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I zcat sprng4.tar.gz | tar xovf -

I cd sprng4

I Run ./configure

I Run make

I NB: Sometimes ’make’ has errors on some parts which can be
ignored. In these cases, ’make -k’ can be used to continue
compiling even if there are errors.

I The MPI programs sometimes need special configuring.
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I The check folder contains a single program which generates
known sequences and checks this against a data file.
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How SPRNG is Structured
I Directories in SPRNG

I SRC - Source code for SPRNG.
I EXAMPLES - Examples of SPRNG usage. All MPI examples are

placed in subdirectory mpisprng. If MPI is installed on your
machine, then all MPI examples will be automatically installed.

I TESTS - Empirical and physical tests for SPRNG generators. All MPI
tests are stored in subdirectory mpitests. If MPI is installed on
your machine, then all MPI tests will be automatically installed.

I check - contains executables ./checksprng and ./timesprng.
I lib - contains SPRNG library libsprng after sucessful

installation.
I include - SPRNG header files.
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I 0: Modified Lagged-Fibonacci Generator (lfg)
I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)
I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)
I 3: Combined Multiple Recursive Generator (cmrg)
I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)
I 5: Prime Modulus Linear Congruential Generator (pmlcg)

I The number represents the type of generator in the Class
interface
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1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend

I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator
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4. cmrg: Combined Multiple Recursive Generator

I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator

I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)
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Use Example - Default Interface

#define PARAM SPRNG_LFG
int gtype = 1;
seed = make_sprng_seed();
Sprng *gen1;
gen1 = SelectType(gtype);
gen1->init_sprng(0,ngens,seed,PARAM);
int random_int = gen1->isprng();
double random_float = gen1->get_rn_flt_simple();
gen1->free_sprng();
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Usage Example - Simple Interface

#define PARAM SPRNG_LFG
int gtype = 1;
seed = make_sprng_seed();
gen = init_sprng(seed, PARAM, gtype);
int random_int = isprng();
double random_float = get_rn_flt_simple();
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I pi-simple.cpp - Compute pi using Monte Carlo integration
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I Fortran versions as well
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I A Visual Studio compile is under development (for Windows!?)

I There are several compiler warnings that need to be addressed
with newer g++ versions

I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)

1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG
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