate for the reaction-field potential point value:
ξ[Φrf](x (m)) = −Φc(x∗1)

+

Nins∑
j=2

Fj (κ) (Φc(x ins
j)− Φc(x∗j,ins)) (8)

I Here {x∗j,ins} is a sequence of boundary points, after which the
random walker moves inside the domain, Gi , to x ins

j
I The estimate for the reaction-field energy:

ξ[Wrf] =
1
2

M∑
m=1

Qm ξ[Φrf](x (m)) (9)

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

A Picture: The Algorithm for a Single Spherical Atom

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

The Algorithm in Pictures: Walk Inside

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

The Algorithm in Pictures: Walk Inside

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

The Algorithm in Pictures: Walk Outside

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

The Algorithm in Pictures: Walk Outside

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

Monte Carlo Algorithm’s Computational Complexity
Cost of a single trajectory

I Number of steps is random walk is not dependent on M, the
number of atoms

I The cost of finding the nearest sphere is M log2(M) due to
optimizations

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000

C
P

U
Ti

m
e(

se
c)

Number of Atoms

"Simulation"
"Theory-prediction"

Figure: The CPU time per atom per trajectory is plotted as function of number of atoms. For small
number of atoms the CPU time scales linearly and for large number of atoms it asymptotically
scales logarithmically

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Monte Carlo Estimates

Monte Carlo Algorithm’s Computational Complexity
Cost of a single trajectory

I Number of steps is random walk is not dependent on M, the
number of atoms

I The cost of finding the nearest sphere is M log2(M) due to
optimizations

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000

C
P

U
Ti

m
e(

se
c)

Number of Atoms

"Simulation"
"Theory-prediction"

Figure: The CPU time per atom per trajectory is plotted as function of number of atoms. For small
number of atoms the CPU time scales linearly and for large number of atoms it asymptotically
scales logarithmically

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Computational Geometry

Geometry: Problem Descriptions

There are many geometric problems that arise in this algorithm:

I Efficiently determining if a point is on the surface of the molecule
or inside of it (for interior walks)

I Efficiently determining the closest sphere to a given exterior point
(for walks outside molecule)

I Efficiently determining if a query point is inside of the convex hull
of the molecule

I Efficiently finding the largest possible sphere enclosing a query
point for external walks

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Computational Geometry

Geometry: Problem Descriptions

There are many geometric problems that arise in this algorithm:

I Efficiently determining if a point is on the surface of the molecule
or inside of it (for interior walks)

I Efficiently determining the closest sphere to a given exterior point
(for walks outside molecule)

I Efficiently determining if a query point is inside of the convex hull
of the molecule

I Efficiently finding the largest possible sphere enclosing a query
point for external walks

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Computational Geometry

Geometry: Problem Descriptions

There are many geometric problems that arise in this algorithm:

I Efficiently determining if a point is on the surface of the molecule
or inside of it (for interior walks)

I Efficiently determining the closest sphere to a given exterior point
(for walks outside molecule)

I Efficiently determining if a query point is inside of the convex hull
of the molecule

I Efficiently finding the largest possible sphere enclosing a query
point for external walks

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Computational Geometry

Geometry: Problem Descriptions

There are many geometric problems that arise in this algorithm:

I Efficiently determining if a point is on the surface of the molecule
or inside of it (for interior walks)

I Efficiently determining the closest sphere to a given exterior point
(for walks outside molecule)

I Efficiently determining if a query point is inside of the convex hull
of the molecule

I Efficiently finding the largest possible sphere enclosing a query
point for external walks

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Correlated and Uncorrelated Sampling

I Correlated sampling in Monte Carlo is essential for two important
reasons

1. To obtain smooth curves with a minimum of sampling
(function-wise vs. point-wise sampling)

2. To obtain accurate results from quantities defined as the
differences of Monte Carlo estimates

I With this correlated sampling sampling you can get a “smooth
curve" with three orders of magnitude less sampling, note: you
still have O(N−1/2) errors, just in “curve space," not point by point

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Correlated and Uncorrelated Sampling

I Correlated sampling in Monte Carlo is essential for two important
reasons

1. To obtain smooth curves with a minimum of sampling
(function-wise vs. point-wise sampling)

2. To obtain accurate results from quantities defined as the
differences of Monte Carlo estimates

I With this correlated sampling sampling you can get a “smooth
curve" with three orders of magnitude less sampling, note: you
still have O(N−1/2) errors, just in “curve space," not point by point

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Correlated and Uncorrelated Sampling

I Correlated sampling in Monte Carlo is essential for two important
reasons

1. To obtain smooth curves with a minimum of sampling
(function-wise vs. point-wise sampling)

2. To obtain accurate results from quantities defined as the
differences of Monte Carlo estimates

I With this correlated sampling sampling you can get a “smooth
curve" with three orders of magnitude less sampling, note: you
still have O(N−1/2) errors, just in “curve space," not point by point

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Correlated and Uncorrelated Sampling

I Correlated sampling in Monte Carlo is essential for two important
reasons

1. To obtain smooth curves with a minimum of sampling
(function-wise vs. point-wise sampling)

2. To obtain accurate results from quantities defined as the
differences of Monte Carlo estimates

I With this correlated sampling sampling you can get a “smooth
curve" with three orders of magnitude less sampling, note: you
still have O(N−1/2) errors, just in “curve space," not point by point

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Correlated Sampling: Salt Concentration

-2970

-2965

-2960

-2955

-2950

-2945

-2940

-2935

-2930

-2925

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

∆
G

el
ec

so
lv

(k
ca

l/m
ol

e)

log(Salt Concentration(M))

uncorr 500
uncorr 1500

corr 500
uncorr 4500

Figure: Electrostatic Solvation free Energy of 3icb calculated with three four conditions:
uncorrelated sampling with 500 number of trajectories per concentration, uncorrelated sampling
with 1500 number of trajectories per concentration, uncorrelated sampling with 4500 number of
iterations, and correlated sampling with 500 number of trajectories

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Dependence on Salt Concentration

I Values of scalar energies as a function of external salt
concentration are important

1. Smooth curves of internal energy vs. salt concentration (see above)
2. Numerical estimate of the derivative as salt concentration vanishes

I For κ used in simulations, Fj (κ) = 1
I For an arbitrary κ′ > κ:

Fj (κ
′) is multiplied by the ratio

q(κ′,d)

q(κ,d)
on every step of the WOS

in the exterior
I The results obtained with the estimates (8) and (9) for different

values of κ are highly correlated

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Dependence on Salt Concentration

I Values of scalar energies as a function of external salt
concentration are important

1. Smooth curves of internal energy vs. salt concentration (see above)
2. Numerical estimate of the derivative as salt concentration vanishes

I For κ used in simulations, Fj (κ) = 1
I For an arbitrary κ′ > κ:

Fj (κ
′) is multiplied by the ratio

q(κ′,d)

q(κ,d)
on every step of the WOS

in the exterior
I The results obtained with the estimates (8) and (9) for different

values of κ are highly correlated

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Dependence on Salt Concentration

I Values of scalar energies as a function of external salt
concentration are important

1. Smooth curves of internal energy vs. salt concentration (see above)
2. Numerical estimate of the derivative as salt concentration vanishes

I For κ used in simulations, Fj (κ) = 1
I For an arbitrary κ′ > κ:

Fj (κ
′) is multiplied by the ratio

q(κ′,d)

q(κ,d)
on every step of the WOS

in the exterior
I The results obtained with the estimates (8) and (9) for different

values of κ are highly correlated

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Dependence on Salt Concentration

I Values of scalar energies as a function of external salt
concentration are important

1. Smooth curves of internal energy vs. salt concentration (see above)
2. Numerical estimate of the derivative as salt concentration vanishes

I For κ used in simulations, Fj (κ) = 1
I For an arbitrary κ′ > κ:

Fj (κ
′) is multiplied by the ratio

q(κ′,d)

q(κ,d)
on every step of the WOS

in the exterior
I The results obtained with the estimates (8) and (9) for different

values of κ are highly correlated

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Dependence on Salt Concentration

I Values of scalar energies as a function of external salt
concentration are important

1. Smooth curves of internal energy vs. salt concentration (see above)
2. Numerical estimate of the derivative as salt concentration vanishes

I For κ used in simulations, Fj (κ) = 1
I For an arbitrary κ′ > κ:

Fj (κ
′) is multiplied by the ratio

q(κ′,d)

q(κ,d)
on every step of the WOS

in the exterior
I The results obtained with the estimates (8) and (9) for different

values of κ are highly correlated

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Monte Carlo Estimates

Correlated and Uncorrelated Sampling

Dependence on Salt Concentration

I Values of scalar energies as a function of external salt
concentration are important

1. Smooth curves of internal energy vs. salt concentration (see above)
2. Numerical estimate of the derivative as salt concentration vanishes

I For κ used in simulations, Fj (κ) = 1
I For an arbitrary κ′ > κ:

Fj (κ
′) is multiplied by the ratio

q(κ′,d)

q(κ,d)
on every step of the WOS

in the exterior
I The results obtained with the estimates (8) and (9) for different

values of κ are highly correlated

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Accuracy: Monte Carlo vs. Deterministic

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

(a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi)] =

∑
i q2

i Var [Φ(xi)]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Computational Results

Timing: Better Than Expected

Figure: O(M log M)?

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Conclusions

I Over the years we have developed many MC tools for PDEs and
more recently:

I We have developed a novel stochastic linear PBE solver that can
provide highly accurate salt-dependent electrostatic properties of
biomolecules in a single PBE calculation

I Advantages of the stochastic linear PBE solver over the more
mature deterministic methods include: the subtle geometric
features of the biomolecule can be treated with higher precision,
the continuity and outer boundary conditions are accounted for
exactly, a singularity free scheme is employed and
straightforward implementation on parallel computer platform is
possible

I Codes provide higher accuracy (on demand) and do not suffer
losses in accuracy near the boundary

I Only way to handle large (M >> 10000) molecules

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Conclusions

I Over the years we have developed many MC tools for PDEs and
more recently:

I We have developed a novel stochastic linear PBE solver that can
provide highly accurate salt-dependent electrostatic properties of
biomolecules in a single PBE calculation

I Advantages of the stochastic linear PBE solver over the more
mature deterministic methods include: the subtle geometric
features of the biomolecule can be treated with higher precision,
the continuity and outer boundary conditions are accounted for
exactly, a singularity free scheme is employed and
straightforward implementation on parallel computer platform is
possible

I Codes provide higher accuracy (on demand) and do not suffer
losses in accuracy near the boundary

I Only way to handle large (M >> 10000) molecules

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Conclusions

I Over the years we have developed many MC tools for PDEs and
more recently:

I We have developed a novel stochastic linear PBE solver that can
provide highly accurate salt-dependent electrostatic properties of
biomolecules in a single PBE calculation

I Advantages of the stochastic linear PBE solver over the more
mature deterministic methods include: the subtle geometric
features of the biomolecule can be treated with higher precision,
the continuity and outer boundary conditions are accounted for
exactly, a singularity free scheme is employed and
straightforward implementation on parallel computer platform is
possible

I Codes provide higher accuracy (on demand) and do not suffer
losses in accuracy near the boundary

I Only way to handle large (M >> 10000) molecules

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Conclusions

I Over the years we have developed many MC tools for PDEs and
more recently:

I We have developed a novel stochastic linear PBE solver that can
provide highly accurate salt-dependent electrostatic properties of
biomolecules in a single PBE calculation

I Advantages of the stochastic linear PBE solver over the more
mature deterministic methods include: the subtle geometric
features of the biomolecule can be treated with higher precision,
the continuity and outer boundary conditions are accounted for
exactly, a singularity free scheme is employed and
straightforward implementation on parallel computer platform is
possible

I Codes provide higher accuracy (on demand) and do not suffer
losses in accuracy near the boundary

I Only way to handle large (M >> 10000) molecules

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Conclusions

I Over the years we have developed many MC tools for PDEs and
more recently:

I We have developed a novel stochastic linear PBE solver that can
provide highly accurate salt-dependent electrostatic properties of
biomolecules in a single PBE calculation

I Advantages of the stochastic linear PBE solver over the more
mature deterministic methods include: the subtle geometric
features of the biomolecule can be treated with higher precision,
the continuity and outer boundary conditions are accounted for
exactly, a singularity free scheme is employed and
straightforward implementation on parallel computer platform is
possible

I Codes provide higher accuracy (on demand) and do not suffer
losses in accuracy near the boundary

I Only way to handle large (M >> 10000) molecules

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[T. Mackoy, R. C. Harris, J. Johnson, M. Mascagni and
M. O. Fenley (2011)] Numerical Optimization of a
Walk-on-Spheres Solver for the Linear Poisson-Boltzmann
Equation Communications in Computational Physics, in the
press.

[M. Fenley, M. Mascagni, J. McClain, A. Silalahi and N. Simonov
(2010)] Using Correlated Monte Carlo Sampling for Efficiently
Solving the Linearized Poisson-Boltzmann Equation Over a
Broad Range of Salt Concentrations Journal of Chemical Theory
and Computation, 6(1): 300–314.

[N. Simonov and M. Mascagni and M. O. Fenley (2007)] Monte
Carlo Based Linear Poisson-Boltzmann Approach Makes
Accurate Salt-Dependent Solvation Energy Predictions Possible
Journal of Chemical Physics, 187(18), article #185105, 6 pages.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[T. Mackoy, R. C. Harris, J. Johnson, M. Mascagni and
M. O. Fenley (2011)] Numerical Optimization of a
Walk-on-Spheres Solver for the Linear Poisson-Boltzmann
Equation Communications in Computational Physics, in the
press.

[M. Fenley, M. Mascagni, J. McClain, A. Silalahi and N. Simonov
(2010)] Using Correlated Monte Carlo Sampling for Efficiently
Solving the Linearized Poisson-Boltzmann Equation Over a
Broad Range of Salt Concentrations Journal of Chemical Theory
and Computation, 6(1): 300–314.

[N. Simonov and M. Mascagni and M. O. Fenley (2007)] Monte
Carlo Based Linear Poisson-Boltzmann Approach Makes
Accurate Salt-Dependent Solvation Energy Predictions Possible
Journal of Chemical Physics, 187(18), article #185105, 6 pages.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[T. Mackoy, R. C. Harris, J. Johnson, M. Mascagni and
M. O. Fenley (2011)] Numerical Optimization of a
Walk-on-Spheres Solver for the Linear Poisson-Boltzmann
Equation Communications in Computational Physics, in the
press.

[M. Fenley, M. Mascagni, J. McClain, A. Silalahi and N. Simonov
(2010)] Using Correlated Monte Carlo Sampling for Efficiently
Solving the Linearized Poisson-Boltzmann Equation Over a
Broad Range of Salt Concentrations Journal of Chemical Theory
and Computation, 6(1): 300–314.

[N. Simonov and M. Mascagni and M. O. Fenley (2007)] Monte
Carlo Based Linear Poisson-Boltzmann Approach Makes
Accurate Salt-Dependent Solvation Energy Predictions Possible
Journal of Chemical Physics, 187(18), article #185105, 6 pages.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[M. Mascagni and N. A. Simonov (2004)] Monte Carlo Methods
for Calculating Some Physical Properties of Large Molecules
SIAM Journal on Scientific Computing, 26(1): 339–357.

[N. A. Simonov and M. Mascagni (2004)] Random Walk
Algorithms for Estimating Effective Properties of Digitized Porous
Media Monte Carlo Methods and Applications, 10: 599–608.

[M. Mascagni and N. A. Simonov (2004)] The Random Walk on
the Boundary Method for Calculating Capacitance Journal of
Computational Physics, 195: 465–473.

[A. Karaivanova, N. A. Simonov and M. Mascagni(2004)] Parallel
Quasirandom Walks on the Boundary Monte Carlo Methods and
Applications, 11: 311–320.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[M. Mascagni and N. A. Simonov (2004)] Monte Carlo Methods
for Calculating Some Physical Properties of Large Molecules
SIAM Journal on Scientific Computing, 26(1): 339–357.

[N. A. Simonov and M. Mascagni (2004)] Random Walk
Algorithms for Estimating Effective Properties of Digitized Porous
Media Monte Carlo Methods and Applications, 10: 599–608.

[M. Mascagni and N. A. Simonov (2004)] The Random Walk on
the Boundary Method for Calculating Capacitance Journal of
Computational Physics, 195: 465–473.

[A. Karaivanova, N. A. Simonov and M. Mascagni(2004)] Parallel
Quasirandom Walks on the Boundary Monte Carlo Methods and
Applications, 11: 311–320.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[M. Mascagni and N. A. Simonov (2004)] Monte Carlo Methods
for Calculating Some Physical Properties of Large Molecules
SIAM Journal on Scientific Computing, 26(1): 339–357.

[N. A. Simonov and M. Mascagni (2004)] Random Walk
Algorithms for Estimating Effective Properties of Digitized Porous
Media Monte Carlo Methods and Applications, 10: 599–608.

[M. Mascagni and N. A. Simonov (2004)] The Random Walk on
the Boundary Method for Calculating Capacitance Journal of
Computational Physics, 195: 465–473.

[A. Karaivanova, N. A. Simonov and M. Mascagni(2004)] Parallel
Quasirandom Walks on the Boundary Monte Carlo Methods and
Applications, 11: 311–320.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[M. Mascagni and N. A. Simonov (2004)] Monte Carlo Methods
for Calculating Some Physical Properties of Large Molecules
SIAM Journal on Scientific Computing, 26(1): 339–357.

[N. A. Simonov and M. Mascagni (2004)] Random Walk
Algorithms for Estimating Effective Properties of Digitized Porous
Media Monte Carlo Methods and Applications, 10: 599–608.

[M. Mascagni and N. A. Simonov (2004)] The Random Walk on
the Boundary Method for Calculating Capacitance Journal of
Computational Physics, 195: 465–473.

[A. Karaivanova, N. A. Simonov and M. Mascagni(2004)] Parallel
Quasirandom Walks on the Boundary Monte Carlo Methods and
Applications, 11: 311–320.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[C.-O. Hwang and M. Mascagni (2003)] Analysis and
Comparison of Green’s Function First-Passage Algorithms with
“Walk on Spheres” Algorithms Mathematics and Computers in
Simulation, 63: 605–613.

[C.-O. Hwang and M. Mascagni (2001)] Efficient modified “walk
on spheres" algortihm for the linearized Poisson-Boltzmann
equation Applied Physics Letters, 78: 787–789.

[C.-O. Hwang, J. A. Given and M. Mascagni (2001)] The
Simulation-Tabulation Method for Classical Diffusion Monte Carlo
Journal of Computational Physics, 174: 925–946.

[C.-O. Hwang, J. A. Given and M. Mascagni (2000)] On the Rapid
Calculation of Permeability for Porous Media Using Brownian
Motion Paths Physics of Fluids, 12: 1699–1709.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[C.-O. Hwang and M. Mascagni (2003)] Analysis and
Comparison of Green’s Function First-Passage Algorithms with
“Walk on Spheres” Algorithms Mathematics and Computers in
Simulation, 63: 605–613.

[C.-O. Hwang and M. Mascagni (2001)] Efficient modified “walk
on spheres" algortihm for the linearized Poisson-Boltzmann
equation Applied Physics Letters, 78: 787–789.

[C.-O. Hwang, J. A. Given and M. Mascagni (2001)] The
Simulation-Tabulation Method for Classical Diffusion Monte Carlo
Journal of Computational Physics, 174: 925–946.

[C.-O. Hwang, J. A. Given and M. Mascagni (2000)] On the Rapid
Calculation of Permeability for Porous Media Using Brownian
Motion Paths Physics of Fluids, 12: 1699–1709.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[C.-O. Hwang and M. Mascagni (2003)] Analysis and
Comparison of Green’s Function First-Passage Algorithms with
“Walk on Spheres” Algorithms Mathematics and Computers in
Simulation, 63: 605–613.

[C.-O. Hwang and M. Mascagni (2001)] Efficient modified “walk
on spheres" algortihm for the linearized Poisson-Boltzmann
equation Applied Physics Letters, 78: 787–789.

[C.-O. Hwang, J. A. Given and M. Mascagni (2001)] The
Simulation-Tabulation Method for Classical Diffusion Monte Carlo
Journal of Computational Physics, 174: 925–946.

[C.-O. Hwang, J. A. Given and M. Mascagni (2000)] On the Rapid
Calculation of Permeability for Porous Media Using Brownian
Motion Paths Physics of Fluids, 12: 1699–1709.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

Bibliography

[C.-O. Hwang and M. Mascagni (2003)] Analysis and
Comparison of Green’s Function First-Passage Algorithms with
“Walk on Spheres” Algorithms Mathematics and Computers in
Simulation, 63: 605–613.

[C.-O. Hwang and M. Mascagni (2001)] Efficient modified “walk
on spheres" algortihm for the linearized Poisson-Boltzmann
equation Applied Physics Letters, 78: 787–789.

[C.-O. Hwang, J. A. Given and M. Mascagni (2001)] The
Simulation-Tabulation Method for Classical Diffusion Monte Carlo
Journal of Computational Physics, 174: 925–946.

[C.-O. Hwang, J. A. Given and M. Mascagni (2000)] On the Rapid
Calculation of Permeability for Porous Media Using Brownian
Motion Paths Physics of Fluids, 12: 1699–1709.

Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Conclusions and Future Work

c© Michael Mascagni, 2016

	Monte Carlo Methods for PDEs
	A Little History on Monte Carlo Methods for PDEs

	Some Examples Using This for Computing Elliptic Problems
	The Walk on Spheres Method
	Parallelization
	Architectural Implications
	Random Number Considerations
	Problems in Electrostatics/Materials
	Various Acceleration Techniques for Elliptic PDEs
	Biochemical Problems

	Monte Carlo Estimates
	Monte Carlo Estimates
	Computational Geometry
	Correlated and Uncorrelated Sampling

	Computational Results
	Conclusions and Future Work

