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A Little History on Monte Carlo Methods for PDEs

Dedicated to My Probability Professors at Courant:
Raghu Varadhan and Monroe Donsker
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Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Early History of MCMs for PDEs

1. Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has
probabilistic interpretations and MC algorithms for linear elliptic
and parabolic problems

2. Fermi/Ulam/von Neumann: Atomic bomb calculations were done
using Monte Carlo methods for neutron transport, their success
inspired much post-War work especially in nuclear reactor design

3. Kac and Donsker: Used large deviation calculations to estimate
eigenvalues of a linear Schrödinger equation

4. Forsythe and Leibler: Derived a MCM for solving special linear
systems related to discrete elliptic PDE problems
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A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi )

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi ), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi )
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi ), var(I) =
1

N − 1

N∑
i=1

(f (xi )−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi )
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)
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1

N − 1

[
N∑

i=1

f (xi )
2 − NĪ2
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1

N − 1

[
N∑

i=1

f (xi )
2 − NĪ2
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A Little History on Monte Carlo Methods for PDEs

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi ] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b
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Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications

I Methods for partial differential and integral equations based on
random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Back to our canonical elliptic boundary value problem:

1
2

∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

I Distribution of z is uniform on the sphere
I Mean of the values of u(z) over the sphere is u(x)

I u(x) has mean-value property and harmonic
I Also, u(x) satisfies the boundary condition

u(x) = Ex [f (X x(t∂Ω))] (1)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Reinterpreting as an average of the boundary values

u(x) =

∫
∂Ω

p(x , y) f (y) dy (2)

Another representation in terms of an integral over the boundary

u(x) =

∫
∂Ω

∂g(x , y)

∂n
f (y) dy (3)

g(x , y) – Green’s function of the Dirichlet problem in Ω

=⇒ p(x , y) =
∂g(x , y)

∂n
(4)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

‘Walk on Spheres’ (WOS) and ‘Green’s Function First
Passage’ (GFFP) Algorithms

I Green’s function is known
=⇒ direct simulation of exit points and computation of the
solution through averaging boundary values

I Green’s function is unknown
=⇒ simulation of exit points from standard subdomains of Ω,
e.g. spheres
=⇒ Markov chain of ‘Walk on Spheres’ (or GFFP algorithm)
x0 = x , x1, . . . , xN
xi → ∂Ω and hits ε-shell is N = O(| ln(ε)|) steps
xN simulates exit point from Ω with O(ε) accuracy
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x;  starting point

Ω

first−passage location

ϵ

∂Ω

Xx(τ∂Ω)
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Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing



Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing



Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing



Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing



Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing



Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing



Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Parallelization

Parallelization of the Monte Carlo Method

I These Monte Carlo methods are naturally parallel, and have
many possible sources of independent parallel work due to their
sampling nature

I Parallelization based on processing different samples that can
almost always be executed without decomposition and hence
communication

I In integration can parallelize based on
1. Sample numbers (with different RNG streams)
2. Domain decomposition
3. Can have adaptivity with only the cost of some initial variance

estimation
I Only the final sample (1 integer, 2 reals) needs to be

asynchronously communicated to compute the overall mean and
variance, very cheap application-level checkpointing



Monte Carlo Methods and Partial Differential Equations: Algorithms and Implications for High-Performance Computing

Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Memory and Communication

I Often the Monte Carlo method deals with the geometry without
discretization, much less memory is needed to represent the
entire problem

I Mean and variance are computed by calculating a running (1)
sum, (2) sum of squares, and (3) samples

I Independent sampling means that one can do AS MUCH
computation per core as you wish before even these three values
need be communicated (tuning the level of
compute-boundedness)

I It’s even OK with adaptivity
1. Initial variance estimate to guess at N given tolerance, ε
2. The N samples can be computed with a static or dynamic parallel

work allocation
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Some Examples Using This for Computing Elliptic Problems

Architectural Implications

Architectural Considerations

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance
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Some Examples Using This for Computing Elliptic Problems

Random Number Considerations

All This Depends on High-Quality Pseudorandom
Number Generators

I The ability of a Monte Carlo method to work depends on the
quality random numbers used

I In a serial application, this is essentially the ability of a
pseudorandom number generator to pass an extensive suite of
test of randomness (mostly statistical)

I For good parallel performance, the streams used in each
independent realization must lead to qualitatively independent
sampling

1. Must be free if intra- and inter-stream correlations
2. Must be able to supply potentially very long computations

I There are very few packages available that even attempt to
provide this functionality

1. Scalable Parallel Random Number Generators (SPRNG) library
2. TINA Is No Acronym (TINA)
3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"
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3. RNGStream
4. Random123

I Must give up absolute reproducibility and embrace “forensic
reproducibility"
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Porous Media: Complicated Interfaces
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold conductor (Ω)at unit potential

u = 1, then C = total charge on conductor (surface)
I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞ (5)

I Recall u(x) = Ex [f (X x(t∂Ω))] = probability of walker starting at x
hitting Ω before escaping to infinity

I Charge density is first passage probability
I Capacitance (relative to a sphere) is probability of walker starting

at x (random chosen on sphere) hitting Ω before escaping to
infinity
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Various Laplacian Green’s Functions for Green’s
Function First Passage (GFFP)

O
O

O

Putting back (a) Void space(b) Intersecting(c)
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Escape to∞ in A Single Step

I Probability that a diffusing particle at r0 > b will escape to infinity

Pesc = 1− b
r0

= 1− α (6)

I Putting-back distribution density function

ω(θ, φ) =
1− α2

4π[1− 2α cos θ + α2]3/2 (7)

I (b, θ, φ) ; spherical coordinates of the new position when the old
position is put on the polar axis
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

The Simulation-Tabulation (S-T) Method for
Generalization

I Green’s function for the non-intersected surface of a sphere
located on the surface of a reflecting sphere
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Solc-Stockmayer Model without Potential
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Another S-T Application: Mean Trapping Rate

In a domain of nonoverlapping spherical traps :
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Charge Density on a Circular Disk via Last-Passage
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Unit Cube Edge Distribution

Figure: First- and last-passage edge computations
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Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Walk on the Boundary Algorithm

I µ(y) = − 1
4π

∂φ

∂n
(y) ; surface charge density

I φ(x) =

∫
∂Ω

1
|x − y |

µ(y)dσ(y) ; electrostatic potential

Limit properties of the normal derivative (x → y outside of Ω):

µ(y) =

∫
∂Ω

n(y) · (y − y ′)
2π|y − y ′|3

µ(y ′)dσ(y ′)

By the ergodic theorem (convex Ω)∫
∂Ω

v(y)π∞(y)dσ(y) = lim
N→∞

1
N

N∑
n=1

v(yn)
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Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Walk on the Boundary Algorithm

I π∞ - stationary distribution of Markov chain {yn} with transition

density p(yn → yn+1) =
n(yn+1) · (yn+1 − yn)

2π|yn+1 − yn|3
I µ = Cπ∞
I C - capacitance if φ|∂Ω = 1
I φ(x) = 1 for x ∈ Ω

C = ( lim
N→∞

1
N

N∑
n=1

v(yn))−1 for v(y) =
1

x − y
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Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Capacitance of the Unit Cube

Reitan-Higgins (1951) 0.6555
Greenspan-Silverman (1965) 0.661

Cochran (1967) 0.6596
Goto-Shi-Yoshida (1992) 0.6615897 ± 5 × 10−7

Conjectured Hubbard-Douglas (1993) 0.65946...
Douglas-Zhou-Hubbard (1994) 0.6632 ± 0.0003
Given-Hubbard-Douglas (1997) 0.660675 ± 0.00001

Read (1997) 0.6606785± 0.000003
First passage method (2001) 0.660683± 0.000005

Walk on boundary algorithm (2002) 0.6606780± 0.0000004
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Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate
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Some Examples Using This for Computing Elliptic Problems

Various Acceleration Techniques for Elliptic PDEs

Mathematical Model: Molecular Geometry

Figure: Biomolecule with dielectric εi and region region Gi is in solution with
dielectric εe and region Ge. On the boundary of the biomolecule, electrostatic
potential and normal component of dielectric displacement continue
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Mathematical Model: Partial Differential Equations

I Poisson equation for the electrostatic potential, Φi , and point
charges, Qm, inside a molecule (in CGS units):

εi ∆Φi (x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

I For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

I For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Electrostatic Potential and Energy

I Point values of the potential: Φ(x) = Φrf (x) + Φc(x)
Here, singular part of Φ:

Φc(x) =
M∑

m=1

Qm

|x − x (m)|

I Reaction field electrostatic free energy of a molecule is linear
combination of point values of the regular part of the electrostatic
potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

I Electrostatic solvation free energy = difference between the
energy for a molecule in solvent with a given salt concentration
and the energy for the same molecule in vacuum:

∆Gelec
solv = Wrf (εi , εe, κ)−Wrf (εi ,1,0)
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I Reaction field electrostatic free energy of a molecule is linear
combination of point values of the regular part of the electrostatic
potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

I Electrostatic solvation free energy = difference between the
energy for a molecule in solvent with a given salt concentration
and the energy for the same molecule in vacuum:

∆Gelec
solv = Wrf (εi , εe, κ)−Wrf (εi ,1,0)
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Feynman-Kac Formula

I If we set f (x) = 0 and have g(x) 6= 0, the solution is

u(y) = E
[ ∫ τ∂Ω

0
g(βy (s)) ds

]
I By linear superposition, the solution to Poisson equation is given

probabilistically as

u(y) = E
[ ∫ τ∂Ω

0
g(βy (s)) ds + f (βy (τ∂Ω))

]
I The linearized Poisson-Boltzmann equation is given by

∆u(x)−κ2u(x) = 0, x ∈ Ω, u(x) = f (x), x ∈ ∂Ω, u → 0 as |x | → ∞

and has Wiener integral representation:

u(y) = E
[
f (βy (τ∂Ω))e−

∫ τ∂Ω
0 κ2 ds

]
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di ), where q(κ,di ) =
κdi

sinh(κdi )
to deal

with LPBE
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i ), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i )2

|xi − xi+1|3
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Monte Carlo Estimates

Monte Carlo Estimates

Monte Carlo Estimates

I The estimate for the reaction-field potential point value:
ξ[Φrf ](x (m)) = −Φc(x∗1 )

+

Nins∑
j=2

Fj (κ) (Φc(x ins
j )− Φc(x∗j,ins)) (8)

I Here {x∗j,ins} is a sequence of boundary points, after which the
random walker moves inside the domain, Gi , to x ins

j
I The estimate for the reaction-field energy:

ξ[Wrf ] =
1
2

M∑
m=1

Qm ξ[Φrf ](x (m)) (9)
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A Picture: The Algorithm for a Single Spherical Atom
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Monte Carlo Estimates

Monte Carlo Estimates

Monte Carlo Algorithm’s Computational Complexity
Cost of a single trajectory

I Number of steps is random walk is not dependent on M, the
number of atoms

I The cost of finding the nearest sphere is M log2(M) due to
optimizations
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Figure: The CPU time per atom per trajectory is plotted as function of number of atoms. For small
number of atoms the CPU time scales linearly and for large number of atoms it asymptotically
scales logarithmically
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Monte Carlo Estimates

Computational Geometry

Geometry: Problem Descriptions

There are many geometric problems that arise in this algorithm:

I Efficiently determining if a point is on the surface of the molecule
or inside of it (for interior walks)

I Efficiently determining the closest sphere to a given exterior point
(for walks outside molecule)

I Efficiently determining if a query point is inside of the convex hull
of the molecule

I Efficiently finding the largest possible sphere enclosing a query
point for external walks
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Correlated and Uncorrelated Sampling

Correlated and Uncorrelated Sampling

I Correlated sampling in Monte Carlo is essential for two important
reasons

1. To obtain smooth curves with a minimum of sampling
(function-wise vs. point-wise sampling)

2. To obtain accurate results from quantities defined as the
differences of Monte Carlo estimates

I With this correlated sampling sampling you can get a “smooth
curve" with three orders of magnitude less sampling, note: you
still have O(N−1/2) errors, just in “curve space," not point by point
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still have O(N−1/2) errors, just in “curve space," not point by point
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Figure: Electrostatic Solvation free Energy of 3icb calculated with three four conditions:
uncorrelated sampling with 500 number of trajectories per concentration, uncorrelated sampling
with 1500 number of trajectories per concentration, uncorrelated sampling with 4500 number of
iterations, and correlated sampling with 500 number of trajectories
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Dependence on Salt Concentration

I Values of scalar energies as a function of external salt
concentration are important

1. Smooth curves of internal energy vs. salt concentration (see above)
2. Numerical estimate of the derivative as salt concentration vanishes

I For κ used in simulations, Fj (κ) = 1
I For an arbitrary κ′ > κ:

Fj (κ
′) is multiplied by the ratio

q(κ′,d)

q(κ,d)
on every step of the WOS

in the exterior
I The results obtained with the estimates (8) and (9) for different

values of κ are highly correlated
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Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

( a
2R

)3
+

(
ε
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)
3. Var [

∑
i qi Φ(xi )] =

∑
i q2

i Var [Φ(xi )]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS
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Conclusions

I Over the years we have developed many MC tools for PDEs and
more recently:

I We have developed a novel stochastic linear PBE solver that can
provide highly accurate salt-dependent electrostatic properties of
biomolecules in a single PBE calculation

I Advantages of the stochastic linear PBE solver over the more
mature deterministic methods include: the subtle geometric
features of the biomolecule can be treated with higher precision,
the continuity and outer boundary conditions are accounted for
exactly, a singularity free scheme is employed and
straightforward implementation on parallel computer platform is
possible

I Codes provide higher accuracy (on demand) and do not suffer
losses in accuracy near the boundary

I Only way to handle large (M >> 10000) molecules
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Future Work

I Binding computations: using correlated sampling by directly
reprocessing walks

I Simple code interface for distribution with
1. Desired accuracy as input that allows a precalculation of the

number of needed trajectories
2. Importance sampling for optimal estimation of scalar energy values
3. Built-in CONDOR support for distribution of concurrent tasks
4. Multicore distributed computing support for the code:

OpenMP/OpenMPI
5. Precompiled code module distribution to protect IP
6. Webpage to describe the method and the mathematical

background and application
I Exploit the implicit inverse computation this methods provides

1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting
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