
RNG: A Practitioner’s Overview

Random Number Generation
A Practitioner’s Overview

Prof. Michael Mascagni

Department of Computer Science
Department of Mathematics

Department of Scientific Computing
Graduate Program in Molecular Biophysics

Florida State University, Tallahassee, FL 32306 USA
AND

Applied and Computational Mathematics Division, ITL
National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA

E-mail: mascagni@fsu.edu or mascagni@math.ethz.ch
or mascagni@nist.gov

URL: http://www.cs.fsu.edu/∼mascagni
Research supported by ARO, DOE, NASA, NATO, NIST, and NSF

with equipment donated by Intel and Nvidia
HPCS 2016 Tutorial: July 18, 2016

RNG: A Practitioner’s Overview

Outline of the Talk

Types of random numbers and Monte Carlo Methods

Pseudorandom number generation
Types of pseudorandom numbers
Properties of these pseudorandom numbers
Parallelization of pseudorandom number generators
New directions for SPRNG

Quasirandom number generation
The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization

Conclusions and Future Work

RNG: A Practitioner’s Overview

Outline of the Talk

Types of random numbers and Monte Carlo Methods

Pseudorandom number generation
Types of pseudorandom numbers
Properties of these pseudorandom numbers
Parallelization of pseudorandom number generators
New directions for SPRNG

Quasirandom number generation
The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization

Conclusions and Future Work

RNG: A Practitioner’s Overview

Outline of the Talk

Types of random numbers and Monte Carlo Methods

Pseudorandom number generation
Types of pseudorandom numbers
Properties of these pseudorandom numbers
Parallelization of pseudorandom number generators
New directions for SPRNG

Quasirandom number generation
The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization

Conclusions and Future Work

RNG: A Practitioner’s Overview

Outline of the Talk

Types of random numbers and Monte Carlo Methods

Pseudorandom number generation
Types of pseudorandom numbers
Properties of these pseudorandom numbers
Parallelization of pseudorandom number generators
New directions for SPRNG

Quasirandom number generation
The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization

Conclusions and Future Work

RNG: A Practitioner’s Overview

Types of random numbers and Monte Carlo Methods

Monte Carlo Methods: Numerical Experimental that Use Random
Numbers

I A Monte Carlo method is any process that consumes random numbers
1. Each calculation is a numerical experiment

I Subject to known and unknown sources of error
I Should be reproducible by peers
I Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable
I Programming/science errors under your control
I Make possible RNG errors approachable

3. Reproducibility
I Must be able to rerun a calculation with the same numbers
I Across different machines (modulo arithmetic issues)
I Parallel and distributed computers?

RNG: A Practitioner’s Overview

Types of random numbers and Monte Carlo Methods

What are Random Numbers Used For?

1. Random numbers are used extensively in simulation, statistics, and in Monte Carlo
computations

I Simulation: use random numbers to “randomly pick" event outcomes based on statistical
or experiential data

I Statistics: use random numbers to generate data with a particular distribution to calculate
statistical properties (when analytic techniques fail)

2. There are many Monte Carlo applications of great interest
I Numerical quadrature “all Monte Carlo is integration"
I Quantum mechanics: Solving Schrödinger’s equation with Green’s function Monte Carlo

via random walks
I Mathematics: Using the Feynman-Kac/path integral methods to solve partial differential

equations with random walks
I Defense: neutronics, nuclear weapons design
I Finance: options, mortgage-backed securities

RNG: A Practitioner’s Overview

Types of random numbers and Monte Carlo Methods

What are Random Numbers Used For?

3. There are many types of random numbers
I “Real" random numbers: uses a ‘physical source’ of randomness
I Pseudorandom numbers: deterministic sequence that passes tests of randomness
I Quasirandom numbers: well distributed (low discrepancy) points

Cryptographic
 numbers

Pseudorandom
 numbers

Quasirandom
 numbers

Uniformity

UnpredictabilityIndependence

RNG: A Practitioner’s Overview

Pseudorandom number generation

Types of pseudorandom numbers

Pseudorandom Numbers

I Pseudorandom numbers mimic the properties of ‘real’ random numbers
A. Pass statistical tests
B. Reduce error is O(N−

1
2) in Monte Carlo

I Some common pseudorandom number generators (RNG):
1. Linear congruential: xn = axn−1 + c (mod m)

2. Implicit inversive congruential: xn = axn−1 + c (mod p)

3. Explicit inversive congruential: xn = an + c (mod p)

4. Shift register: yn = yn−s + yn−r (mod 2), r > s
5. Additive lagged-Fibonacci: zn = zn−s + zn−r (mod 2k), r > s
6. Combined: wn = yn + zn (mod p)

7. Multiplicative lagged-Fibonacci: xn = xn−s × xn−r (mod 2k), r > s

RNG: A Practitioner’s Overview

Pseudorandom number generation

Properties of these pseudorandom numbers

Pseudorandom Numbers

I Some properties of pseudorandom number generators, integers: {xn} from modulo m
recursion, and U[0,1], zn = xn

m

A. Should be a purely periodic sequence (e.g.: DES and IDEA are not provably periodic)
B. Period length: Per(xn) should be large
C. Cost per bit should be moderate (not cryptography)
D. Should be based on theoretically solid and empirically tested recursions
E. Should be a totally reproducible sequence

RNG: A Practitioner’s Overview

Pseudorandom number generation

Properties of these pseudorandom numbers

Pseudorandom Numbers

I Some common facts (rules of thumb) about pseudorandom number generators:

1. Recursions modulo a power-of-two are cheap, but have simple structure
2. Recursions modulo a prime are more costly, but have higher quality: use Mersenne

primes: 2p − 1, where
3. Shift-registers (Mersenne Twisters) are efficient and have good quality
4. Lagged-Fibonacci generators are efficient, but have some structural flaws
5. Combining generators is ‘provably good’
6. Modular inversion is very costly
7. All linear recursions ‘fall in the planes’
8. Inversive (nonlinear) recursions ‘fall on hyperbolas’

RNG: A Practitioner’s Overview

Pseudorandom number generation

Properties of these pseudorandom numbers

Periods of Pseudorandom Number Generators

1. Linear congruential: xn = axn−1 + c (mod m), Per(xn) = m− 1,m prime, with m = 2k ,
a power-of-two, Per(xn) = 2k , or Per(xn) = 2k−2 if c = 0

2. Implicit inversive congruential: xn = axn−1 + c (mod p), Per(xn) = p
3. Explicit inversive congruential: xn = an + c (mod p), Per(xn) = p
4. Shift register: yn = yn−s + yn−r (mod 2), r > s, Per(yn) = 2r − 1
5. Additive lagged-Fibonacci: zn = zn−s + zn−r (mod 2k), r > s, Per(zn) = (2r − 1)2k−1

6. Combined: wn = yn + zn (mod p), Per(wn) = lcm(Per(yn),Per(zn))

7. Multiplicative lagged-Fibonacci: xn = xn−s × xn−r (mod 2k), r > s,
Per(xn) = (2r − 1)2k−3

RNG: A Practitioner’s Overview

Pseudorandom number generation

Properties of these pseudorandom numbers

Combining RNGs

I There are many methods to combine two streams of random numbers, {xn} and {yn},
where the yn’s modulo my :

1. Addition modulo one: zn = xn
mx

+ yn
my

(mod 1)

2. Addition modulo either mx or my

3. Multiplication and reduction modulo either mx or my

4. Exclusive “or-ing"

I Rigorously provable that linear combinations produce combined streams that are “no
worse" than the worst

I Tony Warnock: all the above methods seem to do about the same

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Splitting RNGs for Use In Parallel

I We consider splitting a single PRNG:
I Assume {xn} has Per(xn)
I Has the fast-leap ahead property: leaping L ahead costs no more than generating

O(log2(L)) numbers

I Then we associate a single block of length L to each parallel subsequence:

1. Blocking:
I First block: {x0, x1, . . . , xL−1}
I Second : {xL, xL+1, . . . , x2L−1}
I i th block: {x(i−1)L, x(i−1)L+1, . . . , xiL−1}

2. The Leap Frog Technique: define the leap ahead of ` =
⌊

Per(xi)
L

⌋
:

I First block: {x0, x`, x2`, . . . , x(L−1)`}
I Second block: {x1, x1+`, x1+2`, . . . , x1+(L−1)`}
I i th block: {xi , xi+`, xi+2`, . . . , xi+(L−1)`}

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Splitting RNGs for Use In Parallel

3. The Lehmer Tree, designed for splitting LCGs:
I Define a right and left generator: R(x) and L(x)
I The right generator is used within a process
I The left generator is used to spawn a new PRNG stream
I Note: L(x) = RW (x) for some W for all x for an LCG
I Thus, spawning is just jumping a fixed, W , amount in the sequence

4. Recursive Halving Leap-Ahead, use fixed points or fixed leap aheads:
I First split leap ahead:

⌊
Per(xi)

2

⌋
I i th split leap ahead:

⌊
Per(xi)

2l+1

⌋
I This permits effective user of all remaining numbers in {xn} without the need for a priori

bounds on the stream
length L

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Generic Problems Parallelizing via Splitting

1. Splitting for parallelization is not scalable:
I It usually costs O(log2(Per(xi))) bit operations to generate a random number
I For parallel use, a given computation that requires L random numbers per process with P

processes must have Per(xi) = O((LP)e)
I Rule of thumb: never use more than

√
Per(xi) of a sequence→ e = 2

I Thus cost per random number is not constant with number of processors!!

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Generic Problems Parallelizing via Splitting

2. Correlations within sequences are generic!!
I Certain offsets within any modular recursion will lead to extremely high correlations
I Splitting in any way converts auto-correlations to cross-correlations between sequences
I Therefore, splitting generically leads to interprocessor correlations in PRNGs

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

New Results in Parallel RNGs: Using Distinct Parameterized
Streams in Parallel

1. Default generator: additive lagged-Fibonacci,
xn = xn−s + xn−r (mod 2k), r > s

I Very efficient: 1 add & pointer update/number
I Good empirical quality
I Very easy to produce distinct parallel streams

2. Alternative generator #1: prime modulus LCG,
xn = axn−1 + c (mod m)

I Choice: Prime modulus (quality considerations)
I Parameterize the multiplier
I Less efficient than lagged-Fibonacci
I Provably good quality
I Multiprecise arithmetic in initialization

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

New Results in Parallel RNGs: Using Distinct Parameterized
Streams in Parallel

3. Alternative generator #2: power-of-two modulus LCG,
xn = axn−1 + c (mod 2k)

I Choice: Power-of-two modulus (efficiency considerations)
I Parameterize the prime additive constant
I Less efficient than lagged-Fibonacci
I Provably good quality
I Must compute as many primes as streams

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization Based on Seeding
I Consider the Lagged-Fibonacci generator:

xn = xn−5 + xn−17 (mod 232) or in general:

xn = xn−s + xn−r (mod 2k), r > s

I The seed is 17 32-bit integers; 544 bits, longest possible period for this linear
generator is 217×32 − 1 = 2544 − 1

I Maximal period is Per(xn) = (217 − 1)× 231

I Period is maximal ⇐⇒ at least one of the 17 32-bit integers is odd
I This seeding failure results in only even “random numbers”
I Are (217 − 1)× 231×17 seeds with full period
I Thus there are the following number of full-period equivalence classes (ECs):

E =
(217 − 1)× 231×17

(217 − 1)× 231 = 231×16 = 2496

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

The Equivalence Class Structure

With the “standard” l.s.b., b0: or a special b0 (adjoining 1’s):

m.s.b. l.s.b. m.s.b. l.s.b.
bk−1 bk−2 . . . b1 b0 bk−1 bk−2 . . . b1 b0
� � . . . 0 0 xr−1 � � . . . � b0n−1 xr−1
0 � . . . � 0 xr−2 � � . . . � b0n−2 xr−2

...
...

...
...

...
...

...
...

...
...

� 0 . . . � 0 x1 � � . . . � b01 x1
� � . . . � 1 x0 0 0 . . . 0 b00 x0

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of Prime Modulus LCGs

I Consider only xn = axn−1 (mod m), with m prime has maximal period when a is a
primitive root modulo m

I If α and a are primitive roots modulo m then ∃ l s.t. gcd(l ,m − 1) = 1 and α ≡ al

(mod m)

I If m = 22n
+ 1 (Fermat prime) then all odd powers of α are primitive elements also

I If m = 2q + 1 with q also prime (Sophie-Germain prime) then all odd powers (save
the qth) of α are primitive elements

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of Prime Modulus LCGs

I Consider xn = axn−1 (mod m) and yn = alyn−1 (mod m) and define the full-period
exponential-sum

C(j , l) =
m−1∑
n=0

e
2πi
m (xn−yn−j)

then the Riemann hypothesis over finite-fields implies |C(j , l)| ≤ (l − 1)
√

m

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of Prime Modulus LCGs

I Mersenne modulus: relatively easy to do modular multiplication
I With Mersenne prime modulus, m = 2p − 1 must compute φ−1

m−1(k), the k th number
relatively prime to m − 1

I Can compute φm−1(x) with a variant of the Meissel-Lehmer algorithm fairly quickly:
I Use partial sieve functions to trade off memory for more than 2j operations, j = # of

factors of
I Have fast implementation for p = 31, 61, 127, 521, 607

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of Power-of-Two Modulus LCGs

I xn = axn−1 + ci (mod 2k), here the ci ’s are distinct primes
I Can prove (Percus and Kalos) that streams have good spectral test properties among

themselves
I Best to choose ci ≈

√
2k = 2k/2

I Must enumerate the primes, uniquely, not necessarily exhaustively to get a unique
parameterization

I Note: in 0 ≤ i < m there are ≈ m
log2 m primes via the prime number theorem, thus if

m ≈ 2k streams are required, then must exhaust all the primes modulo
≈ 2k+log2 k = 2k k = m log2 m

I Must compute distinct primes on the fly either with table or something like
Meissel-Lehmer algorithm

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of MLFGs

1. Recall the MLFG recurrence:
xn = xn−s × xn−r (mod 2k), r > s

2. One of the r seed elements is even→ eventually all become even
3. Restrict to only odd numbers in the MLFG seeds
4. Allows the following parameterization for odd integers modulo a power-of-two

xn = (−1)yn 3zn (mod 2k), where yn ∈ {0,1} and where
I yn = yn−s + yn−r (mod 2)
I zn = zn−s + zn−r (mod 2k−2)

5. Last recurrence means we can us ALFG parameterization, zn, and map to MLFGs via
modular exponentiation

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Quality Issues in Serial and Parallel PRNGs

I Empirical tests (more later)
I Provable measures of quality:

1. Full- and partial-period discrepancy (Niederreiter) test equidistribution of overlapping
k -tuples

2. Also full- (k = Per(xn)) and partial-period exponential sums:

C(j , k) =
k−1∑
n=0

e
2πi
m (xn−xn−j)

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Quality Issues in Serial and Parallel PRNGs

I For LCGs and SRGs full-period and partial-period results are similar

. |C(·,Per(xn))| < O(
√

Per(xn))

. |C(·, j)| < O(
√

Per(xn))

I Additive lagged-Fibonacci generators have poor provable results, yet empirical
evidence suggests

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Parallel Neutronics: A Difficult Example

1. The structure of parallel neutronics
I Use a parallel queue to hold unfinished work
I Each processor follows a distinct neutron
I Fission event places a new neutron(s) in queue with initial conditions

2. Problems and solutions
I Reproducibility: each neutron is queued with a new generator (and with the next

generator)
I Using the binary tree mapping prevents generator reuse, even with extensive branching
I A global seed reorders the generators to obtain a statistically significant new but

reproducible result

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Many Parameterized Streams Facilitate Implementation/Use

1. Advantages of using parameterized generators
I Each unique parameter value gives an “independent” stream
I Each stream is uniquely numbered
I Numbering allows for absolute reproducibility, even with MIMD queuing
I Effective serial implementation + enumeration yield a portable scalable implementation
I Provides theoretical testing basis

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Many Parameterized Streams Facilitate Implementation/Use

2. Implementation details
I Generators mapped canonically to a binary tree
I Extended seed data structure contains current seed and next generator
I Spawning uses new next generator as starting point: assures no reuse of generators

3. All these ideas in the Scalable Parallel Random Number Generators (SPRNG) library:
http://sprng.org

RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Many Different Generators and A Unified Interface

1. Advantages of having more than one generator
I An application exists that stumbles on a given generator
I Generators based on different recursions allow comparison to rule out spurious results
I Makes the generators real experimental tools

2. Two interfaces to the SPRNG library: simple and default
I Initialization returns a pointer to the generator state: init_SPRNG()
I Single call for new random number: SPRNG()
I Generator type chosen with parameters in init_SPRNG()
I Makes changing generator very easy
I Can use more than one generator type in code
I Parallel structure is extensible to new generators through dummy routines

RNG: A Practitioner’s Overview

Pseudorandom number generation

New directions for SPRNG

New Directions for SPRNG

I SPRNG was originally designed for distributed-memory multiprocessors
I HPC architectures are increasingly based on commodity chips with architectural

variations
1. Microprocessors with more than one processor core (multicore)
2. Microprocessors with accelerators, most popular being GPGPUs (video games)
3. Intel Phi

I We will consider only two of these:
1. Multicore support using OpenMP
2. GPU support using CUDA (Nvidia) and/or OpenCL (standard)
3. OpenACC?

RNG: A Practitioner’s Overview

Pseudorandom number generation

New directions for SPRNG

SPRNG Update Overview

I SPRNG uses independent full-period cycles for each processor
1. Organizes the independent use of generators without communication
2. Permits reproducibility
3. Initialization of new full-period generators is slow for some generators

I A possible solution
1. Keep the independent full-period cycles for “top-level" generators
2. Within these (multicore processor/GPU) use cycle splitting to service threads

RNG: A Practitioner’s Overview

Pseudorandom number generation

New directions for SPRNG

Experience with Multicore

I We have implemented an OpenMP version of SPRNG for multicore using these ideas
I OpenMP is now built into the main compilers, so it is easy to access
I Our experience has been

1. It works as expected giving one access to Monte Carlo on all the cores
2. Permits reproducibility but with some work: must know the number of threads
3. Near perfect parallelization is expected and seen
4. Comparison with independent spawning vs. cycle splitting is not as dramatic as expected

I Backward reproducibility is something that we can provide, but forward reproducibility
is trickier

I This version is a prototype, but will be used for the eventual creation of the multicore
version of SPRNG

I Work with Drs. Haohai Yu and Yue Qiu

RNG: A Practitioner’s Overview

Pseudorandom number generation

New directions for SPRNG

Experience with SPRNG on GPGPUs via CUDA

I SPRNG for the GPU will be simple in principal, but harder for users
1. The same technique that was used for multicore will work for GPUs with many of the same

issues
2. The concept of reproducibility will have to modified as well
3. Successful exploitation of GPU threads will require that SPRNG calls be made to insure

that the data and the execution are on the GPU
I The software development may not be the hardest aspect of this work

1. Clear documentation with descriptions of common coding errors will be essential for
success

2. An extensive library of examples will be necessary to provide most users with code close
to their own to help use the GPU efficiently for Monte Carlo

I Currently have Dr. Qiu’s codes for SGMLCGs and MLFGs

RNG: A Practitioner’s Overview

Pseudorandom number generation

New directions for SPRNG

Other SPRNG Opportunities

I SPRNG for use on Intel Phi
1. Rakesh is doing some work on the Phi, but I am unsure what has been accomplished
2. Rakesh owes us another presentation on using our Phi!!

I Work on the website using sprng.kissr.com as a local sandbox
1. Creating a clean version of the v4.4 code
2. Making the website more user friendly
3. I need volunteers for this to get access to login.shodor.org and also the kissr website on

Dropbox

RNG: A Practitioner’s Overview

Quasirandom number generation

Quasirandom Numbers

I Many problems require uniformity, not randomness: “quasirandom" numbers are
highly uniform deterministic sequences with small star discrepancy

I Definition: The star discrepancy D∗N of x1, . . . , xN :

D∗N =D∗N(x1, . . . , xN)

= sup
0≤u≤1

∣∣∣∣∣ 1
N

N∑
n=1

χ[0,u)(xn)− u

∣∣∣∣∣ ,
where χ is the characteristic function

RNG: A Practitioner’s Overview

Quasirandom number generation

Star Discrepancy in 2D

RNG: A Practitioner’s Overview

Quasirandom number generation

Star Discrepancy in 2D

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

I
∣∣ 1

2 −
4
8

∣∣ = 0
I

I

I

RNG: A Practitioner’s Overview

Quasirandom number generation

Star Discrepancy in 2D

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

I
∣∣ 1

2 −
4
8

∣∣ = 0
I
∣∣ 9

16 −
5
8

∣∣ = 1
16 = 0.0625

I

I

RNG: A Practitioner’s Overview

Quasirandom number generation

Star Discrepancy in 2D

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

I
∣∣ 1

2 −
4
8

∣∣ = 0
I
∣∣ 9

16 −
5
8

∣∣ = 1
16 = 0.0625

I
∣∣ 9

32 −
3
8

∣∣ = 3
32 = 0.09375

I

RNG: A Practitioner’s Overview

Quasirandom number generation

Star Discrepancy in 2D

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

I
∣∣ 1

2 −
4
8

∣∣ = 0
I
∣∣ 9

16 −
5
8

∣∣ = 1
16 = 0.0625

I
∣∣ 9

32 −
3
8

∣∣ = 3
32 = 0.09375

I
∣∣ 143

256 −
6
8

∣∣ = 49
256 ≈ 0.19140625

RNG: A Practitioner’s Overview

Quasirandom number generation

The Koksma-Hlawka inequality

Quasirandom Numbers

I Theorem (Koksma, 1942): if f (x) has bounded variation V (f) on [0,1] and
x1, . . . , xN ∈ [0,1] with star discrepancy D∗N , then:∣∣∣∣∣ 1

N

N∑
n=1

f (xn)−
∫ 1

0
f (x) dx

∣∣∣∣∣ ≤ V (f)D∗N ,

this is the Koksma-Hlawka inequality
I V (f) is the total variation of f in the sense of Hardy and Krause
I Many different types of discrepancies are definable by replacing the L∞-norm with

another Lp-norm: p = 2 is the mean-square discrepancy, and easier to compute
I The Koksma-Hlawka inequality is the basis for the famous Information Based

Complexity (IBC) bound for numerical integration

RNG: A Practitioner’s Overview

Quasirandom number generation

Discrepancy

Discrepancy Facts

I Real random numbers have (the law of the iterated logarithm):

D∗N = O(N−1/2(log log N)−1/2)

I Klaus F. Roth (Fields medalist in 1958) proved the following lower bound in 1954 for
the star discrepancy of N points in s dimensions:

D∗N ≥ O(N−1(log N)
s−1

2)

I Sequences (indefinite length) and point sets have different "best discrepancies" at
present

I Sequence: D∗
N ≤ O(N−1(log N)s−1)

I Point set: D∗
N ≤ O(N−1(log N)s−2)

RNG: A Practitioner’s Overview

Quasirandom number generation

The van der Corput sequence

Some Types of Quasirandom Numbers

I Must choose point sets (finite #) or sequences (infinite #) with small D∗N
I Often used is the van der Corput sequence in base b: xn = Φb(n − 1),n = 1,2, . . . ,

where for b ∈ Z,b ≥ 2:

Φb

 ∞∑
j=0

ajbj

 =
∞∑
j=0

ajb−j−1 with

aj ∈{0,1, . . . ,b − 1}

RNG: A Practitioner’s Overview

Quasirandom number generation

The van der Corput sequence

Some Types of Quasirandom Numbers

I For the van der Corput sequence

ND∗N ≤
log N
3 log 2

+ O(1)

I With b = 2, we get { 1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 . . . }

I With b = 3, we get { 1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 . . . }

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Some Types of Quasirandom Numbers

I Other small D∗N points sets and sequences:

1. Halton sequence: xn = (Φb1 (n − 1), . . . ,Φbs (n − 1)), n = 1,2, . . . ,
D∗N = O

(
N−1(log N)s

)
if b1, . . . ,bs pairwise relatively prime

2. Hammersley point set: xn =
(n−1

N ,Φb1 (n − 1), . . . ,Φbs−1 (n − 1)
)
, n = 1,2, . . . ,N.

D∗N = O
(
N−1(log N)s−1

)
if b1, . . . ,bs−1 are pairwise relatively prime

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Halton sequence: example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Good Halton points vs poor Halton points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Good Halton points vs poor Halton points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Some Types of Quasirandom Numbers

3. Ergodic dynamics: xn = {nα}, where α = (α1, . . . , αs) is irrational and α1, . . . , αs are
linearly independent over the rationals then for almost all α ∈ Rs,
D∗N = O(N−1(log N)s+1+ε) for all ε > 0

4. Other methods of generation
I Method of good lattice points (Sloan and Joe)
I Soboĺ sequences
I Faure sequences (more later)
I Niederreiter sequences

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Continued-Fractions and Irrationals

Infinite continued-fraction expansion for choosing good irrationals:

r = a0 +
1

a1 + 1
a2+...

ai ≤ K −→ sequence is a low-discrepancy sequence
Choose all ai = 1. Then

r = 1 +
1

1 + 1
1+...

.

is the golden ratio.

0.618, 0.236, 0.854, 0.472, 0.090, . . .

Irrational sequence in more dimensions is not a low-discrepancy sequence.

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Lattice

I Fixed N
I Generator vector ~g = (g1, . . . ,gd) ∈ Zd .

We define a rank-1 lattice as

Plattice :=

{
~xi =

i~g
N

mod 1
}
.

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

An example lattice

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Lattice with 1031 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Lattice

I After N points the sequence repeats itself,
I Projection on each axe gives the set { 0

N ,
1
N , . . . ,

N−1
N }.

Not every generator gives a good point set. E.g. g1 = g2 = · · · = gd = 1, gives
{(i

N , . . . ,
i
N)}.

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Some Types of Quasirandom Numbers

1. Another interpretation of the v.d. Corput sequence:
I Define the i th `-bit “direction number” as: vi = 2i (think of this as a bit vector)
I Represent n − 1 via its base-2 representation n − 1 = b`−1b`−2 . . . b1b0
I Thus we have

Φ2(n − 1) = 2−`
i=`−1⊕

i=0, bi=1

vi

2. The Soboĺ sequence works the same!!
I Use recursions with a primitive binary polynomial define the (dense) vi
I The Soboĺ sequence is defined as:

sn = 2−`
i=`−1⊕

i=0, bi=1

vi

I Use Gray-code ordering for speed

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Some Types of Quasirandom Numbers

I (t ,m, s)-nets and (t , s)-sequences and generalized Niederreiter sequences

1. Let b ≥ 2, s > 1 and 0 ≤ t ≤ m ∈ Z then a b-ary box, J ⊂ [0,1)s, is given by

J =
s∏

i=1

[
ai

bdi
,

ai + 1
bdi

)

where di ≥ 0 and the ai are b-ary digits, note that |J| = b−
∑s

i=1 di

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Some Types of Quasirandom Numbers

2. A set of bm points is a (t ,m, s)-net if each b-ary box of volume bt−m has exactly bt

points in it
3. Such (t ,m, s)-nets can be obtained via Generalized Niederreiter sequences, in

dimension j of s: y (j)
i (n) = C(j)ai (n), where n has the b-ary representation

n =
∑∞

k=0 ak (n)bk and x (j)
i (n) =

∑m
k=1 y (j)

k (n)q−k

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Nets: Example

RNG: A Practitioner’s Overview

Quasirandom number generation

Methods of quasirandom number generation

Good vs poor net

RNG: A Practitioner’s Overview

Quasirandom number generation

Randomization

Randomization of the Faure Sequence

1. A problem with all QRNs is that the Koksma-Hlawka inequality provides no practical
error estimate

2. A solution is to randomize the QRNs and then consider each randomized sequence
as providing an independent sample for constructing confidence intervals

3. Consider the s-dimensional Faure series is:
(φp(C(0)(n)), φp(C(1)(n)), . . . , φp(C(s−1)(n)))

I p > s is prime
I C(j−1) is the generator matrix for dimension 1 ≤ j ≤ s
I For Faure C(j) = P j−1 is the Pascal matrix: P j−1

r,k =
(r−1

k−1

)
(j − 1)(r−k) (mod p)

RNG: A Practitioner’s Overview

Quasirandom number generation

Randomization

Another Reason for Randomization
QRNs have inherently bad low-dimensional projections

RNG: A Practitioner’s Overview

Quasirandom number generation

Randomization

Another Reason for Randomization
Randomization (scrambling) helps

RNG: A Practitioner’s Overview

Quasirandom number generation

Randomization

General Randomization Techniques

1. Random shifting: zn = xn + r (mod 1)
I xn ∈ [0, 1]s is the original QRN
I r ∈ [0, 1]s is a random point
I zn ∈ [0, 1]s scrambled point

2. Digit permutation
I Nested scrambling (Owen)
I Single digit scrambling like linear scrambling

3. Randomization of the generator matrices, i.e. Tezuka’s GFaure, C(j) = A(j)P j−1

where Aj is a random nonsingular lower-triangular matrix modulo p

RNG: A Practitioner’s Overview

Quasirandom number generation

Randomization

Derandomization and Applications

1. Given that a randomization leads to a family of QRNs, is there a best?
I Must make the family small enough to exhaust over, so one uses a small family of

permutations like the linear scramblings
I The must be a quality criterion that is indicative and cheap to evaluate

2. Applications of randomization: tractable error bounds, parallel QRNs
3. Applications of derandomization: finding more rapidly converging families of QRNs

RNG: A Practitioner’s Overview

Quasirandom number generation

Randomization

A Picture is Worth a 1000 Words: 4K Pseudorandom Pairs

RNG: A Practitioner’s Overview

Quasirandom number generation

Randomization

A Picture is Worth a 1000 Words: 4K Quasirandom Pairs

RNG: A Practitioner’s Overview

Quasirandom number generation

Randomization

Sobol′ sequence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

RNG: A Practitioner’s Overview

Conclusions and Future Work

A New Hierarchy

1. New nomenclature thanks to Random123
I Recurrence-based generators (most PRNGs)
I Counter-based generators (ALL QRNGs)
I Substreaming (cycle splitting)
I Multistreaming (parameterization)

2. Permutations or bijections or scrambling
I QRNGs all use scrambling now
I PRNGs in Random123 depend on bijections
I The study of random permutations and efficient implementation will be a major new thrust

in RNG research

RNG: A Practitioner’s Overview

Conclusions and Future Work

Conclusions and Future Work

1. SPRNG is at version 4 requires: some cleaning at the moment
2. Splitting SPRNG up

I Base SPRNG in C++
I Module for MPI
I Module for Fortran users
I Testing module

3. Other SPRNG updates
I Spawn-intensive/small-memory footprint generators: MLFGs
I “QPRNG”
I Update test suite with TestU01

RNG: A Practitioner’s Overview

Conclusions and Future Work

For Further Reading I

[Y. Li and M. Mascagni (2005)]
Grid-based Quasi-Monte Carlo Applications,
Monte Carlo Methods and Applications, 11: 39–55.

[H. Chi, M. Mascagni and T. Warnock (2005)]
On the Optimal Halton Sequence,
Mathematics and Computers in Simulation, 70(1): 9–21.

[M. Mascagni and H. Chi (2004)]
Parallel Linear Congruential Generators with Sophie-Germain Moduli,
Parallel Computing, 30: 1217–1231.

[M. Mascagni and A. Srinivasan (2004)]
Parameterizing Parallel Multiplicative Lagged-Fibonacci Generators,
Parallel Computing, 30: 899–916.

RNG: A Practitioner’s Overview

Conclusions and Future Work

For Further Reading II

[M. Mascagni and A. Srinivasan (2000)]
Algorithm 806: SPRNG: A Scalable Library for Pseudorandom Number Generation,
ACM Transactions on Mathematical Software, 26: 436–461.

RNG: A Practitioner’s Overview

Conclusions and Future Work

Copyright Notice

c© Michael Mascagni, 2016

All Rights Reserved

	Types of random numbers and Monte Carlo Methods
	Pseudorandom number generation
	Types of pseudorandom numbers
	Properties of these pseudorandom numbers
	Parallelization of pseudorandom number generators
	New directions for SPRNG

	Quasirandom number generation
	The Koksma-Hlawka inequality
	Discrepancy
	The van der Corput sequence
	Methods of quasirandom number generation
	Randomization

	Conclusions and Future Work

