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Brownian Motion

Introduction to Brownian Motion as a Measure

Introduction to Brownian Motion

I Let Ω = {β ∈ C[0, 1];β(0) = 0}def
= C0[0, 1], be an infinitely dimensional space we consider for

placing a probability measure
I Consider (Ω,B,P), where B is the set of measurable subsets (a σ-algebra) and P is the

probability measure on Ω

I We would like to answer questions like P
[∫ 1

0 β
2(s)ds ≤ α

]
?

I We now construct Brownian motion (BM) via some limit ideas
I Central Limit Theorem (CLT): let X1,X2, . . . be independent, identically distributed( i.i.d.) with

E [Xi ] = 0, Var [Xi ] = 1 and define Sn =
∑n

i=1 Xi

1. Note if X∗1 ,X
∗
2 , . . . are i.i.d. with E [X∗i ] = µ, Var [X∗i ] = σ2 <∞, then Xi =

X∗i −µ
σ

has
E [Xi ] = 0, Var [Xi ] = 1

2. Then Sn√
n

converges in distribution to N(0, 1) as n→∞



Brownian Motion

Introduction to Brownian Motion as a Measure

Introduction to Brownian Motion

I Let X1,X2, . . . be as before, then it follows from the CLT that

lim
n→∞

P
[

Sn√
n
≤ α

]
=

1√
2π

∫ α

−∞
e−

u2
2 du.

I Erdös and Kac proved (we will find the σi (·)’s):

1. limn→∞ P
[
max

(
S1√

n
,

S2√
n
, . . . , Sn√

n

)
≤ α

]
= σ1(α) =

√
2
π

∫ α
0 e−

u2
2 du

2. limn→∞ P
[

S2
1 +S2

2 +···+S2
n

n2 ≤ α
]

= σ2(α)

3. limn→∞ P
[

S1+S2+···+Sn
n3/2 ≤ α

]
= σ3(α)

I Let Nn = #{S1, . . . ,Sn|Si > 0}, then

lim
n→∞

P
[

Nn

n
≤ α

]
=


0, if α ≤ 0
2
π

arcsin
√
α, if 0 ≤ α ≤ 1

1, if α ≥ 1
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Introduction to Brownian Motion as a Measure

Definitions

Definitions

I X1,X2, . . . are as above, and ∀n ∈ N and t ∈ [0, 1] define

χ(n)(t) =

{
S1√

n , t = 0
Si√

n ,
i−1

n < t ≤ i
n , i = 1, 2, . . . , n

I Let R denote the space of Riemann integrable functions on [0, 1].
I Theorem: F : R→ R and with some weak hypotheses, then

lim
n→∞

P
[
F
(
χ(n)(·)

)
≤ α

]
= PW [F (β) ≤ α] ,

where PW denotes the probability called “Wiener measure,” and this result is called Donsker’s
Invariance Principal
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Introduction to Brownian Motion as a Measure

Donsker’s Invariance Principal

Examples of Donsker’s Invariance Principal

1. F [β] =
∫ 1

0 β
2(s) ds, then by the theorem

lim
n→∞

P

[
n∑

i=1

S2
i

n2 ≤ α

]
= PW

[∫ 1

0
β2(s)ds ≤ α

]
2. F [β] = β(1), then

lim
n→∞

P
[

Sn√
n
≤ α

]
= PW [β(1) ≤ α] =

1√
2π

∫ α

−∞
e−

u2
2 du

3. F [β] =
∫ 1

0
1+sgnβ(s)

2 ds, where sgn(x) =

{
1, : x > 0
−1, : x ≤ 0

Then

lim
n→∞

P
[

Nn

n
≤ α

]
= PW

[∫ 1

0

1 + sgnβ(s)

2
ds ≤ α

]
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Introduction to Brownian Motion as a Measure

Donsker’s Invariance Principal

Defining Wiener Measure Using Cylinder Sets

I For any integer n, any choice of 0 < τ1 < · · · < τn ≤ 1, and any Lebesgue measurable (L-mb)
set, E ∈ Rn define the “interval”

I = I(n; τ1; . . . ; τn; E) := {β(·) ∈ C0[0, 1]; (β(τ1), . . . , β(τn)) ∈ E}

I Let A be the class of intervals containing all the I for all n, τ1, . . . , τn and all L−mb sets E ∈ Rn,
then A is an algebra of sets in C0[0, 1]

I The I’s are the cylinder sets upon which we will define Wiener measure, and then standard
measure theoretic ideas to extend to all measurable subsets of the infinite dimensional space,
C0[0, 1]
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Introduction to Brownian Motion as a Measure

Donsker’s Invariance Principal

Defining Wiener Measure Using Cylinder Sets

I Given I, we define its measure as

µ(I) =
1√

(2π)nτ1(τ2 − τ1) · · · (τn − τn−1)∫
· · ·
∫

E
e
−

u2
1

2τ1
− (u2−u1)2

2(τ2−τ1)
−···−

(un−un−1)2

2(τn−τn−1) du1 · · · dun.

I Let B be the smallest σ−algebra generated by A, this is the class of Wiener measurable
(W-mb) sets in C0[0, 1]

I This extension of Wiener measure, also creates a probability measure on C0[0, 1], and
expectation w.r.t. Wiener measure will be referred to as a

1. Wiener integral or Wiener integration
2. Brownian motion expectation
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Introduction to Brownian Motion as a Measure

Donsker’s Invariance Principal

Examples

I Let A ∈ Rn×n with Aij = min(τi , τj ), i.e for the case n = 3, τ1 < τ2 < τ3 we have

A =

 τ1 τ1 τ1

τ1 τ2 τ2

τ1 τ2 τ3


and in general we can write U = (u1, . . . , un)> and

µ(I) =
1√

(2π)n det A

∫
· · ·
∫

E
e−U>A−1U du1 . . . dun

I Let β(·) be a BM, and 0 < τ1 < τ2 < 1, then

P[a1 ≤ β(τ1) ≤ b1] =
1

2πτ1

∫ b1

a1

e−
u2

2τ1 du and

P[a1 ≤ β(τ1) ≤ b1 ∩ a2 ≤ β(τ2) ≤ b2]

=
1√

(2π)2τ1(τ2 − τ1)

∫ b2

a2

∫ b1

a1

e−
u2

2τ1
− (u2−u1)2

2(τ2−τ1) du1 du2
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Useful Properties of Brownian Motion

I Theorem: Let I =
⋃∞

j=1 Ij where Ij ∩ Ik = ∅ ∀i 6= k and I, I1, I2, · · · ∈ A, then µ(I) =
∑∞

j=1 µ(Ij )
I we will see that the BM, β(t), satisfies:

1. Almost every (AE) path is non-differentiable at every point
2. AE path satisfies a Hölder condition of order α < 1

2 , i.e.

|β(s)− β(t)| ≤ L|s − t |α

3. E [β(t)] = 0
4. E [β2(t)] = t , and so β(t) ∼ N(0, t)
5. β(0) = 0, β(t)− β(s) ∼ N(0, t − s)
6. E [β(t)β(s)] = min(s, t)
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Useful Properties of Brownian Motion

I Let E ∈ Rn (L −mb), 0 < τ1 < · · · < τn < 1, I = I(n; τ1; . . . ; τn; E), then

µ(I) =

∫
· · ·
∫

E
p(τ1, 0, u1)p(τ2 − τ1, u1, u2) · · ·

p(τN − τn−1, un, un−1) du1 · · · dun

where p(t , x , y) = 1√
2πt

e−
(x−y)2

2t

I Note that p(t , x , y) = ψ(t , x , y), the fundamental solution for the initial value problem for the
heat/diffusion equation

ψt =
1
2
ψyy , ψ(0, x , y) = δ(y − x)

I µ is finitely additive since integrals are additive set functions
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Useful Properties of Brownian Motion

I Theorem 1: Let a > 0, 0 < γ < 1
2 and define

Aa,γ = {β ∈ C0[0, 1]; |β(τ2)− β(τ1)| ≤ a|τ2 − τ1|γ ∀τ1, τ2 ∈ [0, 1]}

For any interval I ⊂ C0[0, 1] s.t. I ∩ Aa,γ = ∅ there is a K indepedent of a for which

m(I) < Ka−
4

1−2γ

I Remark: Aa,γ is a compact set in C0[0, 1] and eventually one can prove that AE β ∈ C0[0, 1]
satisfy some Hölder condition

I Theorem 2: µ is countably additive on A, i.e. if In ∈ A, n ∈ N disjoint (Ij ∩ Ik = ∅, j 6= k ) then

I =
∞⋃

n=1

In ∈ A ⇒ µ(I) =
∞∑

n=1

µ(In)
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Useful Properties of Brownian Motion

I Suppose F : C0[0, 1]→ R is a measurable functional, i.e. {β ∈ C0[0, 1]; F [β] ≤ α} is
measurable ∀α

I We can consider

E [F ] = EW [F [β(·)]] =

∫
F [β(·)]δW , a Wiener integral

I Consider Cx [0, t ] = {f ∈ C[0, t ]; f (0) = x}, then

P [β(0) = x , β(t) ∈ A] =
1√
2πt

∫
A

e−
(y−x)2

2t dy

I Furthermore

E [β(τ)] =
1√
2πτ

∫ ∞
−∞

ue−
u2
2τ du = 0, ∀τ > 0

E [g (β(τ1), . . . , β(τn))] =
1√

(2π)nτ1(τ2 − τ1) · · · (τn − τn−1)
×

∫
· · ·
∫

g(u1, . . . , un)e
−

u2
1

2τ1
− (u2−u1)2

2(τ2−τ1)
−···−

(un−un−1)2

2(τn−τn−1) du1 · · · dun
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Useful Properties of Brownian Motion

I Let us now consider, without proof, a large deviation result for BM:
I Theorem (The Law of the Iterated Logarithm for BM): Let β(s) ∈ C0[0,∞) be ordinary Brownian

Motion, then
(1)

P
(

lim sup
t→∞

β(t)
√

2t ln ln t
= 1
)

= 1

(2)

P
(

lim inf
t→∞

β(t)
√

2t ln ln t
= −1

)
= 1
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Dirac Delta Function

I Let g be Borel measurable (B-mb), then

E [g(β(τ))] =
1√
2πτ

∫ ∞
−∞

g(u)e−
u2
2τ du

I Let g(u) = δ(u − x), using the Dirac delta function, then

E [δ(β(t)− x)] =
1√
2πt

∫ ∞
−∞

δ(u − x)e−
u2
2t du =

1√
2πt

e−
x2
2t

thus u(x , t) = E [δ(β(t)− x)] = 1√
2πt

e−
x2
2t is the fundamental solution of the heat equation

ut =
1
2

uxx , u(x , 0) = δ(x)
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The Feynman-Kac Formula

The Feynman-Kac Formula

I Consider now V (x) ≥ 0 continuous and consider the equation

ut =
1
2

uxx − V (x)u, u(x , 0) = δ(x),

then we can write

u(x , t) = E
[
e−

∫ t
0 V (β(s)) dsδ(β(t)− x)

]
This is the Feynman-Kac formula

I Example:

V (x) =
x2

2
, ut =

1
2

uxx −
x2

2
u, u(x , 0) = δ(x), then

u(x , t) = E
[
e−

1
2
∫ t

0 β
2(s) dsδ(β(t)− x)

]
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The Feynman-Kac Formula

The Feynman-Kac Formula

I The following is clearly true:

P[β(τ) ≤ x ] =P ({β ∈ C0[0, τ ];β(τ) ∈ E = (−∞, x ]}) =

1√
2πτ

∫ x

−∞
e−

u2
2τ du, and similarly

With 0 = τ0 ≤ τ1 · · · ≤ τn we have

P [β(τ1) ≤ x1, . . . , β(τn) ≤ xn] =
(2π)−n/2√

(τ1 − τ0)(τ2 − τ1) · · · (τn − τn−1)
×

∫ xn

−∞
· · ·
∫ x1

−∞
e
−

u2
1

2τ1
− (u2−u1)2

2(τ2−τ1)
−···−

(un−un−1)2

2(τn−τn−1) du1 · · · dun

I Hence with Aij = min(τi , τj )

E [g (β(τ1), . . . , β(τn))] =
1√

(2π)n|A|
×∫ ∞

−∞
· · ·
∫ ∞
−∞

g(u1, · · · , un)e−
1
2 U>A−1U du1 · · · dun
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation

I Let us consider the Wiener integral below, where expectation is taken over all of C0[0, t ]

E
{

e−
∫ t

0 V (β(τ)) dτ
}

I We will show that this is equal to the solution of the Bloch equation using an elementary proof of
Kac

I We assume that 0 ≤ V (x) < M is bounded from above and non-negative; however, the upper
bound will be relaxed

I We know

E
{

e−
∫ t

0 V (β(τ)) dτ
}

=
∞∑

k=0

(−1)k
[∫ t

0
V (β(τ)) dτ

]k

/k !

I Since V (·) is bounded we also have

0 <
∫ t

0
V (β(τ)) dτ < Mt

I This allows us to use Fubini’s theorem as follows

E
{

e−
∫ t

0 V (β(τ)) dτ
}

=
∞∑

k=0

(−1)k E

{[∫ t

0
V (β(τ)) dτ

]k
}
/k !
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation

I Now let us consider the moments

µk (t) = E

{[∫ t

0
V (β(τ)) dτ

]k
}

I Consider first k = 1

E
{∫ t

0
V (β(τ)) dτ

}
Fubini

=

∫ t

0
E {V (β(τ))} dτ =

∫ t

0

∫ ∞
−∞

V (ξ)
1√
2πτ

e−
ξ2
2τ dξ dτ

I The case k = 2 is a bit more complicated

E

{[∫ t

0
V (β(τ)) dτ

]2
}

= 2!E
{∫ t

0

∫ τ2

0
V (β(τ1))V (β(τ2)) dτ1 dτ2

}
Fubini

=

2!

∫ t

0

∫ τ2

0
E {V (β(τ1))V (β(τ2))} dτ1 dτ2 =

2!

∫ t

0

∫ τ2

0

∫ ∞
−∞

∫ ∞
−∞

V (ξ1)V (ξ2)
e−

ξ2
1

2τ1
√

2πτ1

e−
(ξ2−ξ1)2

2(τ2−τ1)√
2π(τ2 − τ1)

dξ1 dξ2 dτ1 dτ2
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation

I For general k we will proceed by defining the function Qn(x , t) as follows

1. Q0(x , t) = 1√
2πt

e−
x2
2t

2. Qn+1(x , t) =
∫ t

0

∫∞
−∞

1√
2π(τ−t)

e−
(x−ξ)2

2(τ−t) V (ξ)Qn(ξ, τ) dξ dτ

I We have that µk (t) = k !
∫ t

0 Qk (x , t) dx

I By the boundedness of V (·) we also have, by induction, that 0 ≤ Qn(x , t) ≤ (Mt)n

n!
Q0(x , t)

I Now define Q(x , t) =
∑∞

k=0(−1)k Qk (x , t)
I This series converges for all x and t 6= 0 and |Q(x , t)| < eMtQ0(x , t)
I One can easily check that the definitions of the Qk (x , t)’s ensures that Q(x , t) satisfies the

following integral equation

Q(x , t) +
1√
2π

∫ t

0

∫ ∞
−∞

1√
(t − τ)

e−
(x−ξ)2

2(t−τ) V (ξ)Q(ξ, τ) dξ dτ = Q0(x , t)
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation

I It also follows that
E
{

e−
∫ t

0 V (β(τ)) dτ
}

=

∫ ∞
−∞

Q(x , t) dx

I Recall that his Wiener integral is over all of C0[0, t ], let us restrict this only to a < β(t) < b, thus

E
{

e−
∫ t

0 V (β(τ)) dτ ; a < β(t) < b
}

=

∫ b

a
Q(x , t) dx

I This tell us immediately that Q(x , t) ≥ 0
I Now we will relax the upper bound on V (·) by considering the function

VM (x) =

{
V (x), if V (x) ≤ M
M, if V (x) ≥ M

and we denote Q(M)(x , t) as the respective “Q” function
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation

I By the additivity of Wiener measure we have that

lim
M→∞

E
{

e−
∫ t

0 VM (β(τ)) dτ ; a < β(t) < b
}

= E
{

e−
∫ t

0 V (β(τ)) dτ ; a < β(t) < b
}

I Furthermore, as M →∞ the functions Q(M)(x , t) form a decreasing sequence with
limM→∞Q(M)(x , t) = Q(x , t) existing with the resulting limiting function, Q(x , t) satisfying the
(Bloch) equation

∂Q
∂t

=
1
2
∂2Q
∂x2 − V (x)Q

with the initial condition Q(x , t)→ δ(x) as t → 0
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation Variation

I Recall the integral equation solved by Q(x , t)

Q(x , t) +
1√
2π

∫ t

0

∫ ∞
−∞

1√
(t − τ)

e−
(x−ξ)2

2(t−τ) V (ξ)Q(ξ, τ) dξ dτ =
1√
2πt

e−
x2
2t

I Let us define Ψ(x) =
∫∞
−∞Q(x , t)e−st dt with s > 0, this is the Laplace transform of Q(x , t)

I Now multiply the integral equation by e−st and integrate out t to get the equation satisfied by the
Laplace transform of Q(x , t)

Ψ(x) +
1√
2s

∫ ∞
−∞

e−
√

2s|x−ξ|V (ξ)Ψ(ξ) dξ =
1√
2s

e−
√

2s|x|

I It is easy to verify that Ψ(x) also satisfies the following differential equation

1
2

Ψ′′ − (s + V (x))Ψ = 0, with the following conditions

1. Ψ→ 0 as |x | → ∞
2. Ψ′ is continuous except at x = 0
3. Ψ′(−0)−Ψ′(−0) = 2
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The Feynman-Kac Formula

Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion

I Suppose that F [β] =
∫ t

0 β
2(s) ds, then it follows

E
[∫ t

0
β2(s) ds

]
Fubini

=

∫ t

0
E
[
β2(s)

]
ds =

∫ t

0
s ds =

t2

2

I To compute E
[
e
∫ t

0 β(s) ds
]
, we need to do some classical analysis

I Consider the eigenvalue problem for this integral equation

ρ

∫ t

0
u(s) min(τ, s) ds = u(τ)

I Find eigenvalues ρ0, ρ1, . . . and corresponding orthonormalized eigenfunctions u0(τ), u1(τ), . . .

with
∫ t

0 uj (τ)uk (τ) dτ = δjk , ∀j, k ≥ 0
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The Feynman-Kac Formula

Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion

I For t > τ we have

ρ

∫ τ

0
su(s) ds + ρ

∫ t

τ

τu(s) ds = u(τ)

d
dτ=⇒ ρτu(τ)− ρτu(τ) + ρ

∫ t

τ

u(s) ds = u′(τ)

d
dτ=⇒ −ρu(τ) = u′′(τ)

Thus u′′(τ) + ρu(τ) = 0 and with u(0) = 0, u′(t) = 0 we get

ρk = (k + 1
2 )2 π2

t2

uk (s) =
√

2
t sin

(
(k + 1

2 )πs
t

)
 k = 0, 1, 2, . . .

I By the spectral theorem the integral equation kernel can be represented as:

min(s, τ) =
∞∑

k=0

uk (s)uk (τ)

ρk
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The Feynman-Kac Formula

Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion

I Let α0(ω), α1(ω), . . . be i.i.d. N(0, 1), then we claim that the following is an explicit
representation of BM

∞∑
k=0

αk (ω)uk (τ)
√
ρk

= β(τ) (2.1)

I This is a Fourier series with random coefficients and we will prove that this converges for AE
path ω with the following properties

1. We use ω to denote an individual sample of i.i.d. N(0, 1) αi (ω)’s
2. E [αi (ω)] = 0, ∀i ≥ 0
3. E [αi (ω)αi (ω)] = δij , ∀i, j ≥ 0

I This is the simplest version of the Karhunen-Loève expansion of stochastic processes
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The Feynman-Kac Formula

Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion (Proof)

I We now use the representation (2.1) to compute some expectations w.r.t. the αi ’s ∼ N(0, 1)

E

[
∞∑

k=0

αk (ω)
√
ρk

uk (τ)

]
i.i.d. N(0,1) & Fubini

=

∞∑
k=0

E [αk (ω)]uk (τ)
√
ρk

=
∞∑

k=0

0× uk (τ)
√
ρk

= 0 = E [β(τ)]

I We now use the representation (2.1) to compute some expectations

E

[
∞∑

k=0

αk (ω)
√
ρk

uk (τ)
∞∑
l=0

αl (ω)
√
ρl

ul (τ)

]
i.i.d.N(0,1)

=

∞∑
k=0

u2
k (τ)

ρk
= min(τ, τ) = τ = E

[
β2(τ)

]
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The Feynman-Kac Formula

Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion (Proof)

I Similarly we compute

E

[
∞∑

k=0

αk (ω)
√
ρk

uk (τ)
∞∑
l=0

αl (ω)
√
ρl

ul (s)

]
i.i.d.N(0,1)

=

∞∑
k=0

uk (τ)uk (s)

ρk
= min(τ, s) = τ = E [β(τ)β(s)]

I We have computed the mean, variance, and correlation of the process defined in (2.1), and it is
clear that it is ∼ N(0, τ) and hence Brownian motion, β(τ)
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An Introduction to the Karhunen-Loève Expansion

I Karhunen-Loève (KL) expansion writes the stochastic processes Y (ω, t) as a stochastic linear
combination of a set of orthonormal, deterministic functions in L2, {ei (t)}∞i=0

Y (ω, t) =
∞∑
i=0

Zi (ω)ei (t)

1. Given the covariance function of the random process Y (ω, t) as CYY (s, τ) the KL expansion is

Y (ω, t) =
∞∑
i=0

√
λiξi (ω)φi (t)

2. Here λi and φi (t) are the eigenvalues and L2-orthonormal eigenfunctions of the covariance function
and ξi (ω)φi (t) are i.i.d. random variables whose distribution depends on Y (ω, t),
i.e. Zi (ω) =

√
λiξi (ω), and ei (t) = φi (t)

3. It can be shown that such an expansion converges to the stochastic process in L2 (in distribution)
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An Introduction to the Karhunen-Loève Expansion

4. By the spectral theorem, we can expand the covariance, thought of as an integral equation
kernel, as follows

CYY (s, τ) =
∞∑
i=0

λiφi (s)φi (τ)

5. Here λi and φi (t) are the eigenvalues and eigenfunctions of the following integral equation∫ ∞
0

CYY (s, τ)φj (τ) dτ = λjφj (s)

I For ordinary BM, Y (ω, t) = β(t), we have from above

1. CYY (s, τ) = Cββ(s, τ) = min(s, τ)

2. λj = 1
ρj

, where ρj = (j + 1
2 )2 π2

s2

3. φj (t) = uj (t) =
√

2
s sin((j + 1

2 )πt
s )

4. ξj (ω) = αj (ω) ∼ N(0, 1)

5. Y (ω, t) =
∑∞

j=0
αj (ω)uj (t)
√
ρj

= β(t)
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Explicit Computation of Wiener Integrals

I We are now in position to compute

E
[
e
∫ t

0 β(s) ds
]

= E
[
e
∫ t

0
∑∞

k=0
αk uk (s)
√
ρk

ds
]

=

E
[
e
∑∞

k=0
∫ t

0
αk√
ρk

uk (s) ds
]

indep.
=

∞∏
k=0

E
[
e
αk√
ρk

∫ t
0 uk (s) ds

]
=

∞∏
k=0

e
1

2ρk
(
∫ t

0 uk (s) ds)2

= e
1
2
∫ t

0
∫ t

0
∑∞

k=0
uk (s)uk (τ)

ρk
ds dτ

=

e
1
2
∫ t

0
∫ t

0 min(s,τ) ds dτ = e
1
2
∫ t

0 [( τ
2

2 +(τ(t−τ))] dτ = e
t3
6

I We have used the following results

1. E [eαu ] = e
u2
2 , with α ∼ N(0, 1) via moment generating function

2.
∫ t

0 min(s, τ) ds =
∫ τ

0 s ds +
∫ t
τ τ ds = τ2

2 + (τ(t − τ))
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Explicit Computation of Wiener Integrals

I Moreover

E
[
e−

λ2
2
∫ t

0 β
2(s) ds

]
= E

[
e−

λ2
2
∑∞

k=0
α2

k
ρk

]
indep.

=
∞∏

k=0

E

[
e−

λ2
2
α2

k
ρk

]
=
∞∏

k=0

1√
2π

∫ ∞
−∞

e−
λ2
2
α2
ρk e−

α2
2 dα

=
∞∏

k=0

1√
2π

∫ ∞
−∞

e
−α

2
2

(
1+λ

2
ρk

)
dα

=
∞∏

k=0

1√
1 + λ2

ρk

=
1√∏∞

k=0

(
1 + λ2t2

(k+ 1
2 )2+π2

)
=

1√
cosh(λt)
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The Schrödinger Equation

I Let us review the Schrödinger equation from quantum mechanics
1. The “standard," time-dependent Schrödinger equation

i~
∂

∂t
Ψ(x, t) =

[
−~2

2m
∆ + V (x, t)

]
Ψ(x, t) = Ĥ(x, t)Ψ

2. We can make the equation dimensionless as

−i
∂

∂t
ψ(x, t) =

[
1
2

∆− V (r, t)
]
ψ(x, t) = H(x, t)ψ

3. We also are interested in the spectral properties of the time-independent problem[
1
2

∆− V (x, t)
]
ψ(x, t) = H(x, t)ψ = λψ
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The Schrödinger and Bloch Equations

I We now arrive at the Bloch equation
1. Consider transformation (analytic continuation) of the Schrödinger to imaginary time, τ = it , this gives

us the Bloch equation, but is sometimes also called the Schrödinger equation (going back to u(x, t))

∂u(x, t)
∂τ

=
1
2

∆u(x, t)− V (x, t)u(x, t)

2. The time dependent Bloch equation can be solved via separation of variables as

u(x, t) = U(x)T (t), and so we apply this to the Bloch equation

∂u(x, t)
∂t

= U(x)T ′(t) =

[
1
2

∆U(x)− V (x, t)U(x)

]
T (t)
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The Schrödinger and Bloch Equations

3. Placing the time and space dependent on different sides of the equation gives

T ′(t)
T (t)

= λ =

[ 1
2 ∆− V (x, t)

]
U(x)

U(x)
,where λ is constant

4. Thus we have that T (t) and U(x) satisfy the following equations

T ′(t)− λT (t) = 0,[
1
2

∆− V (x, t)
]

U(x) = λU(x)

5. Thus the λj ’s and ψj (x, t)’s are eigenvalues and eigenfunctions of the above eigenvalue
problem, and the solution by separation variables is

u(x, t) =
∞∑
j=1

cje−λj tψj (x), where, cj =

∫ ∞
−∞

u0(x)ψj (x) dx
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The Schrödinger and Bloch Equations

I Let λ = 1, as t →∞, E
[
e−

1
2
∫ t

0 β
2(s) ds

]
= 1√

cosh(t)
∼
√

2e−
t
2 and

lim
t→∞

1
t

ln E
[
e−

1
2
∫ t

0 β
2(s) ds

]
= −1

2
.

I Theorem: If V (y)→∞ as |y | → ∞, then

lim
t→∞

1
t

ln E
[
e−

∫ t
0 V (β(s)) ds

]
= −λ1,

where λ1 is the lowest eigenvalue of the Bloch equation

1
2
ψ′′(y)− V (y)ψ(y) = λψ(y)
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The Schrödinger and Bloch Equations

I Feynmann-Kac: Let V be measurable and bounded below, then the solution of the Bloch
equation

ut =
1
2

uxx − V (x)u, u(x , 0) = u0(x)

is u(x , t) = Ex

[
e−

∫ t
0 V (β(s)) dsu0(β(t))

]
I This equation is the imaginary time analog of the Schrödinger

1
2
ψ′′(y)− V (y)ψ(y) = λψ(y)

Equation

1. Special case: V ≡ 0:

Ex [u0(β(t))] =
1√
2πt

∫ ∞
−∞

u0(y)e−
(x−y)2

2t dy = u(x , t)
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The Schrödinger Equation

Another special case

2. For V (x) = x2

2 , u0 ≡ 1:

u(x , t) = = Ex

[
e−

1
2
∫ t

0 β
2(s) ds · 1

]
= E0

[
e−

1
2
∫ t

0 (β(s)+x)2 ds
]

=e−
x2 t
2 E

[
e−x

∫ t
0 β(s) ds− 1

2
∫ t

0 β
2(s) ds

]
=e−

x2 t
2 E

[
e
−x
∑∞

k=0
αk√
ρk

∫ t
0 uk (s) ds− 1

2
∑∞

k=0
α2

k
ρk

]

=e−
x2 t
2

∞∏
k=0

E

[
e
−x

αk√
ρk

∫ t
0 uk (s) ds− 1

2
α2

k
ρk

]

=e−
x2 t
2

∞∏
k=0

1√
2π

∫ ∞
−∞

e
−x α√

ρk

∫ t
0 uk (s) ds−α

2
2 (1+ 1

ρk
)
dα

=e−
x2 t
2

1√
cosh(t)

e
x2
2
∫ t

0
∫ t

0
∑∞

k=0
uk (s)uk (τ)

ρk +1 ds dτ
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I Define R(s, τ ;−λ2) such that

min(s, τ) = λ2
∫ t

0
min(s, ξ)R(ξ, τ ;−λ2) dξ

Note that R(s, τ ;−1) = −
∑∞

k=0
uk (s)uk (τ)
ρk +1 .

I Consider

−
∞∑

k=0

uk (s)uk (τ)

ρk + λ2 +
∞∑

k=0

uk (s)uk (τ)

ρk

= λ2
∫ t

0

∞∑
k=0

uk (s)uk (ξ)

ρk

∞∑
l=0

ul (ξ)ul (τ)

ρk + λ2 dξ
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The Schrödinger Equation

I For 0 ≤ s ≤ t we have

R(s, τ ;−λ2) =

{
− cosh(λ(t−τ)) sinh(λs)

λ cosh(λt) s ≤ τ
− cosh(λ(t−s)) sinh(λτ)

λ cosh(λt) s ≥ τ

I Thus

u(x , t) =
1

cosh t
e−

x2
2 (t+

∫ t
0
∫ t

0 R(s,τ ;−1) ds dτ) =
1

cosh t
e−

x2 tanh t
2

I Exercise: compute u(x , t) for V (x) = x2

2 , u0(x) = x . Hint: the solution is

u(x , t) = Ex

[
e−

1
2
∫ t

0 β
2(s) dsβ(t)

]
. Calculate

ũ(x , t , λ) =Ex

[
eλβ(t)− 1

2
∫ t

0 β
2(s) ds

]
, u(x , t) =

d
dλ

ũ(x , t , λ)
∣∣∣
λ=0

.
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Proof of the Arcsin Law

I Theorem: Let X1,X2, . . . be i.i.d. r.v.’s with E [Xi ] = 0, Var(Xi ) = 1, and Nn is the number of
partial sums Sj =

∑j
i=1 Xi out of S1, . . . ,Sn which are ≥ 0:

lim
n→∞

P
[

Nn

n
< α

]
= Σ(α) =


0 α < 0
2
π

arcsin
√
α 0 ≤ α ≤ 1

1 α ≥ 1

I Proof: (Using the Feynman-Kac formula and Donsker’s Invariance Principal) Define the random
step function

X (n)(τ) =

{
S1√

n τ = 0
Si√

n
i−1

n < τ ≤ i
n

The invariance principle states that for a large class of functionals F and F ∈ F

lim
n→∞

P
[
F
[
X (n)(·)

]
≤ α

]
= PBM [F [β(·)] ≤ α] (2.2)
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Proof of the Arcsin Law

I For example, let

F [β] =

∫ t

0

1 + sgn[β(s)]

2
ds, where sgn(x) =

{
1 x ≥ 0
−1 x < 0

I Then (2.2) says that

lim
n→∞

P
[

Nn

n
≤ α

]
= PBM

[∫ 1

0

1 + sgn[β(s)]

2
ds ≤ α

]
of the Brownian motion that is positive

I We drop the BM from the probabilities as it is understood
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Proof of the Arcsin Law

I Let

σ(α, t) = P
[∫ t

0

1 + sgn[β(s)]

2
ds ≤ α

]
I Then for λ > 0 we can define the Laplace Transform/Moment Generating Function of σ(α, t)

E
[
e−λ

∫ t
0

1+sgn[β(s)]
2 ds

]
=

∫ ∞
0

e−λα dσ(α, t)

I Now define

u(x , t ;λ) = E
[
e−λ

∫ t
0

1+sgn[β(s)]
2 dsδ(β(t)− x)

]
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Proof of the Arcsin Law

I By Feynman-Kac this is a solution to the following PDE

u(x , t ;λ)t =
1
2

u(x , t ;λ)xx − λV (x)u(x , t ;λ), u(x , 0;λ) = δ(x)

where V (x) =

{
1 x ≥ 0
0 x < 0

I We also realize that∫ ∞
−∞

u(x , t ;λ) dx =

∫ ∞
−∞

E
[
e−λ

∫ t
0

1+sgn[β(s)]
2 dsδ(β(t)− x)

]
dxFubini

=

E
[∫ ∞
−∞

e−λ
∫ t

0
1+sgn[β(s)]

2 dsδ(β(t)− x) dx
]

= E
[
e−λ

∫ t
0

1+sgn[β(s)]
2 ds

]
=∫ ∞

0
e−λα dσ(α, t)
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Proof of the Arcsin Law

I It is know that u(x , t ;λ) also solves the following integral equation

u(x , t ;λ) =
1√
2πt

e
−x2

2t −

λ

∫ t

0
dτ
∫ ∞
−∞

dξV (ξ)u(ξ, τ ;λ)
1√

2π(t − τ)
e
−(x−ξ)2

2(t−τ)

I Now we apply the heat equation operator, ∂
∂t −

1
2
∂2

∂x2 to this

∂u
∂t
− 1

2
∂2u
∂x2 = 0− λV (x)u(x , t ;λ)

I And we the Laplace transform of u(x , t ;λ)

Ψ(x , s;λ) =

∫ ∞
−∞

e−stu(x , t ;λ)dt
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Proof of the Arcsin Law

I If we take the Laplace transform of the integral equation we get

Ψ(x , s;λ) =
1√
2s

e−
√

2s|x|

−λ
∫ ∞
−∞

dξV (ξ)Ψ(ξ, s;λ)
1√
2s

e−
√

2s|x−ξ|

I This is equivalent to the following ordinary differential equation (ODE)

1
2

Ψ′′(x)− (s + λV (x))Ψ(x) = 0,Ψ→ 0 as |x | → ∞

Ψ(x) and Ψ′(x) is continuous at x 6= 0, and Ψ′(0−)−Ψ′(0+) = 2
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Proof of the Arcsin Law

I The solution to the above ODE is

Ψ(x , s;λ) =

{ √
2√

s+λ+
√

s
e−
√

2(s+λ)x x ≥ 0
√

2√
s+λ+

√
s
e−
√

2sx x < 0

I Thus we have that ∫ ∞
−∞

Ψ(x , s;λ) dx =
1√

s(s + λ)

I So we have the following∫ ∞
−∞

Ψ(x , s;λ) dx =

∫ ∞
0

e−st
∫ ∞
−∞

u(x , t ;λ) dx ds =∫ ∞
0

e−st
∫ ∞

0
e−λα dσ(α, t) ds =

1√
s(s + λ)
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Proof of the Arcsin Law

I The last line test us that we know the Laplace transform of

F (t) =

∫ ∞
0

e−λα dσ(α, t) ds

I The inverse Laplace transform of 1√
s(s+λ)

tells us that

F (t) = e−
λt
2 Io(

λt
2

) =

∫ ∞
0

e−λασ′(α, t) dα

I Which is itself the Laplace transform of σ′(α, t), so we have

σ′(α, t) =


1

π
√
α(t−α)

0 < α < t

0 α > t
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Proof of the Arcsin Law

I We now integrate the previous result

∫ α

−∞
σ′(ᾱ, t) dᾱ = σ(α, t) =


0 0 < α
2
π

arcsin
√

α
t 0 < α < t

1 α > t

I Setting t = 1 we get the Arcsin Law

σ(α, 1) = Σ(α) =


0 0 < α
2
π

arcsin
√

α
t 0 < α < 1

1 α > 1
Q. E. D.
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Another Wiener Integral

I We wish to compute the probability of

P
{

max
0≤s≤t

β(s) ≤ α
}

I By Donsker’s Invariance Principal this is equal to

lim
n→∞

{
max

(
S1√

n
,

S2√
n
, · · · , Sn√

n

)
≤ α

}
= H(α, t)

I Consider the step-function potential

Vα(x) =

{
1 x ≥ α
0 x < α

I Since β(·) is a continuous function AE, if max0≤s≤t β(s) ≤ α then Vα(β(s)) = 0 on a set of
positive measure
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Another Wiener Integral

I Consider the following Wiener integral

lim
λ→∞

E
[
e−λ

∫ t
0 Vα(β(s)) ds

]
= H(α, t)

I This is because the λ limit kills walks that exceed α and only count the walks that satisfy the
condition

I for a fixed λ this is, by Feynman-Kac, the solution to

u(x , t ;λ)t =
1
2

u(x , t ;λ)xx − λV (x)u(x , t ;λ), u(x , 0;λ) = 1

where V (x) =

{
1 x ≥ α
0 x < α

I The solution of the PDE is very similar to the solution of the PDE from the Arcsin Law, and is left
to the reader

H(α, t) =

√
2
π

∫ α√
t

0
e−

u2
2 du
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Action Asympotics: A Heuristic for Wiener Integrals

I Von Neumann proved that there is no translationally invariant Haar measure in function space;
Wiener measure is not translationally invariant

I Consider the following problem where we write our heuristic via a “flat” integral

E {F [β]} “ = ” F [β]e−
1
2
∫ t

0 [β′(τ)]2dτδβ

I Here we define the Action as

A[β] = −1
2

∫ t

0

[
β′(τ)

]2 dτ

I This is obviously a heuristic, as BM is nondifferentiable AE
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Action Asympotics: A Heuristic for Wiener Integrals

I Now consider computing the following with Action Asymptotics

E
[
e

1√
ε

∫ t
0 β(s) ds

]
I We first compute this using our standard techniques

E
[
e

1√
ε

∫ t
0 β(s) ds

]
= E

[
e

1√
ε

∫ t
0
∑∞

k=0
αk uk (s)
√
ρk

ds
]

=

E
[
e

1√
ε

∑∞
k=0

∫ t
0

αk√√
ρk uk (s) ds

]
indep.

=
∞∏

k=0

1√
2π

∫ ∞
−∞

e
α√
ερk

∫ t
0 uk (s) ds

e−
α2
2 dα

= e
t3
6ε

I And thus

lim
ε→0

ε ln E
[
e

1√
ε

∫ t
0 β(s) ds

]
=

t3

6
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Action Asympotics: A Heuristic for Wiener Integrals

I Let’s “derive” the action asymptotics heuristic with a construction due to Kac and Feynman by
considering

Q(t) = E
{

e−
∫ t

0 V (β(τ)) dτ
}

where β(·) ∈ C0[0, t ], and the expectation is taken w.r.t. Wiener measure
I Since we assume that V (·) is continuous and non-negative, and β(·) ∈ C0[0, t ]) is continuous,

F (t) exists as
∫ t

0 V (β(τ)) dτ is measurable
I Now let us consider a discrete approximation of this Wiener integral by breaking it up into N

sized time intervals of size t/N, which gives us F (t) from bounded convergence and the
Riemann summability

F (t) = lim
N→∞

E
{

e−
t
N
∑N

k=1 V (β( tk
N ))
}
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Action Asympotics: A Heuristic for Wiener Integrals

I If we consider the expectation in the limit we can rewrite it as follows

lim
N→∞

E
{

e−
t
N
∑N

k=1 V (β( tk
N ))
}

= lim
N→∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−h
∑N

k=1 V (βk )×

P(0, β1; h)P(β1, β2; h) · · ·P(βN−1, βN ; h) dβ1 dβ2 · · · dβN

where we have
1. h = t

N
2. βk = β(kh)

3. P(βk−1, βk ; h) = 1√
2πh

e−
(βk−βk−1)2

2h

I This limit exists and is equal to the Wiener integral
I However, Feynman chose to rewrite the above as (suppressing the limit) with β0 = 0

1
(2πh)N/2

∫ ∞
−∞
· · ·
∫ ∞
−∞

e
−h

{∑N
k=1 V (β(xk ))+ 1

2
∑N

k=1

(
βk−βk−1

h

)2
}

dβ1 dβ2 · · · dβN
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Action Asympotics: A Heuristic for Wiener Integrals

I If we look at the exponent in Feynman’s we notice that{
N∑

k=1

V (β(xk )) +
1
2

N∑
k=1

(
βk − βk−1

h

)2
}

h ∼ −
∫ t

0

{
1
2

(
dβ
dτ

)2

+ V (β(τ))

}
dτ

I This is the Hamiltonian the along the path, β(τ), and with the classical action along the path is∫ t

0

{
1
2

(
dβ
dτ

)2

− V (β(τ))

}
dτ

I thus Feynman writes the above integral instead as

F (t) = E
{

e−
∫ t

0 V (β(τ)) dτ
}

=

∫
e
−
[∫ t

0

{
1
2 ( dβ

dτ )
2

+V (β(τ))

}
dτ
]

d(path)
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Action Asympotics: A Heuristic for Wiener Integral

I How does E
[
e

1
ε

F [
√
εβ]
]

behave as ε→ 0?

I We can approach this with Action Asymptotics

E
[
e

1
ε

F [
√
εβ]
]

“ = ” e
1
ε

F [
√
εβ]e−

1
2
∫ t

0 [β′(s)]2dsδβ

I Now let
√
εβ = ω

“ = ” e
1
ε [F [ω]− 1

2
∫ t

0 [ω′(s)]2ds]δβ

I Using Laplace asymptotics the above will behave like

e
1
ε

supω∈C∗0 [0,t][F [ω]− 1
2
∫ t

0 [ω′(s)]2ds]

I Where the space C∗0 [0, t ] is made up functions, ω(t), with
1. ω(t) continuous in [0, t]
2. ω(0) = 0
3. ω′(t) ∈ L2[0, t]
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Action Asympotics: Examples

I A conjecture using Action Asymptotics

lim
ε→0

ε ln E
[
e

1
ε

F [
√
εβ]
]

= sup
ω∈C∗0 [0,t]

[
F [ω]− 1

2

∫ t

0
[ω′(s)]2ds

]
I Consider F [β] =

∫ t
0 β(s) ds

E
[
e

1
ε

F [
√
εβ]
]

= E
[
e

1√
ε

∫ t
0 β(s) ds

]
I From the conjecture we have that

lim
ε→0

ε ln E
[
e

1√
ε

∫ t
0 β(s) ds

]
= sup
ω∈C∗0 [0,t]

[∫ t

0
ω(s) ds − 1

2

∫ t

0
[ω′(s)]2ds

]
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Action Asympotics: Examples

I From the calculus of variations we have that the Euler equation for following maximum principle
is

sup
ω∈C∗0 [0,t]

[∫ t

0
ω(s) ds − 1

2

∫ t

0
[ω′(s)]2ds

]
=⇒

1. 1 + ω′′(s) = 0
2. ω(0) = 0
3. ω′(t) = 0

I The solution is ω(s) = − s2

2 + ts and ω′(s) = −s + t so∫ t

0

(
−s2

2
+ ts

)
ds − 1

2

∫ t

0
[s − t ]2ds =

t3

6
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Brownian Scaling

I Recall some basic properties of the BM, β(·) and constant, c:
1. β(τ) ∼ N(0, τ)
2. β(cτ) ∼ N(0, cτ)
3.
√

cβ(τ) ∼ N(0, cτ)
4. E [β(τ)β(s)] = min(τ, s)
5. E [β(cτ)β(cs)] = c min(τ, s)
6. E [β(cτ)β(cs)] = E [

√
cβ(τ)

√
cβ(s)] = cE [β(τ)β(s)] = c min(τ, s)

I Now consider the following

E
[
esup0≤s≤t β(s)

]
= E

[
esup0≤τ≤1 β(tτ)

]
=

E
[
esup0≤τ≤1

√
tβ(τ)

]
= E

[
et sup0≤τ≤1

1√
t
β(τ)
]

=

E
[
e

1
ε

sup0≤τ≤1
√
εβ(τ)

]
using the substitution t =

1
ε
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Action Asympotics: Examples

I So we now have that

lim
t→∞

1
t

ln E
[
esup0≤s≤t β(s)

]
= lim
ε→0

ε ln E
[
e

1
ε

sup0≤τ≤1
√
εβ(τ)

]
I By Action Asymptotics we have

lim
ε→0

ε ln E
[
e

1
ε

sup0≤τ≤1
√
εβ(τ)

]
= sup

ω∈C∗0 [0,1]

[
sup

0≤τ≤1
ω(τ)− 1

2

∫ 1

0
[ω′(τ)]2dτ

]

= max
a>0

[
a− a2

2

]
=

1
2

I The supremum comes on straight lines, that minimize arc-length i.e. the second term, so
consider ω(τ) = aτ , and a = 1 is the maximizer
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Action Asympotics: Examples

I Consider a more complicated problem for Action Asymptotics is

lim
ε→0

E
[
G (
√
εβ(·)) e

1
ε

F(
√
εβ(·))

]
E
[
e

1
ε

F(
√
εβ(·))

] “ = ”

E
[
G (
√
εβ(·)) e

1
ε

F(
√
εβ(·))− 1

2
∫ t

0 [β′(s)]2 ds
]
δβ

E
[
e

1
ε

F(
√
εβ(·))− 1

2
∫ t

0 [β′(s)]2 ds
]
δβ

=

We now change variables with x(·) =
√
εβ(·)

E
[
G (x(·)) e

1
ε [F (x(·))− 1

2
∫ t

0 [x′(s)]2 ds]
]
δx

E
[
e

1
ε [F (x(·))− 1

2
∫ t

0 [x′(s)]2 ds]
]
δx
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Action Asympotics: Examples

I As ε→ 0 the exponential term goes to something like a “delta" function in function space and
we get

= G [ω∗(·)] where ω∗(·) = argsup
ω∈C∗0 [0,t]

[F [ω]− A[ω]]

I We now apply this to some PDE problems: Burger’s Equation

ut + uux =
ε

2
uxx , −∞ ≤ x ≤ ∞, t > 0

u(x , 0) = u0(x),

∫ ∞
0

u0(η) dη = o(x2) as |x | → ∞

I We now apply the Hopf-Cole transformation, if we define the solution to Burger’s equation
u(x , t) = −ε vx (x,t)

v(x,t) = −ε∂x [ln v(x , t)] then v(x , t) satisfies

vt =
ε

2
vxx , v(x , 0) = e−

1
ε

∫ x
0 u0(η) dη
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Action Asympotics: Examples

I So by Feynman-Kac we can write the solution as

v(x , t ; ε) =
1√
2πtε

∫ ∞
−∞

e−
1
ε

∫ y
0 u0(η) dηe−

(x−y)2

2εt dy

I We now apply the Hopf-Cole transformation (taking the logarithmic derivative)

u(x , t ; ε) =

∫∞
−∞

(x−y)
t e

− 1
ε

[∫ y
0 u0(η) dη+

(y−x)2

2t

]
dy

∫∞
−∞ e

− 1
ε

[∫ y
0 u0(η) dη+

(y−x)2
2t

]
dy

I Now let F (y) =
∫ y

0 u0(η) dη + (y−x)2

2t , this is the function that Action Asymptotics tells us to
minimize (due to the negative sign)

I Note that lim|y|→∞
F (y)

y2 = 1
2t by the assumptions, and so there is a minimum,

y(x , t) = argmin F (y)
I Hopf showed that if at (x , t) there is a single minimizer to F (y) then

lim
ε→0

u(x , t ; ε) =
x − y(x , t)

t
= u0(y(x , t))
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I Consider the related equation

ut + uux =
ε

2
uxx − V ′(x), −∞ ≤ x ≤ ∞, t > 0

u(x , 0) = u0(x),

∫ ∞
0

u0(η) dη = o(x2) as |x | → ∞

I Again we use the Hopf-Cole transformation to get

vt =
ε

2
vxx −

1
ε

V ′(x)v , v(x , 0) = e−
1
ε

∫ x
0 u0(η) dη

I And so we can write down the solution to the transformed equation via Feynman-Kac

v(x , t ; ε) = Ex

[
e−

1
ε

∫ t
0 V (
√
εβ(s)) ds− 1

ε

∫√εβ(t)
0 u0(η) dη

]

= E0

[
e−

1
ε

[∫ t
0 V (
√
εβ(s)+x) ds

∫√εβ(t)+x
0 u0(η) dη

]]
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I We now take apply the Hopf-Cole transformation and get

u(x , t ; ε) =
E
[
G[
√
εβ(·)]e−

1
ε

F [
√
εβ(·)]

]
E
[
e−

1
ε

F [
√
εβ(·)]

] where we define

F [β(·)] =

∫ t

0
V (
√
εβ(s)) ds −

∫ √εβ(t)

0
u0(η) dη

G[β(·)] =

∫ t

0
V ′(
√
εβ(s) + x) ds + u0(

√
εβ(t) + x)
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I By Action Asymptotics we have that

lim
ε→0

u(x , t ; ε) = G[ω∗(·)] where ω∗(·) = arginf
ω∈C∗0 [0,t]

[F [ω] + A[ω]]

I If for (x , t) ∃! minimizer, ω∗, then the limit exists and is

G[ω∗(t)] = u(x , t) =

∫ t

0
V ′(ω∗(s) + x) ds + u0(ω∗(t) + x)

I Now consider the related variational problem

inf
ω∈C∗0 [0,t]

[∫ t

0
V (ω(s) + x) ds

∫ ω(t)+x

0
u0(η) dη +

1
2

∫ t

0
[ω′(s)]2 ds

]
I We refer to the functional to be minimized as H[ω(·)]
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I To arrive derive an equivalent system via the Calculus of Variations we need to form the Frechet
derivative, in the direction of the arbitrary function, Ψ, as follows

δH|Ψ =
dH[ω + hΨ]

dh

∣∣∣∣
h=0

=

∫ t

0
V ′(ω(s) + x)Ψ(s) ds + u0(ω(t) + x)Ψ(t)

+ ω′(t)Ψ(t)−
∫ t

0
ω′′(s)Ψ(s) ds

I Note that the last two terms come from the following computation

J[ω(·)]
def
=

1
2

∫ t

0
[ω′(s)]2 ds =⇒ dJ[ω + hΨ]

dh

∣∣∣∣
h=0

=
1
2

∫ t

0
[ω′(s) + hΨ′(s)]2 ds =

∫ t

0
[ω′(s) + hΨ′(s)]2 ds

=

∫ t

0
ω′(s)Ψ′(s) ds =

∫ t

0
ω′(s) dΨ′(s)
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I We now integrate by parts using the natural boundary conditions
1. ω(0) = 0
2. ω′(0) = 0 ∫ t

0
ω′(s) dΨ′(s) = ω′(t)Ψ′(s)−

∫ t

0
ω′′(s)Ψ ds

I So the solution to this problem is
1. V ′(ω(s) + x) = ω′′(s) for 0 ≤ s ≤ t
2. ω(0) = 0
3. ω′(t) = −u0(ω(s) + x)

I We can now apply this Hpof’s result with V ≡ 0
1. ω′′(s) = 0 for 0 ≤ s ≤ t
2. ω(0) = 0
3. ω′(t) = −u0(ω(s) + x)

I The solution is then very simply
1. ω(s) = cs for some constant, c
2. ω′(s) = c = −u0(ct + x)

3. Let c = y(x,t)−x
t = −u0(y(x , t)) or u0(t(x , t)) = x−y(x,t)

t

I With a unique y(x , t) we get a unique ω∗(s) =
(

x−y(x,t)
t

)
s
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I We now consider some tools with the “flat integral"
I The Cameron-Martin Translation Formula

E {F [β + y ]} , with y ∈ C0[0, t ]
I We now use the “flat integral"

E {F [β + y ]} “ = ” F [β + y ]e−
1
2
∫ t

0 [β′(s)]2 dsδβ, and let ω = β + y

“ = ” F [ω]e−
1
2
∫ t

0 [ω′(s)−y′(s)]2 dsδω

“ = ”e−
1
2
∫ t

0 [y′(s)]2 ds F [ω]e+
∫ t

0 [ω′(s)y′(s)] ds− 1
2
∫ t

0 [ω′(s)]2 dsδω

“ = ”e−
1
2
∫ t

0 [y′(s)]2 dsE
{

F [β]e
∫ t

0 y′(s) dβ(s)
}

I And so our result is that

E {F [β + y ]} = e−
1
2
∫ t

0 [y′(s)]2 dsE
{

F [β]e
∫ t

0 y′(s) dβ(s)
}
, with y ∈ C0[0, t ]
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I Spectral Theory:
I If V (x) ≥ 0 and V (x)→ 0 as |x | → ∞ then the eigenvalue problem

1
2

Ψ′′(x)− V (x)Ψ(x) = −λΨ(x)

1. Has discrete spectrum: λ1, λ2, · · ·
2. With corresponding eigenfunctions: Ψ1,Ψ2, · · ·

I Theorem (1949):

lim
t→∞

1
t

E
[
e−

1
2
∫ t

0 V (β(s)) ds
]

= −λ1

Note: The expectation can start at any x due to ergodicity
I Proof We will first prove this using Feynman-Kac

u(x , t) = Ex

[
e−

1
2
∫ t

0 V (β(s)) ds
]
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I Satisfies the following PDE

ut =
1
2

uxx − V (x)u, u(x , 0) = 1

I By separation of variables we have

u(x , t) =
∞∑
j=1

cje−λj tψj (x), where, cj =

∫ ∞
−∞

u(x , 0)ψj (y) dy

I But since u(x , 0) = 1 we have that cj =
∫∞
−∞ ψj (y) dy , ∀j ≥ 0, and so the two representations

must be equal

u(x , t) = Ex

[
e−

1
2
∫ t

0 V (β(s)) ds
]

=
∞∑
j=1

e−λj tψj (x)

∫ ∞
−∞

ψj (y) dy

I And so the largest eigenvalue, λ1, controls the behavior

lim
t→∞

1
t

E
[
e−

1
2
∫ t

0 V (β(s)) ds
]

= −λ1
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I We also have a variational representation of λ1

λ1 = inf
Ψ∈L2

||Ψ||=1

[∫ ∞
−∞

V (y)Ψ2(y) dy +
1
2

∫ ∞
−∞

[Ψ′(y)]2 dy
]

I Which has a corresponding Euler equation

1
2

Ψ′′(x)− V (x)Ψ(x) = −λΨ(x)

I We notice that in the Wiener integral representation, E
[
e−

1
2
∫ t

0 V (β(s)) ds
]
, since the internal

integral is in an negative exponential, the main contribution comes for paths that remain close to
where V (·) is smallest, which leads us to dissect this problem as follows

I Let β(s), 0 ≤ s <∞; β(0) = x be BM for t > 0 and consider the proportion of time that β(·)
spends in a set A ⊂ R

`t (β(·), ·) =
1
t

∫ t

0
χA(β(s)) ds
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I Some properties of Lt (β(·), ·) with t > 0, x fixed, and β(·) a particular, fixed, path
1. Lt (β(·), ·) is a countable additive, non-negative function
2. Lt (β(·),R) = 1
3. Lt (β(·), ·) : Cx [0, t]→M, the space of probability measures on R

I As a set function, Lt (β(·), ·) for fixed x ∈ R and t > 0 and for almost all β(·) has a density
function which we call the normalized local time

`t (β(·), y) =
1
t

∫ t

0
δ(β(s)− y) dy and

Lt (β(·),A) =

∫ ∞
−∞

χA(y)`t (β(·), y) dy

I `t (β(·), ·)→ 0 as Table→∞ for compact A and almost every β(·)
I Now consider the following representation

Ex

[
e−

∫ t
0 V (β(s)) ds

]
= Ex

[
e−t

∫∞
−∞ V (y)`t (β(·),y) dy

]
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I For fixed x ∈ R and t > 0 we define a probability measure onM, Qx,t = PL−1
t , as follows

I If C ⊂M then we can write

Qx,t (C) = P {β(·) ∈ Cx [0,∞] : Lt (β(·), ·) ∈ C}

I Lt (β(·), ·) is an occupation measure so we can write

Ex

[
e−

∫ t
0 V (β(s)) ds

]
= Ex

[
e−t

∫∞
−∞ V (y)`t (β(·),y) dy

]
= Ex

[
e−t

∫∞
−∞ V (y) dLt (β(·),y)

]
EQx,t

x

[
e−t

∫∞
−∞ V (y)µ(dy)

]
= EQx,t

x

[
e−t

∫∞
−∞ V (y)f (y) dy

]
I We define F as the space of probability density functions on R, then this an expected value on
F

I To understand how the expected value on F behaves as t →∞, we need to understand how
Qx,t and therefore also how Lt (β(·),A) behaves as t →∞
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I Long time behavior of local time measures
1. Lt (β(·),A)→ 0 as t →∞ for A ⊂ R, compact, and AE β(·)
2. `t (β(·),A)→ 0 as t →∞ for A ⊂ R, compact, and AE β(·) by the ergodic theorem for BM, if β(·) were

not BM, then this would converge AE to the invariant measure
3. Qx,t (C)→ 0 as t →∞ if C ⊂M, C 6=M, i.e. C is a reasonable set

I Theorem on Speed of Convergence: We first need to put the Levý topology on F
1. If C ∈ F is closed, then

lim sup
t→∞

1
t

ln Qx,t (C) ≤ inf
f∈C

I(f )

2. If G ∈ F is open, then

lim inf
t→∞

1
t

ln Qx,t (C) ≥ inf
f∈G

I(f )

3. Where

I(f ) =
1
8

∫ ∞
−∞

{
[f ′(y)]2/f (y)

}
dy
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Donsker-Varadhan Asympotics

I This is a simple case of what is referred to as “Donsker-Varadhan Asymptotics" and are a large
deviation result

I An example, suppose f (y) ∼ N(0, σ2), i.e. f (y) = 1
σ
√

2π
e−

y2

2σ2 , then f ′(y) = − y
σ3
√

2π
e−

y2

2σ2 and

f ′(y)2 = y2

σ62πe
−2
(

y2

2σ2

)
and finally we have

I(f ) =
1
8

∫ ∞
−∞

{
[f ′(y)]2/f (y)

}
dy =

1
8

1
σ4

∫ ∞
−∞

y2

σ
√

2π
e−

y2

2σ2 dy =
σ2

8σ4 =
1

8σ2

Note: the last integral is the variance, σ2, of a N(0, σ2) random variable
I We refer to the functional I : F → [0,∞] as the entropy, and roughly speaking

Qx,t (f ) ∼ e−t inff∈A I(f ) for “nice" A
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I Now let us apply the “Entropy Asymptotics" with the “Flat Integral"

Ex

[
e−

1
2
∫ t

0 V (β(s)) ds
]

= EQx,t
x

[
e−t

∫∞
−∞ V (y)f (y) dy

]
for t large

“ = ” e−t
∫∞
−∞ V (y)f (y) dy e−tI(f ) δf

“ = ” e−t[
∫∞
−∞ V (y)f (y) dy+I(f )] δf

I As t →∞ we use Laplace asymptotics to get

lim
t→∞

1
t

ln Ex

[
e−

1
2
∫ t

0 V (β(s)) ds
]

= − inf
f∈y

[∫ ∞
−∞

V (y)f (y) dy +
1
8

∫ ∞
−∞

[f ′(y)]2

f (y)
dy
]

I Let
√

f (y) = Ψ(y), then
∫∞
−∞Ψ2(y) dy =

∫∞
−∞ f (y) dy = 1 since f (y) is a p.d.f., and so

Ψ(·) ∈ L2[−∞,∞] and ||Ψ|| = 1
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I We now transform the “Entropy Asymptotics" expression with some substitutions
1. Let

√
f (y) = Ψ(y), then

∫∞
−∞Ψ2(y) dy =

∫∞
−∞ f (y) dy = 1 since f (y) is a p.d.f., and so

Ψ(·) ∈ L2[−∞,∞] and ||Ψ|| = 1

2. Also Ψ′(y) = 1
2
√

f (y)
f ′(y), and so [Ψ′(y)]2 = 1

4

(
f ′(y)2

f (y)

)
I These allow us to write

− inf
f∈y

[∫ ∞
−∞

V (y)f (y) dy +
1
8

∫ ∞
−∞

[f ′(y)]2

f (y)
dy
]

=

− inf
Ψ∈L2

||Ψ||=1

[∫ ∞
−∞

V (y)Ψ2(y) dy +
1
2

∫ ∞
−∞

[Ψ′(y)]2 dy
]

= −λ1

I Theorem:Let Φ : F → R be bounded and continuous then, by the “general structure theorem"

lim
t→∞

1
t

ln EQx,t
x

[
e−tΦ(f )

]
= lim

t→∞

1
t

ln Ex

[
e−tΦ(`t (β(·),·))

]
= − inf

f∈F
[Φ(f ) + I(f )]
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I This is more subtle than action asymptotics, for example consider

lim
t→∞

1
t

ln EQx,t
x

[
e+tΦ(f )

]
= sup

f∈F
[Φ(f )− I(f )]

1. There is always a fight between the two terms in the supremum
2. In statistical mechanics we often consider αΦ(f ) and want to compute supf∈F [αΦ(f )− I(f )] = g(α),

where α is a convex function of α
3. Them may be a critical value of α, call it α0, where there is a phase transition, this is due to

nonuniqueness in the f that maximized the functional
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An Example Using Action and Entropy Asymptotics

I Now we will use “Entropy Asymptotics" to revisit a topic we have already considered
I Recall that

P

{
sup

0≤s≤t
β(s) ≤ α

}
=

√
2
πt

∫ α

0
e−

u2
2t du, so that we also have

E
[
esup0≤s≤t β(s)

]
= h(t) =

∫ ∞
0

eαdP{ sup
0≤s≤t

β(s) ≤ α} =

∫ ∞
0

eα
√

2
πt

e−
α2
2t dα

∫ ∞
0

eα
√

2
πt

e−
α2
2t dα =

√
2
πt

∫ ∞
0

e−
(α−t)2

2t e+ t
2 dα =

√
2
π

e
t
2

∫ ∞
√

t
e−

u2
2 du

with the substitution u = α−t√
t

I Then we have

lim
t→∞

1
t

ln h(t) =

√
2
π

e
t
2

∫ ∞
√

t
e−

u2
2 du =

1
2
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An Example Using Action and Entropy Asymptotics

I First we turn the t →∞ limit into an ε→ 0 limit

lim
t→∞

1
t

ln E
[
esup0≤s≤t β(s)

]
= lim
ε→0

ε ln E
[
e

1
ε

sup0≤τ≤1
√
εβ(τ)

]
I Recall that by Action Asymptotics we have

lim
ε→0

ε ln E
[
e

1
ε

sup0≤τ≤1
√
εβ(τ)

]
= sup

ω∈C∗0 [0,1]

[
sup

0≤τ≤1
ω(τ)− 1

2

∫ 1

0
[ω′(τ)]2dτ

]

= max
a>0

[
a− a2

2

]
=

1
2

I The supremum comes on straight lines, that minimize arc-length i.e. the second term, so
consider ω(τ) = aτ , and a = 1 is the maximizer
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I Now we solve the same problem using Entropy Asymptotics by using a result of Paul Levý that
the following have the same probability distributions

P

{
sup

0≤s≤t
β(s) ≤ α

}
= P {t`t (β(·), 0)}

I Thus we have that

h(t) = E
[
esup0≤s≤t β(s)

]
= E

[
et`t (β(·),0)

]
= E

[
etΦ[`t (β(·),0)]

]
, where Φ[f ] = f (0)

I So from Entropy Asymptotics we get

lim
t→∞

1
t

ln h(t) = lim
t→∞

1
t

E
[
etΦ[`t (β(·),0)]

]
= sup

f∈F

[
f (0)− 1

8

∫ ∞
−∞

[f ′(y)]2

f (y)
dy
]

I Recall that f ∈ F is a probability distribution, and so the maximizing family of functions (proven
below) is fa(y) = ae−2a|y|
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An Example Using Action and Entropy Asymptotics

I Recall that f ∈ F is a probability distribution, and so the maximizing family of functions (proven
below) is fa(y) = ae−2a|y|

I We can write

fa(y) = ae−2a|y| =

{
ae−2ay y ≥ 0
ae2ay y < 0

, so f ′a(y) =

{
−2a2e−2ay y ≥ 0
2a2e2ay y < 0

, and so

[f ′a(y)]2 =

{
4a4e−4ay y ≥ 0
4a4e4ay y < 0

= 4a4e−4a|y|

I This gives us

sup
a>0

[
f (0)− 1

8

∫ ∞
−∞

[f ′(y)]2

f (y)
dy
]

= sup
a>0

[
a− 1

8

∫ ∞
−∞

4a3e−2a|y| dy
]

= sup
a>0

[
a− a2

2

∫ ∞
−∞

ae−2a|y| dy
]

= sup
a>0

[
a− a2

2

]
=

1
2
, which occurs at a = 1
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I Now we find the maximizing family of functions by the same transformation as before
1.
√

f (y) = Ψ(y) or f (y) = Ψ2(y), and so
2. f (0) = Ψ2(0)

3. 1
4

(
f ′(y)2

f (y)

)
= [Ψ′(y)]2

I And so we obtain

sup
f∈F

[
f (0)− 1

8

∫ ∞
−∞

[f ′(y)]2

f (y)
dy
]

= sup
Ψ∈L2

||Ψ||=1

[
Ψ2(0)− 1

2

∫ ∞
−∞

[Ψ′(y)]2 dy
]

I Let Ψ(0) = a we get the following constrained Euler-Lagrange equation

Ψ′′(y)− 2λΨ(y), Ψ(0) = a

I This is maximized with a stretched version of Ψ(y) = e−2|y|
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Kac’s Drum

I Let Ω ⊂ R2 be an open domain with sufficiently smooth boundary, ∂Ω, so that the following
problem has a unique solution

1
2

∆u + λu = 0, with u = 0 on ∂Ω

I Under these circumstances we know that
1. ∃λ1 < λ2 < · · · a discrete spectrum
2. ∃u1(x , y) < u1(x , y) < · · · corresponding normalized eigenfunctions

I Consider
C(λ) =

∑
λj<λ

1 = # of eigenvalues < λ

I C(λ) is an increasing function in λ, and Hermen Weyl proved that

C(λ) ∼ |Ω|λ
2π

as λ→∞

I Additionally, Carlemann proved that∑
λj<λ

u(x , y) ∼ λ

2π
,∀ (x , y) ∈ Ω as λ→∞
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Kac’s Drum

I Now consider starting a BM at (x0, y0) ∈ Ω
I Let p(x0, y0, x , y , t) be the probability density function of a 2D BM starting at (x0, y0) reaching

(x , y) at time t without hitting ∂Ω
I Einstein-Smoluchowski: Then p(x0, y0, x , y , t) is the solution to

∂p
∂t

=
1
2

∆p in Ω

p = 0 on ∂Ω, ∀t > 0
I We note that as t → 0 ∫

Ω

g(x , y)p(x0, y0, x , y , t) dx dy → g(x0, y0)

I Assume we can find p using separation of variables: p(x0, y0, x , y , t) = T (t)U(x , y), then

T ′U =
T
2

∆U, U = 0 on ∂Ω, ∀t > 0

T ′

T
=

∆U
2

= −λ yields

T (t) = e−λt , and U = the eigenfunction corresponding to λ
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I So this means that we can write explicitly

p(x0, y0, x , y , t) =
∞∑
j=1

e−λj tuj (x0, y0)uj (x , y), and so we know

p(x0, y0, x0, y0, t) =
∞∑
j=1

e−λj tu2
j (x0, y0)

I Let p∗(x0, y0, x , y , t) be the probability density function of unrestricted 2D BM starting at (x0, y0)
reaching (x , y) at time t

p∗(x0, y0, x , y , t) =
1

2πt
e−

(x−x0)2

2t − (y−y0)2

2t

I Thus we conclude that
∞∑
j=1

e−λj tu2
j (x0, y0) ∼ p∗(x0, y0, x , y , t) ∼

1
2πt

as t → 0
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Kac’s Drum

I Karamata Tauberian Theorem: Consider

f (t) =

∫ ∞
0

e−λt dα(λ), and assume

1. The above Laplace-Stiltje’s transform exists
2. α(λ) is non-decreasing on (0,∞)

I If f (t) ∼ At−γ as t → 0 for A and γ constants then

α(λ) ∼ Aλγ

Γ(γ + 1)
as λ→∞(λ→ 0)

I We now apply the Karamata Tauberian Theorem to

f (t) =

∫ ∞
0

e−λt dα(λ) =
∞∑
j=1

e−λj tu2
j (x0, y0), where α(λ) =

∑
λj<λ

u2
j (x0, y0)

I We know f (t) ∼ 1
2πt as t → 0, and so α(λ) ∼ λ

2π as λ→∞
I By integrating this over Ω we get Weyl’s theorem
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Probabilistic Potential Theory

1. Let Ω ∈ R3 be a bounded closed domain
2. Let r(t) ∈ C be a continuous function starting at the origin
3. Let χΩ(·) be the indicator function of Ω

I Consider the following functional on C

TΩ (y, r(·)) =

∫ ∞
0

χΩ(y + r(τ)) dτ, y ∈ R3

I This functional is the total occupations time of r(·), a 3D BM, in Ω translated by y
I Now impose Wiener measure on C and consider the following Wiener integral

E {TΩ (y, r(·))} =

∫ ∞
0

P {y + r(τ) ∈ Ω} dτ

I Note that because we are using Wiener measure we know

P {y + r(τ) ∈ Ω} =
1

(2πτ)3/2

∫ ∞
0

e−
|r−y|2

2τ dr
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I We now use Fubini’s theorem to exchange the order of integration

E {TΩ (y, r(·))} =

∫
Ω

dr
∫ ∞

0

1
(2πτ)3/2 e−

|r−y|2
2τ dτ

=
1

2π

∫
Ω

dr
|r− y| <∞ in R3

I We see that in R3 AE BM path starting at y spends a finite amount of time in Ω

I Now consider the k th moment of the occupation time

E
{

T k
Ω (y, r(·))

}
=

k !

(2π)k

∫
Ω

[k ]
· · ·
∫

Ω

dr1

|r1 − y|
dr2

|r2 − r1|
· · · drk

|rk − rk−1|
k = 1, 2, · · ·

I We focus on the second moment, k = 2

E
{

T 2
Ω (y, r(·))

}
=

∫ ∞
0

∫ ∞
0

P {y + r(τ1) ∈ Ω}P {y + r(τ2) ∈ Ω} dτ1 dτ2
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I We focus on the second moment, k = 2

E
{

T 2
Ω (y, r(·))

}
=

∫ ∞
0

∫ ∞
0

P {y + r(τ1) ∈ Ω}P {y + r(τ2) ∈ Ω} dτ1 dτ2

= 2
∫∫

0≤τ1<τ2<∞

dτ1dτ2

∫
Ω

∫
Ω

1
(2πτ1)3/2 e−

|r1−y|2
2τ

1
[2π(τ2 − τ1)]3/2 e−

|r2−r1|
2

2(τ2−τ1) dr1dr2

=
2

(2π)2

∫
Ω

∫
Ω

dr1

|r1 − y|
dr2

|r2 − r1|
I The formula for the k th moment suggests that we should consider the following eigenvalue

problem
1

2π

∫
Ω

φ(ρ)

|r− ρ| dρ = λφ(r), r ∈ Ω
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I The integral kernel in the eigenvalue problem is Hilbert-Schmidt
1. Since the single integral is convergent, we have∫

Ω

∫
Ω

1
|r− ρ|2

dr dρ <∞

2. We also need to show that the kernel is positive definite:∫
Ω

∫
Ω

φ(r)φ(ρ)

|r− ρ|
dr dρ > 0 ∀φ(ρ) 6= 0 in L2(Ω)

Note that:
1

2π
1

|r− ρ|
=

∫ ∞
0

1
(2πτ)3/2

e−
|r−y|2

2τ dτ =∫ ∞
0

dτ
1

(2πτ)3/2

τ3/2

(2π)3/2

∫
R3

eiζ·(r−ρ)e
−|ζ|2τ

2 dζ =

1
(2π)3

∫ ∞
0

dτ
∫
R3

dζeiζ·(r−ρ)e
−|ζ|2τ

2
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I So ∫
Ω

∫
Ω

φ(r)φ(ρ)

|r− ρ| dr dρ =

1
(2π)3

∫ ∞
0

dτ
∫
R3

dζe
−|ζ|2τ

2

∣∣∣∣∫
Ω

φ(ρ)eiζ·ρ dρ
∣∣∣∣2 > 0, ∀φ(ρ) 6= 0 in L2(Ω)

I With the kernel being Hilbert-Schmidt, we know that the integral equation has
1. Discrete spectrum: λ1, λ2, · · ·
2. With corresponding eigenfunctions that form a complete, orthonormal basis for L2(Ω)

I Lemma:
1
k !

E
{

T k
Ω (y, r(·))

}
=
∞∑
j=1

λk−1
j

∫
Ω

φj (r) dr
1

2π

∫
Ω

φj (ρ)

|ρ− y| dρ

1. This holds for all y ∈ R3

2. If y ∈ Ω, then we note that
1

2π

∫
Ω

φj (ρ)

|ρ− y|
dρ = λjφj (y)
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I Proof: Recall that

1
k !

E
{

T k
Ω (y, r(·))

}
=

1
(2π)k

∫
Ω

[k ]
· · ·
∫

Ω

dr1

|r1 − y|
dr2

|r2 − r1|
· · · drk

|rk − rk−1|

I We recognize this as an iterated integral equation of the form

a(y, r1)a(r1, r2) · · · a(rk−1, rk )

I We can then rewrite this using Mercer’s theorem representation of the kernel of the integral
operator

1
|ρ− y| =

∞∑
j=1

λjφj (ρ)φj (y)

I Next we apply Mercer’s theorem only to the terms not involving y to get

1
k !

E
{

T k
Ω (y, r(·))

}
=

1
2π

∫
Ω

1
|r1 − y|

∫
Ω

∞∑
j=1

λk−1
j φj (r1)φj (rk ) dr1 drk
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I To review we have that

1
k !

E
{

T k
Ω (y, r(·))

}
=

{∑∞
j=1 λ

k−1
j

∫
Ω
φj (r) dr 1

2π

∫
Ω

φj (ρ)

|ρ−y| dρ, y ∈ R3∑∞
j=1 λ

k
j
∫

Ω
φj (r)φj (y) dr, y ∈ Ω

I Now let us consider the moment generation function (Laplace transform) with z ∈ C

E
{

ezTΩ(y,r(·))
}

=
∞∑

k=0

zk

k !
E
{

T k
Ω (y, r(·))

}
I Now we use the above lemma to get

= 1 +
z

2π

∞∑
j=1

(
1

1− λjz

)∫
Ω

φj (r) dr
∫

Ω

φj (ρ)

|ρ− y| dρ

1. This series converges if |z| < 1
λmax

2. The moment generating function is analytic if <{z} < 0 since TΩ ≥ 0
3. The last series is analytic for <{z} < 0, so by analytic continuation this identity holds with <{z} < 0
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I Let u > 0 and define

h(y, u) = E
{

e−uTΩ(y,r(·))
}

= 1− u
2π

∞∑
j=1

(
1

1 + λju

)∫
Ω

φj (r) dr
∫

Ω

φj (ρ)

|ρ− y| dρ (*)

I This series converges on compact sets in C because
1.

1
1 + λj u

< 1

2.  ∞∑
j=1

∫
Ω
φj (r) dr

∫
Ω

φj (ρ)

|ρ− y|
dρ

2

≤
∞∑
j=1

(∫
Ω
φj (r) dr

)2 ∞∑
j=1

(∫
Ω

φj (ρ)

|ρ− y|
dρ
)2

=

|Ω|
∫

Ω

dρ
|ρ− y|

<∞

I This gives uniform convergence via the Weierstrass M-test and thus this is also analytic
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I If y ∈ Ω then we get

h(y, u) = 1−
∞∑
j=1

(
λju

1 + λju

)∫
Ω

φj (r) drφj (y)

I And so we can multiply both sides by 1
2π|y−r| and integrate over Ω

1
2π

∫
Ω

h(y, u) dy
|y− r| =

1
2π

∫
Ω

dy
|y− r| −

∞∑
j=1

(
λju

1 + λju

)∫
Ω

φj (ρ) dρ
1

2π

∫
Ω

φj (y) dy
|y− r|

I But we know that
1

2π

∫
Ω

dy
|y− r| =

∞∑
j=1

∫
Ω

φj (ρ) dρ
1

2π

∫
Ω

φj (y) dy
|y− r|

I Thus we cane write that

1
2π

∫
Ω

h(y, u) dy
|y− r| =

∞∑
j=1

(
1

1 + λju

)∫
Ω

φj (ρ) dρ
1

2π

∫
Ω

φj (y) dy
|y− r|
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I We recognize the left hand side of the previous equation from (*), and so we use this ro rewrite
this as

1
2π

∫
Ω

h(y, u) dy
|y− r| =

1
u

(1− h(r, u)) , ∀r ∈ R3

I Moreover, if we rename variables we get

1
2π

∫
Ω

h(ρ, u) dρ
|y− ρ| =

1
u

(1− h(y, u)) , ∀y ∈ R3 (**)

I We now make some important observations
1. From (*) we see that if y /∈ Ω then h(y, u) is harmonic in y, and the series in (*) converges uniformly on

compact Ω’s
2. Again from (*) we get

h(y, u) > 1−
u

2π


∞∑
j=1

(∫
Ω
φj (ρ) dρ

)2


1/2
∞∑
j=1

(∫
Ω

φj (ρ)

|ρ− y|
dρ
)2


1/2

> 1−
u

2π
|Ω|1/2

(∫
Ω

dρ
|ρ− y|

)1/2
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3. So we now know that 0 ≤ h(y, u) ≤ 1, and so

lim
u↗∞

h(y, u) = 1 (***)

4. And for from Courant-Hilbert II, pp. 245–246

∆

(∫
Ω

h(y, u) dy
|y− r|

)
= −4πh(y, u)

I Now apply the Laplacian to both sides of (**) to get

−2h(y, u) = −1
u

∆h(y, u)

or we get
1
2

∆h(y, u)− uh(y, u) = 0, y ∈ Ω

I Now consider U(y) = limu↗∞(1− h(y, u)) = P {TΩ(y, r(·)) > 0}, this is the capacitory potential
(capacitance) and follows easily from the definition of the moment generating function
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I Example: Let Ω be a sphere of radius 1 centered at the origin
1. h(y, u) is clearly spherically symmetric
2. h(y, u) is harmonic outside Ω, so we have

h(y, u) =
α(u)

|y|
+ β(u), y /∈ Ω

3. From (***) we see that β(u) = 1 and so h(y, u) = α(u)
|y| + 1 for y ∈ Ω

4. We also know that for y ∈ Ω we have

h(y, u) = γ(u)
sinh(

√
2u |y|)
|y|

5. If we substitute this into the equation (**) we get that γ(u) = 1√
2u cosh(a

√
2u)

6. h(y, u) is continuous ∀y so from the uniform convergence of the series, and so

α(u)

a
+ 1 =

1
√

2u

sinh(
√

2ua)

cosh(
√

2ua)

1
a

to finally give us

h(y, u) =

1− 1
|y|

(
1− tanh(a

√
2u)

a
√

2u

)
, y /∈ Ω

sinh(
√

2u|y|)√
2u cosh(

√
2ua)|y|

, y ∈ Ω
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I Recall that

U(y) = lim
u↗∞

(1− h(y, u)) = P
{

TS(0,a)(y, r(·)) > 0
}

=

{
a
|y| , y /∈ Ω

1, y ∈ Ω

I This is the capacitory potential of S(0, a)

I Now back to the general case, ∀y ∈ R3 we have

1− E
{

e−uTΩ(y,r(·))
}

=
∞∑
j=1

(
1

λj + 1
u

)∫
Ω

φj (r) dr
1

2π

∫
Ω

φj (ρ) dρ
|ρ− y|

1. We note that 0 ≤ 1− h(y, u) ≤ 1
2. The function 1− h(y, u) is non-decreasing in u: 1− h(y, u1) ≤ 1− h(y, u2) if u1 < u2
3. This is true due to the following

3.1 0 ≤ e−uTΩ(y,r(·)) ≤ 1 and
3.2

lim
u↗∞

e−uTΩ(y,r(·)) =

{
0, TΩ > 0
1, TΩ = 0
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I From the previous results and the bounded convergence theorem we have

U(y) = lim
u↗∞

(1− h(y, u)) = P {TΩ(y, r(·)) > 0}

and hence also

U(y) = lim
u↗∞

∞∑
j=1

(
1

1
u + λj

)∫
Ω

φj (r) dr
1

2π

∫
Ω

φj (ρ) dρ
|ρ− y|

and this holds ∀y ∈ R3

Case 1. Let y ∈ Ωo (the interior), clearly the continuity of r(·) immediately implies

U(y) = P {TΩ(y, r(·)) > 0} = 1

Remark: with y ∈ Ωo we have U(y) = 1 and so we have the following summability result

1 = lim
u↗∞

∞∑
j=1

(
λj

λj + 1
u

)∫
Ω
φj (r) dr

1
2π

∫
Ω

φj (ρ) dρ
|ρ− y|
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Case 2. Let y /∈ Ω, we already know that 1− h(y, u) is harmonic in y, and it is nondecreasing in u, and
the previous limit in u exists and equals P {TΩ(y, r(·)) > 0}, thus by Harnack’s theorem, U(y) is
harmonic with y /∈ Ω. Assume that Ω ⊂ S(0, a), then

P {TΩ(y, r(·)) > 0} ≤ P
{

TS(0,a)(y, r(·)) > 0
}

From the last problem this means

P {TΩ(y, r(·)) > 0} ≤ a
|y| , y /∈ S(0, a)

and so lim|y|→∞ U(y) = 0
Case 3. Let yo ∈ ∂Ω, and assume that it is regular in the sense of Poincaré: ∃ a sphere S(y∗, ε) lying

completely in Ω so that yo ∈ S(y∗, ε) Consider now y /∈ Ω

U(y) = P {TΩ(y, r(·)) > 0} ≥ P
{

TS(0,a)(y, r(·)) > 0
}

=
ε

|y− y∗|
As y→ yo with y /∈ Ω we have ε

|y−y∗|
→ ε
|yo−y∗|

, and since U(y) ≤ 1 we have finally that

lim
y→yo

U(y) = 1
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I Thus if Ω is a closed and bounded region, each point on the boundary that is regular in the
Poincaré sense has U(y) as the capacitory potential of Ω

I Recall that

U(y) = lim
δ→0

∞∑
j=1

(
1

λj + δ

)∫
Ω

φj (r) dr
1

2π

∫
Ω

φj (ρ) dρ
|ρ− y|

I We note that this implies that

lim
|y|→∞

|y|(1− h(|y|, u)) =
1

2π

∫
Ω

uh(ρ, u) dρ

I Again assume that Ω ∈ S(0, a), then h(y, u) = E
{

e−uTΩ
}
≥
{

e−uTS(0,a)
}

, there for y /∈ S(0, a)
we have h(y, u) ≥ 1− a

|y| or 1− h(y, u) ≤ a
|y| and so

u
2π

∫
Ω

h(ρ, u) dρ ≤ a
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