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Intro to SDEs with with Examples

Stochastic Differential Equations

Stochastic Differential Equations
Stoke’s law for a particle in fluid

dv(t) = −γ v(t) dt

where
γ =

6πr
m

η,

η = viscosity coefficient.

Langevin’s eq. For very small particles bounced around by molecular
movement,

dv(t) = −γ v(t) dt + σ dw(t),

w(t) is a Brownian motion, γ = Stoke’s coefficient. σ =Diffusion
coefficient.



Intro to SDEs with with Examples

Stochastic Differential Equations

Brownian Motion

1-D Brownian Motion

Figure: 1-D Brownian motion
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Stochastic Differential Equations

Brownian Motion

2-D, or Complex Brownian Motion

Figure: 2-D Brownian motion
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Brownian Motion

Brownian Motion

w(t) = Brownian motion. Einstein’s relation gives diffusion coefficient

σ =

√
2kTγ

m
.

and probability density function for Brownian motion satisfies heat
equation:

∂p(w , t)
∂t

=
1
2
∂2p(w , t)

∂w2

Formal solution to LE is called an Ornstein-Uhlenbeck process

v(t) = v0e−γt + σe−γt
∫ t

0
eγsdw(s)
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A Simple Stochastic Differential Equation

What does dw(t) mean?

w(t) = Δw1 +Δw2 + · · ·+Δwn

each increment is independent, and

E{ΔwiΔwj} = δijΔt

or infinitesimal version

Edw(t) = 0

E{dw(t) dw(s)} = δ(t − s) dt ds
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The Langevin Equation
Solution to LE has properties

Ev(t) = v0e−γt + σe−γt
∫ t

0
eγsEdw(s)

= v0e−γt

and

E(v(t))2 = (v0)
2e−2γt + σ2e−2γt e2γt − 1

2γ

→ σ2

2γ
as t → ∞

Something familiar about this?

m
2

E(v)2 =
m
2
σ2

2γ
=

1
2

kT
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Itô Calculus

Itô Calculus
Itô calculus for multi-dimensional version

dw(t)2 ≡ dt or dwi(t)dwj (t) ≡ δij dt

In non-isotropic case, system

dz = b(z) dt + σ(z) dw(t) (SDE)

is shorthand for

z(t) = z0 +

∫ t

0
b(zs) ds +

∫ t

0
σ(zs) dws.

Itô rule for Stochastic integral:

E{
∫ t

0
σ(zs)dws} = 0,

and

E{
∫ t

0
σ(zs)dws}2 =

∫ t

0
σσT (zs)ds.

These integrals are martingales.
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Stochastic Differential Equations

Itô Calculus

A Standing Martingale

Figure: A standing martingale
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Stochastic Differential Equations

Numerical Solution of SDEs

Numerical Solution of SDEs
Simulation? First,

E f (z(t)) ≈ 1
N

N∑
i=1

f (z [i](t))

for sample of N paths z(t). Paths {z [1], z [2], ..., z [N]} integrated by
some rule, e.g. Euler Two criteria two versions of solution z̃(t), z(t)
are equivalent (z̃(t) ≡ z(t)) for 0 ≤ t ≤ T , strong criteria:

P( sup
0≤t≤T

|z̃(t) − z(t)| > 0) = 0

weak: for any sufficiently smooth f (x),

|E f (z̃(T ))− E f (z(T ))| = 0
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Weak Solutions
Example: weak simulation (m ≥ 0):

dx = −x |x |m−1dt + dw(t)

has solution whose distribution law satisfies Kolmogorov equation

∂p(x , t)
∂t

=
∂

∂x

(
1
2

∂

∂x
+ x |x |m−1

)
p(x , t) → 0

when t → ∞. That is, x(t) becomes stationary. p(x , t → ∞), properly
normalized, is

p(x ,∞) = Nme− 2
m+1 |x|m+1

.

Two examples

p(x ,∞) = e−2|x| for m = 0
p(x ,∞) = 1√

π
e−|x|2 for m = 1
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Stochastic Differential Equations

Types of Solutions to SDEs

Strong Solutions
Example: a strong test,

dx = −λxdt + μxdw(t)

having formal solution

x(t) = x0 exp (−(λ+
μ2

2
)t + μw(t)). (1)

Notice x(t) → 0 as t → ∞. Many authors (Mitsui et al, Higham, ...)
have studied stability regions, λ, μ, for asymptotic stability x(tn) → 0,
when

tn = h1 + h2 + . . .+ hn → ∞
may have varying stepsizes. Cases

t = T1 = n · h,

and h → h/2m = h′,

t = Tm = n2m · h′
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Strong Solutions

allow pathwise comparisons when

tn = T1 = Tm = n · h
Δw(Tm + h′) =

√
h′ ξ1

Δw(Tm + h′ + h′) =
√

h′ ξ1 +
√

h′ ξ2

. . .

Δw(Tm + h) =
∑m

k=1

√
h′ ξk

Δw(T1 + h) = Δw(Tm + h)

Here, one follows the pathwise convergence as m is changed. See
Kloeden and Platen, chapt. 9, p. 309. One compares "exact" solution,
equation (1), with simulation values at points T1 = Tm.
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Types of Solutions to SDEs

Strong Solutions

Numerical criteria similar: discrete times tk = kh, h = step size,
T = Mh, and
zk = numerical approx.,
strong order β:

(E max
0≤k≤M

|zk − z(tk )|2)1/2 ≤ K1hβ

weak order β: for f (z) ∈ C2β ,

|E f (zM)− E f (z(T ))| ≤ K2hβ
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Stochastic Differential Equations
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Examples

Example methods:
Euler-Maruyama

zk+1 = zk + b(zk )h + σ(zk )ΔW

is strong order β = 1/2, weak order 1.
Milstein

zk+1 =zk + b(zk )h + σ(zk )ΔW

+
1
2
σ(zk )σ

′(zk)(ΔW 2 − h)

is strong order β = 1, weak order 1
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Higher-Order Methods
Higher order weak methods require modeling

Iij =
∫ h

0
widwj Ii0 =

∫ h

0
wi(s)ds

Iijk =

∫ h

0
wiwjdwk Iii0 =

∫ h

0
w2

i ds

For example, for Runge-Kutta type methods

Iij ≈ 1
2
ξiξj +

h
2
Ξij ,

Ii0 ≈ h
2
ξi ,

Iijk ≈ h
2
δijξk

Iii0 ≈ h
2
ξ2

i

Ξij is a model for
∫

widwj − wjdwi .
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Δw = ξ is approximately gaussian

Eξ = 0,Eξ2 = h,Eξ3 = 0,Eξ4 = 3h2.

Do N sample paths per time-step - one for each z [i]. A simple Δw is

ξ =
√

3h with probability 1
6 ,

= −√
3h with probability 1

6 ,
= 0 with probability 2

3 .

Important facts about these bounded increments:
� they introduce Fourier spectra with wave vectors = k

√
3h, where

k ∈ Z
d .

� in d > 1 dimensions, Δw is not isotropic.
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Higher-Order Methods

Examples
Δw = ξ is approximately gaussian

Eξ = 0,Eξ2 = h,Eξ3 = 0,Eξ4 = 3h2.

Do N sample paths per time-step - one for each z [i]. A simple Δw is

ξ =
√

3h with probability 1
6 ,

= −√
3h with probability 1

6 ,
= 0 with probability 2

3 .

Important facts about these bounded increments:
� they introduce Fourier spectra with wave vectors = k

√
3h, where

k ∈ Z
d .

� in d > 1 dimensions, Δw is not isotropic.
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Examples of Bounded Increments

Figure: 3-D distribution of bounded increments
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Some Applications

Some applications:

� Black-Scholes model for asset volatility
� Langevin dynamics
� shearing of light in inhomogeneous universes
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Some applications:

� Black-Scholes model for asset volatility
� Langevin dynamics
� shearing of light in inhomogeneous universes
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Black-Scholes

Black-Scholes model. Let S = asset price, r = interest rate. Without
volatility,

dS = r S dt .

With efficient market hypothesis, fluctuations(S) ∝ S:

dS = rS dt + σS dw .

σ is called the volatility. Solution to SDE

S(t) = S0 e(r− 1
2σ

2)t+σw(t).
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Langevin Dynamics
Langevin dynamics: we want some physical quantity

E f =

∫
p(x)f (x)dnx =

∫
e−S(x)f (x)dnx∫

e−S(x)dnx
.

To find a covering distribution q(x), αq(x) ≥ p(x), but α ≥ 1 is not
large - difficult if n large.
Alternative is Langevin dynamics:

dx(t) = −1
2
∂S
∂x

dt + dw(t),

and use

E f = lim
T→∞

1
T

∫ T

0
f (x(t))dt .

The following is sufficient for convergence: if |x| big,

x · ∂S
∂x

> 1
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A Simple Example
A simple example: dx = −sign(x)dt + dw , whose p.d.f as t → ∞ is
p(x ,∞) = e−2|x|.
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Stochastic Dyer-Roeder
Stochastic Dyer-Roeder: Sachs’ equations for shear (σ), ray
separation θ, in free space with scattered point-like particles:

dσ
ds

+ 2θσ = F
dθ
ds

+ θ2 + |σ|2 = 0

σ is complex, F is the Weyl term, and s is an affine parameter -
related to redshift z.

θ =
1
2

d
dz

ln(A)

where A ∝ D2 is the beam area, get two eqs.,

dσ
ds

+ 2
1
D

dD
ds

σ = F
1
D

d2D
ds2 + |σ|2 = 0.
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Stochastic Dyer-Roeder
In Lagrangian coordinates (contract with redshift z), the Weyl term to
1st order has derivatives of the gravitational potential Φ(x , y), with
z = x + i y :

F =
1
c2 (1 + z)2 d2Φ

dz2 .

Light "sees" shearing forces orthogonal to congruence. Problem is
essentially 2-D:

x

y

light ray

scattering plane

Figure: 2-D character of light scattering
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Stochastic Dyer-Roeder
Correlation length is about 7 cells, i.e. ∼ 7 Mpc at z = 0. Softened
(2-3 cells) shears are normal in < 128 Mpc.

Figure: Shearing forces, from H. Couchman’s code
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Stochastic Dyer-Roeder
More useful form for 1st:

D2σ =

∫ s

0
D2(s′)F(s′)ds′.

Expressing the affine parameter in terms of the redshift

s =

∫ z

0

dξ
(1 + ξ)3

√
1 +Ωξ)

Yields a generalized Dyer-Roeder eq.

(1 + z)(1 +Ωz)
d2D
dz2

+(
7
2
Ωz +

Ω

2
+ 3)

dD
dz

+
|σ(z)|2
(1 + z)5 D = 0.
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Stochastic Dyer-Roeder

Shear can be well approximated by

σ(z) = γ
3Ω

8π(D(z))2 ×
∫ z

0
(D(ξ))2(1 + ξ)(1 +Ωξ)−

1
2 dw(ξ)

where w(z) is a complex (2-D) B-motion. Constant γ ≈ 0.62 was
determined by N-body simulations.
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Stochastic Dyer-Roeder

Figure: Shear free Dyer-Roeder D(z)
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Stochastic Dyer-Roeder

Figure: D(z) histograms at 0 ≤ z ≤ 5. Non-linear integration. Scales for the
abscissas are: 10−6 for z = 1/2, 10−5 for z = 1, 2, 3,4, 5.
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Weak Simulations
Recall some basic rules of the Itô calculus

Edw(t) = 0

E{dw(t) dw(s)} = δ(t − s) dt ds

Multi-dimensional version

dwi(t)
2 ≡ dt or dwi (t)dwj (t) ≡ δijdt

Usual z(t) ∈ C0 process:

dz = b(z) dt + σ(z) dw(t) (SDE)

is shorthand for

z(t) = z0 +

∫ t

0
b(zs) ds +

∫ t

0
σ(zs) dws.

Stochastic integral is non-anticipating. Important thing about Itô rule:

E{
∫ t

0
σ(zs)dws} = 0.
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Weak Simulations
Taking the expression for z(t) for one step t → t + h,

z(t + h) = zt +

∫ t+h

t
bs ds +

∫ t+h

t
σs dws,

and substituting z(s) from the right-hand side into the left side
integrals, e. g.∫ t+h

t
b(zs) ds =

∫ t+h

t
b(zt +

∫ s

t
budu +

∫ s

t
σu dwu) ds.

Since t ≤ u ≤ s ≤ t + h and∫ s

t
σudw(u) = O((s − t)1/2)

an expansion gives, including the
∫
σdw term, Picard-fashion, a

stochastic Taylor series (due to Wolfgang Wagner)
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Weak Simulations
Truncating Taylor series to O(h) accuracy, we get Milstein’s method
(scalar case):

z(t + h) = z(t) + hb(z(t)) + σ(z(t))Δω

+
1
2
σ′σ(Δω2 − h)

Again

Δω =
√

h ξ

where ξ =zero-centered, univariate normal:

Eξ = 0, Eξ2 = 1.

Notice that because EΔω2 = h, Milstein’s term preserves the
Martingale property

E
1
2
σ

′
tσt (Δω2 − h) = 0.
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It is not hard to modify this for vector case:

zt+h = zt + hbt

+σtΔw +
1
2
σ′

tσt Ξ

Where matrix Ξ is a model

Ξεγ ≈
∫ t+h

t
ωεdωγ

Ξεγ =
h
2
(ξε1ξ

γ
1 − ξ̃εγ) ε > γ

=
h
2
(ξε1ξ

γ
1 + ξ̃γε) ε < γ

=
h
2
((ξε1)

2 − 1) ε = γ

Additional variables ξ̃γε are also zero-centered, univariate normals
but independent of the ξ’s in Δωα =

√
h ξα.
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Higher-Order Schemes

Here is a second order accurate method. Writing b = A + B,

zα
t+h = zα

t

+
h
2
(Aα(zt+h) + Bα(zt + σtξ1 + (At + Bt )h)

+Aα(zt) + Bα(zt))

+
1
2
{σαβ(zt +

√
1
2
σtξ0 +

h
2
(At + Bt ))

+ σαβ(zt −
√

1
2
σtξ0 +

h
2
(At + Bt ))}ξβ1

+(∂βσ
αδ
t )σβε

t Ξεδ.

The first A(zt+h) is implicit.



Intro to SDEs with with Examples

Stability

Examples

An Example
Let’s take a simple case, M > 0 (stable matrix),

dz = −Mzdt + dw

and write M = A + B, where I + hA is easy to invert. The semi-implicit
algorithm is

(I + hA) zt+h = (I − hB) zt +Δw

or

zt+h = (I + hA)−1
((I − hB) zt +Δw)

In particular case A = B = 1
2M ,

zt+h = (I +
h
2

M)−1((I − h
2

M)zt +Δw).

Stability of procedure will depend on L2 norm

||(I + h
2

M)−1(I − h
2

M)|| < 1.
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An Example

Even in scalar case, when h is large enough (h > 2/M), |1− hM | > 1,
but

|(1 − hM/2)/(1 + hM/2)| ≤ 1

for all h > 0.

Two dimensional case when scales of e.v.’s are very different:[
dx
dy

]
= −1

2

[
λ1 + λ2, λ1 − λ2

λ1 − λ2, λ1 + λ2

] [
x
y

]
dt

+

[
dw1(t)
dw2(t)

]
.

which converges for ∀ λi > 0, but if λ1  λ2, the stepsize
h < 2/λ1 - too small to be useful. This is stiffness, just
like in the ODE case.
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Another Example
For real, SPD matrix M :

dz = −Mzdt + dw.

The solution is formally

z(t) = e−Mtz(0) +
∫ t

0
eM(s−t)dw(s).

Large t corr. matrix approximates 1
2M−1:

Ezi(∞)zj(∞) =
1
2
[M−1]ij .

For big M , actual computational method is

Ezi(∞)zj(∞) ≈ 1
T

∫ T

0
zi(t)zj (t)dt

as T gets big, from the ergodic theorem.
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Non-Symmetric Case
Non-symmetric case:

dX = −MXdt + dw,

dY = −MT Ydt + dw,

initial conditions X(0) = Y(0) = 0. Same n−D w for both X(t),Y(t).
From formal solutions, extract X ,Y covariance

EX (t)Y T (t) → 1
2

M−1

as t → ∞.

Again, splitting M = A + B, a stabilized and cheap procedure for each
X(t),Y(t) is

zt+h = (I + hA)−1
(I − hB) zt +Δw

where in the diffusion term, we ignore the O(h3/2) contribution.
Examples: A = diag(M), or A = tridiag(M)
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A Test Problem
Test problem: M = UT TrU, where Tr = upper triangular,
diag(Tr) = (1, . . . ,N), [Tr ]i,j ∈ N (0, 1), j > i . Random orthogonal U
by Pete Stewart’s procedure: S = diag(sign(u1))

U = SU0U1 . . .UN−2

where

Uk =

(
Ik

HN−k

)

Hj = Householder transforms,

Hj = Ij − 2
uuT

||u||2
with j−length vectors u

u = x − ||x||e1,

each xi ∈ N (0, 1), i = 1, . . . , j . Also, cond(M) ∼ N.
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Convergence of the Euler Method

1
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Convergence of a Second-Order Method

1
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More Examples
More general problems? Some has been done. Talay, Tubaro, and
Bally’s Euler estimates

|E f (z(T ))− E f (zn(T ))| ≤ h
K (T )||f ||∞

T q

h = T/n = time step, q > 0 constant, and K (T ) is non-decreasing.
Optimal choice of T is unclear. Example of Langevin dynamics,

dz(t) = −b(z)dt + dw(t), (2)

want z to converge to stationary. For large |z(t)|,
E |z +Δz|2 ≤ E |z|2.

From eq. (2),

2z · b(z) ≥ 1

Discretization errors O(h) for Euler, O(h2) for 2nd order RK.
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A Final Example

A final example model problem, where m ∈ Z
+

dx = −x |x |m−1dt + dw(t)

Two procedures: Δω =
√

h ξ,

xh = XTR(x0, ξ)

= x0 − h
2
(xeuler |xeuler |m−1 + x0|x0|m−1)

+Δω

xh = ITR(x0, ξ)

= x0 − h
2
(xh|xh|m−1 + x0|x0|m−1)

+Δω



Intro to SDEs with with Examples

Stability

Numerical Examples

A Final Example
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