
The SPRNG Library

The Scalable Parallel Random Number
Generators (SPRNG) Library

Prof. Michael Mascagni

Departments of Computer Science, Mathematics & Scientific Computing
Florida State University, Tallahassee, FL 32306 USA

E-mail: mascagni@fsu.edu
URL: http://www.cs.fsu.edu/~mascagni

http://www.cs.fsu.edu/~mascagni


The SPRNG Library

Outline of the Talk
Where to Get SPRNG
How to Build SPRNG

Testing SPRNG

How SPRNG is Structured
Specific Generator Details

How to Use SPRNG
Class Structure and Simple modes
Random Number Parameters
Usage Examples

Usage Example - Default Interface
Usage Example - Simple Interface

Other Parts of Interest in SPRNG
Other Parts - Examples Folder
Other Parts - Tests Folder

SPRNG’s Future
References



The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.
I Latest version 4.0 which is C++
I The 4.0 page gives info pages to 4.0 page info

I Quick Start
I Quick Reference
I User’s Guide
I Reference Manual
I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.

I Latest version 4.0 which is C++
I The 4.0 page gives info pages to 4.0 page info

I Quick Start
I Quick Reference
I User’s Guide
I Reference Manual
I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.
I Latest version 4.0 which is C++

I The 4.0 page gives info pages to 4.0 page info

I Quick Start
I Quick Reference
I User’s Guide
I Reference Manual
I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.
I Latest version 4.0 which is C++
I The 4.0 page gives info pages to 4.0 page info

I Quick Start
I Quick Reference
I User’s Guide
I Reference Manual
I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.
I Latest version 4.0 which is C++
I The 4.0 page gives info pages to 4.0 page info

I Quick Start

I Quick Reference
I User’s Guide
I Reference Manual
I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.
I Latest version 4.0 which is C++
I The 4.0 page gives info pages to 4.0 page info

I Quick Start
I Quick Reference

I User’s Guide
I Reference Manual
I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.
I Latest version 4.0 which is C++
I The 4.0 page gives info pages to 4.0 page info

I Quick Start
I Quick Reference
I User’s Guide

I Reference Manual
I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.
I Latest version 4.0 which is C++
I The 4.0 page gives info pages to 4.0 page info

I Quick Start
I Quick Reference
I User’s Guide
I Reference Manual

I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

Where to Get SPRNG

Where to Get SPRNG

Where to Get SPRNG
I The main web site for SPRNG is located at

URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

I Many versions available.
I Latest version 4.0 which is C++
I The 4.0 page gives info pages to 4.0 page info

I Quick Start
I Quick Reference
I User’s Guide
I Reference Manual
I Examples

http://sprng.cs.fsu.edu
http://www.sprng.org


The SPRNG Library

How to Build SPRNG

How to Build SPRNG

How to Build SPRNG

I zcat sprng4.tar.gz | tar xovf -

I cd sprng4

I Run ./configure

I Run make

I NB: Sometimes ’make’ has errors on some parts which can be
ignored. In these cases, ’make -k’ can be used to continue
compiling even if there are errors.

I The MPI programs sometimes need special configuring.



The SPRNG Library

How to Build SPRNG

How to Build SPRNG

How to Build SPRNG

I zcat sprng4.tar.gz | tar xovf -

I cd sprng4

I Run ./configure

I Run make

I NB: Sometimes ’make’ has errors on some parts which can be
ignored. In these cases, ’make -k’ can be used to continue
compiling even if there are errors.

I The MPI programs sometimes need special configuring.



The SPRNG Library

How to Build SPRNG

How to Build SPRNG

How to Build SPRNG

I zcat sprng4.tar.gz | tar xovf -

I cd sprng4

I Run ./configure

I Run make

I NB: Sometimes ’make’ has errors on some parts which can be
ignored. In these cases, ’make -k’ can be used to continue
compiling even if there are errors.

I The MPI programs sometimes need special configuring.



The SPRNG Library

How to Build SPRNG

How to Build SPRNG

How to Build SPRNG

I zcat sprng4.tar.gz | tar xovf -

I cd sprng4

I Run ./configure

I Run make

I NB: Sometimes ’make’ has errors on some parts which can be
ignored. In these cases, ’make -k’ can be used to continue
compiling even if there are errors.

I The MPI programs sometimes need special configuring.



The SPRNG Library

How to Build SPRNG

How to Build SPRNG

How to Build SPRNG

I zcat sprng4.tar.gz | tar xovf -

I cd sprng4

I Run ./configure

I Run make

I NB: Sometimes ’make’ has errors on some parts which can be
ignored. In these cases, ’make -k’ can be used to continue
compiling even if there are errors.

I The MPI programs sometimes need special configuring.



The SPRNG Library

How to Build SPRNG

How to Build SPRNG

How to Build SPRNG

I zcat sprng4.tar.gz | tar xovf -

I cd sprng4

I Run ./configure

I Run make

I NB: Sometimes ’make’ has errors on some parts which can be
ignored. In these cases, ’make -k’ can be used to continue
compiling even if there are errors.

I The MPI programs sometimes need special configuring.



The SPRNG Library

How to Build SPRNG

Testing SPRNG

Testing SPRNG

How to check the build
I Go to directory check, and run ./checksprng.

I This program checks to see if SPRNG has been correctly
installed.

I The check folder contains a single program which generates
known sequences and checks this against a data file.



The SPRNG Library

How to Build SPRNG

Testing SPRNG

Testing SPRNG

How to check the build
I Go to directory check, and run ./checksprng.
I This program checks to see if SPRNG has been correctly

installed.

I The check folder contains a single program which generates
known sequences and checks this against a data file.



The SPRNG Library

How to Build SPRNG

Testing SPRNG

Testing SPRNG

How to check the build
I Go to directory check, and run ./checksprng.
I This program checks to see if SPRNG has been correctly

installed.
I The check folder contains a single program which generates

known sequences and checks this against a data file.



The SPRNG Library

How SPRNG is Structured

How SPRNG is Structured

How SPRNG is Structured
I Directories in SPRNG

I SRC - Source code for SPRNG.
I EXAMPLES - Examples of SPRNG usage. All MPI examples are

placed in subdirectory mpisprng. If MPI is installed on your
machine, then all MPI examples will be automatically installed.

I TESTS - Empirical and physical tests for SPRNG generators. All MPI
tests are stored in subdirectory mpitests. If MPI is installed on
your machine, then all MPI tests will be automatically installed.

I check - contains executables ./checksprng and ./timesprng.
I lib - contains SPRNG library libsprng after sucessful

installation.
I include - SPRNG header files.



The SPRNG Library

How SPRNG is Structured

How SPRNG is Structured

How SPRNG is Structured
I Directories in SPRNG

I SRC - Source code for SPRNG.

I EXAMPLES - Examples of SPRNG usage. All MPI examples are
placed in subdirectory mpisprng. If MPI is installed on your
machine, then all MPI examples will be automatically installed.

I TESTS - Empirical and physical tests for SPRNG generators. All MPI
tests are stored in subdirectory mpitests. If MPI is installed on
your machine, then all MPI tests will be automatically installed.

I check - contains executables ./checksprng and ./timesprng.
I lib - contains SPRNG library libsprng after sucessful

installation.
I include - SPRNG header files.



The SPRNG Library

How SPRNG is Structured

How SPRNG is Structured

How SPRNG is Structured
I Directories in SPRNG

I SRC - Source code for SPRNG.
I EXAMPLES - Examples of SPRNG usage. All MPI examples are

placed in subdirectory mpisprng. If MPI is installed on your
machine, then all MPI examples will be automatically installed.

I TESTS - Empirical and physical tests for SPRNG generators. All MPI
tests are stored in subdirectory mpitests. If MPI is installed on
your machine, then all MPI tests will be automatically installed.

I check - contains executables ./checksprng and ./timesprng.
I lib - contains SPRNG library libsprng after sucessful

installation.
I include - SPRNG header files.



The SPRNG Library

How SPRNG is Structured

How SPRNG is Structured

How SPRNG is Structured
I Directories in SPRNG

I SRC - Source code for SPRNG.
I EXAMPLES - Examples of SPRNG usage. All MPI examples are

placed in subdirectory mpisprng. If MPI is installed on your
machine, then all MPI examples will be automatically installed.

I TESTS - Empirical and physical tests for SPRNG generators. All MPI
tests are stored in subdirectory mpitests. If MPI is installed on
your machine, then all MPI tests will be automatically installed.

I check - contains executables ./checksprng and ./timesprng.
I lib - contains SPRNG library libsprng after sucessful

installation.
I include - SPRNG header files.



The SPRNG Library

How SPRNG is Structured

How SPRNG is Structured

How SPRNG is Structured
I Directories in SPRNG

I SRC - Source code for SPRNG.
I EXAMPLES - Examples of SPRNG usage. All MPI examples are

placed in subdirectory mpisprng. If MPI is installed on your
machine, then all MPI examples will be automatically installed.

I TESTS - Empirical and physical tests for SPRNG generators. All MPI
tests are stored in subdirectory mpitests. If MPI is installed on
your machine, then all MPI tests will be automatically installed.

I check - contains executables ./checksprng and ./timesprng.

I lib - contains SPRNG library libsprng after sucessful
installation.

I include - SPRNG header files.



The SPRNG Library

How SPRNG is Structured

How SPRNG is Structured

How SPRNG is Structured
I Directories in SPRNG

I SRC - Source code for SPRNG.
I EXAMPLES - Examples of SPRNG usage. All MPI examples are

placed in subdirectory mpisprng. If MPI is installed on your
machine, then all MPI examples will be automatically installed.

I TESTS - Empirical and physical tests for SPRNG generators. All MPI
tests are stored in subdirectory mpitests. If MPI is installed on
your machine, then all MPI tests will be automatically installed.

I check - contains executables ./checksprng and ./timesprng.
I lib - contains SPRNG library libsprng after sucessful

installation.

I include - SPRNG header files.



The SPRNG Library

How SPRNG is Structured

How SPRNG is Structured

How SPRNG is Structured
I Directories in SPRNG

I SRC - Source code for SPRNG.
I EXAMPLES - Examples of SPRNG usage. All MPI examples are

placed in subdirectory mpisprng. If MPI is installed on your
machine, then all MPI examples will be automatically installed.

I TESTS - Empirical and physical tests for SPRNG generators. All MPI
tests are stored in subdirectory mpitests. If MPI is installed on
your machine, then all MPI tests will be automatically installed.

I check - contains executables ./checksprng and ./timesprng.
I lib - contains SPRNG library libsprng after sucessful

installation.
I include - SPRNG header files.



The SPRNG Library

How SPRNG is Structured

Predefined Generators

Types of generators
I Types of generators

I 0: Modified Lagged-Fibonacci Generator (lfg)
I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)
I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)
I 3: Combined Multiple Recursive Generator (cmrg)
I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)
I 5: Prime Modulus Linear Congruential Generator (pmlcg)

I The number represents the type of generator in the Class
interface



The SPRNG Library

How SPRNG is Structured

Predefined Generators

Types of generators
I Types of generators

I 0: Modified Lagged-Fibonacci Generator (lfg)

I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)
I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)
I 3: Combined Multiple Recursive Generator (cmrg)
I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)
I 5: Prime Modulus Linear Congruential Generator (pmlcg)

I The number represents the type of generator in the Class
interface



The SPRNG Library

How SPRNG is Structured

Predefined Generators

Types of generators
I Types of generators

I 0: Modified Lagged-Fibonacci Generator (lfg)
I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)

I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)
I 3: Combined Multiple Recursive Generator (cmrg)
I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)
I 5: Prime Modulus Linear Congruential Generator (pmlcg)

I The number represents the type of generator in the Class
interface



The SPRNG Library

How SPRNG is Structured

Predefined Generators

Types of generators
I Types of generators

I 0: Modified Lagged-Fibonacci Generator (lfg)
I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)
I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)

I 3: Combined Multiple Recursive Generator (cmrg)
I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)
I 5: Prime Modulus Linear Congruential Generator (pmlcg)

I The number represents the type of generator in the Class
interface



The SPRNG Library

How SPRNG is Structured

Predefined Generators

Types of generators
I Types of generators

I 0: Modified Lagged-Fibonacci Generator (lfg)
I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)
I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)
I 3: Combined Multiple Recursive Generator (cmrg)

I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)
I 5: Prime Modulus Linear Congruential Generator (pmlcg)

I The number represents the type of generator in the Class
interface



The SPRNG Library

How SPRNG is Structured

Predefined Generators

Types of generators
I Types of generators

I 0: Modified Lagged-Fibonacci Generator (lfg)
I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)
I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)
I 3: Combined Multiple Recursive Generator (cmrg)
I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)

I 5: Prime Modulus Linear Congruential Generator (pmlcg)
I The number represents the type of generator in the Class

interface



The SPRNG Library

How SPRNG is Structured

Predefined Generators

Types of generators
I Types of generators

I 0: Modified Lagged-Fibonacci Generator (lfg)
I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)
I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)
I 3: Combined Multiple Recursive Generator (cmrg)
I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)
I 5: Prime Modulus Linear Congruential Generator (pmlcg)

I The number represents the type of generator in the Class
interface



The SPRNG Library

How SPRNG is Structured

Predefined Generators

Types of generators
I Types of generators

I 0: Modified Lagged-Fibonacci Generator (lfg)
I 1: 48-Bit Linear Congruential Generator w/Prime Addend (lcg)
I 2: 64-Bit Linear Congruential Generator w/Prime Addend (lcg64)
I 3: Combined Multiple Recursive Generator (cmrg)
I 4: Multiplicative Lagged-Fibonacci Generator (mlfg)
I 5: Prime Modulus Linear Congruential Generator (pmlcg)

I The number represents the type of generator in the Class
interface



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend

I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn

I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend

I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)

I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend

I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend

I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend

I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend
I xn = axn−1 + p(mod M)

I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend
I xn = axn−1 + p(mod M)
I p is a prime addend

I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend
I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier

I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend
I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend
I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend

I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend
I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend
I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

1. lfg: Modified-Lagged Fibonacci Generator (the default
generator)

I zn = xn XOR yn
I xn = xn−k + xn−l(mod M)
I yn = yn−k + yn−l(mod M)

2. lcg: 48-Bit Linear Congruential Generator w/Prime Addend
I xn = axn−1 + p(mod M)
I p is a prime addend
I a is the multiplier
I M for this generator is 248

3. lcg64: 64-Bit Linear Congruential Generator w/Prime Addend
I The 48-bit LCG, except that the arithmetic is modulo 264

I The multipliers and prime addends for this generator are different
from those for the 48-bit generator



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator

I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator

I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)

I xn is the sequence generated by the 64 bit Linear Congruential
Generator

I yn is the sequence generated by the following prime modulus
Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator

I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator

I yn is the sequence generated by the following prime modulus
Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator

I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator

I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator

I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator
I xn = xn−k ∗ xn−l(mod M)

I l and k are called the lags of the generator, with convention that
l > k .

I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator
I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .

I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator
I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator
I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator

I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How SPRNG is Structured

Specific Generator Details

Specific Generator Details

4. cmrg: Combined Multiple Recursive Generator
I zn = xn + yn ∗ 232(mod 264)
I xn is the sequence generated by the 64 bit Linear Congruential

Generator
I yn is the sequence generated by the following prime modulus

Multiple Recursive Generator

5. mlfg: Multiplicative Lagged-Fibonacci Generator
I xn = xn−k ∗ xn−l(mod M)
I l and k are called the lags of the generator, with convention that

l > k .
I M is chosen to be 264

6. pmlcg: Prime Modulus Linear Congruential Generator
I xn = a ∗ xn−1(mod 261 − 1)



The SPRNG Library

How to Use SPRNG

Class Structure and Simple modes

Default Interface

Default Interface
I Sprng(int streamnum, int nstreams, int seed,
int param) (Constructor)

I double sprng() - The next random number in [0,1) is returned
I int isprng() - The next random number in [0,231) is returned



The SPRNG Library

How to Use SPRNG

Class Structure and Simple modes

Default Interface

Default Interface
I Sprng(int streamnum, int nstreams, int seed,
int param) (Constructor)

I double sprng() - The next random number in [0,1) is returned

I int isprng() - The next random number in [0,231) is returned



The SPRNG Library

How to Use SPRNG

Class Structure and Simple modes

Default Interface

Default Interface
I Sprng(int streamnum, int nstreams, int seed,
int param) (Constructor)

I double sprng() - The next random number in [0,1) is returned
I int isprng() - The next random number in [0,231) is returned



The SPRNG Library

How to Use SPRNG

Class Structure and Simple modes

Simple Interface

Simple Interface
I int * init_sprng(int seed, int param, int
rng_type = 0)

I double sprng() - The next random number in [0, 1) is
returned

I int isprng() - The next random number in [0, 231) is returned



The SPRNG Library

How to Use SPRNG

Class Structure and Simple modes

Simple Interface

Simple Interface
I int * init_sprng(int seed, int param, int
rng_type = 0)

I double sprng() - The next random number in [0, 1) is
returned

I int isprng() - The next random number in [0, 231) is returned



The SPRNG Library

How to Use SPRNG

Class Structure and Simple modes

Simple Interface

Simple Interface
I int * init_sprng(int seed, int param, int
rng_type = 0)

I double sprng() - The next random number in [0, 1) is
returned

I int isprng() - The next random number in [0, 231) is returned



The SPRNG Library

How to Use SPRNG

Random Number Parameters

Random Number Parameter

Random Number Parameters
I Parameter is the number of predefined families defined

I Modified Lagged Fibonacci Generator - 11
I 48 Bit Linear Congruential Generator - 7
I 64 Bit Linear Congruential Generator - 3
I Combined Multiple Recursive Generator - 3
I Multiplicative Lagged Fibonacci Generator - 11
I Prime Modulus Linear Congruential Generator - 1



The SPRNG Library

How to Use SPRNG

Random Number Parameters

Random Number Parameter

Random Number Parameters
I Parameter is the number of predefined families defined

I Modified Lagged Fibonacci Generator - 11

I 48 Bit Linear Congruential Generator - 7
I 64 Bit Linear Congruential Generator - 3
I Combined Multiple Recursive Generator - 3
I Multiplicative Lagged Fibonacci Generator - 11
I Prime Modulus Linear Congruential Generator - 1



The SPRNG Library

How to Use SPRNG

Random Number Parameters

Random Number Parameter

Random Number Parameters
I Parameter is the number of predefined families defined

I Modified Lagged Fibonacci Generator - 11
I 48 Bit Linear Congruential Generator - 7

I 64 Bit Linear Congruential Generator - 3
I Combined Multiple Recursive Generator - 3
I Multiplicative Lagged Fibonacci Generator - 11
I Prime Modulus Linear Congruential Generator - 1



The SPRNG Library

How to Use SPRNG

Random Number Parameters

Random Number Parameter

Random Number Parameters
I Parameter is the number of predefined families defined

I Modified Lagged Fibonacci Generator - 11
I 48 Bit Linear Congruential Generator - 7
I 64 Bit Linear Congruential Generator - 3

I Combined Multiple Recursive Generator - 3
I Multiplicative Lagged Fibonacci Generator - 11
I Prime Modulus Linear Congruential Generator - 1



The SPRNG Library

How to Use SPRNG

Random Number Parameters

Random Number Parameter

Random Number Parameters
I Parameter is the number of predefined families defined

I Modified Lagged Fibonacci Generator - 11
I 48 Bit Linear Congruential Generator - 7
I 64 Bit Linear Congruential Generator - 3
I Combined Multiple Recursive Generator - 3

I Multiplicative Lagged Fibonacci Generator - 11
I Prime Modulus Linear Congruential Generator - 1



The SPRNG Library

How to Use SPRNG

Random Number Parameters

Random Number Parameter

Random Number Parameters
I Parameter is the number of predefined families defined

I Modified Lagged Fibonacci Generator - 11
I 48 Bit Linear Congruential Generator - 7
I 64 Bit Linear Congruential Generator - 3
I Combined Multiple Recursive Generator - 3
I Multiplicative Lagged Fibonacci Generator - 11

I Prime Modulus Linear Congruential Generator - 1



The SPRNG Library

How to Use SPRNG

Random Number Parameters

Random Number Parameter

Random Number Parameters
I Parameter is the number of predefined families defined

I Modified Lagged Fibonacci Generator - 11
I 48 Bit Linear Congruential Generator - 7
I 64 Bit Linear Congruential Generator - 3
I Combined Multiple Recursive Generator - 3
I Multiplicative Lagged Fibonacci Generator - 11
I Prime Modulus Linear Congruential Generator - 1



The SPRNG Library

How to Use SPRNG

Usage Examples

Usage Example - Default Interface

Use Example - Default Interface

#define PARAM SPRNG_LFG
int gtype = 1;
seed = make_sprng_seed();
Sprng *gen1;
gen1 = SelectType(gtype);
gen1->init_sprng(0,ngens,seed,PARAM);
int random_int = gen1->isprng();
double random_float = gen1->get_rn_flt_simple();
gen1->free_sprng();



The SPRNG Library

How to Use SPRNG

Usage Examples

Usage Example - Simple Interface

Usage Example - Simple Interface

#define PARAM SPRNG_LFG
int gtype = 1;
seed = make_sprng_seed();
gen = init_sprng(seed, PARAM, gtype);
int random_int = isprng();
double random_float = get_rn_flt_simple();



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Examples Folder

Other Parts - Examples Folder

Other Parts - Examples Folder
I Examples Folder Examples Folder

I convert.cpp - Used to be an example of converting old code to
new, but mostly empty

I pi-simple.cpp - Compute pi using Monte Carlo integration
I spawn.cpp - Small sample program to get you started
I Fortran versions as well



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Examples Folder

Other Parts - Examples Folder

Other Parts - Examples Folder
I Examples Folder Examples Folder

I convert.cpp - Used to be an example of converting old code to
new, but mostly empty

I pi-simple.cpp - Compute pi using Monte Carlo integration
I spawn.cpp - Small sample program to get you started
I Fortran versions as well



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Examples Folder

Other Parts - Examples Folder

Other Parts - Examples Folder
I Examples Folder Examples Folder

I convert.cpp - Used to be an example of converting old code to
new, but mostly empty

I pi-simple.cpp - Compute pi using Monte Carlo integration

I spawn.cpp - Small sample program to get you started
I Fortran versions as well



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Examples Folder

Other Parts - Examples Folder

Other Parts - Examples Folder
I Examples Folder Examples Folder

I convert.cpp - Used to be an example of converting old code to
new, but mostly empty

I pi-simple.cpp - Compute pi using Monte Carlo integration
I spawn.cpp - Small sample program to get you started

I Fortran versions as well



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Examples Folder

Other Parts - Examples Folder

Other Parts - Examples Folder
I Examples Folder Examples Folder

I convert.cpp - Used to be an example of converting old code to
new, but mostly empty

I pi-simple.cpp - Compute pi using Monte Carlo integration
I spawn.cpp - Small sample program to get you started
I Fortran versions as well



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests

I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability
Functions

I collisions.cpp - Collision test
I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests

I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability
Functions

I collisions.cpp - Collision test
I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests
I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability

Functions

I collisions.cpp - Collision test
I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests
I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability

Functions
I collisions.cpp - Collision test

I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests
I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability

Functions
I collisions.cpp - Collision test
I coupon.cpp - Coupon test

I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests
I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability

Functions
I collisions.cpp - Collision test
I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests
I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability

Functions
I collisions.cpp - Collision test
I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests

I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests
I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability

Functions
I collisions.cpp - Collision test
I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test

I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests
I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability

Functions
I collisions.cpp - Collision test
I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm

I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

Other Parts of Interest in SPRNG

Other Parts - Tests Folder

Other Parts - Tests Folder

Other Parts - Tests Folder
I Tests Folder

I Statistical Tests
I chisquare.cpp - Chi-Square and Kolmogorov-Smirnov Probability

Functions
I collisions.cpp - Collision test
I coupon.cpp - Coupon test
I equidist.cpp - Equidistribution test

I Other Tests
I fft.cpp - FFT test
I metropolis.cpp - Metropolis Algorithm
I random_walk.cpp - Random Walk Algorithm



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)

I There are several compiler warnings that need to be addressed
with newer g++ versions

I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)

1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions

I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)

1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension

I New architectural support for (and maintaining reproducibility as
an option)

1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)

1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)
1. Multicore via Open/MP and eventually Open/CL

2. GPGPU support via CUDA and eventually Open/CL
I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)
1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)
1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting

I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)
1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)
1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)

2. New parameters for small-memory generators
I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)
1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

SPRNG’s Future

SPRNG’s Future

I A Visual Studio compile is under development (for Windows!?)
I There are several compiler warnings that need to be addressed

with newer g++ versions
I The class interface is not optimal for extension
I New architectural support for (and maintaining reproducibility as

an option)
1. Multicore via Open/MP and eventually Open/CL
2. GPGPU support via CUDA and eventually Open/CL

I Support for cycle splitting
I New generators for SPRNG

1. Shift-register generators via splitting (MT/Well)
2. New parameters for small-memory generators

I Commercialization of SPRNG



The SPRNG Library

References

References

[M. Mascagni and H. Chi (2004)]
Parallel Linear Congruential Generators with Sophie-Germain
Moduli,
Parallel Computing, 30: 1217–1231.

[M. Mascagni and A. Srinivasan (2004)]
Parameterizing Parallel Multiplicative Lagged-Fibonacci
Generators,
Parallel Computing, 30: 899–916.

[M. Mascagni and A. Srinivasan (2000)]
Algorithm 806: SPRNG: A Scalable Library for Pseudorandom
Number Generation,
ACM Transactions on Mathematical Software, 26: 436–461.



The SPRNG Library

References

References

[M. Mascagni and H. Chi (2004)]
Parallel Linear Congruential Generators with Sophie-Germain
Moduli,
Parallel Computing, 30: 1217–1231.

[M. Mascagni and A. Srinivasan (2004)]
Parameterizing Parallel Multiplicative Lagged-Fibonacci
Generators,
Parallel Computing, 30: 899–916.

[M. Mascagni and A. Srinivasan (2000)]
Algorithm 806: SPRNG: A Scalable Library for Pseudorandom
Number Generation,
ACM Transactions on Mathematical Software, 26: 436–461.



The SPRNG Library

References

References

[M. Mascagni and H. Chi (2004)]
Parallel Linear Congruential Generators with Sophie-Germain
Moduli,
Parallel Computing, 30: 1217–1231.

[M. Mascagni and A. Srinivasan (2004)]
Parameterizing Parallel Multiplicative Lagged-Fibonacci
Generators,
Parallel Computing, 30: 899–916.

[M. Mascagni and A. Srinivasan (2000)]
Algorithm 806: SPRNG: A Scalable Library for Pseudorandom
Number Generation,
ACM Transactions on Mathematical Software, 26: 436–461.



The SPRNG Library

References

Questions?



The SPRNG Library

References

c© Michael Mascagni, 2010


	Where to Get SPRNG
	How to Build SPRNG
	Testing SPRNG

	How SPRNG is Structured
	Specific Generator Details

	How to Use SPRNG
	Class Structure and Simple modes
	Random Number Parameters
	Usage Examples

	Other Parts of Interest in SPRNG
	Other Parts - Examples Folder
	Other Parts - Tests Folder

	SPRNG's Future
	References

