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Monte Carlo Methods: Numerical Experimental that
Use Random Numbers

A Monte Carlo method is any process that consumes
random numbers

1 Each calculation is a numerical experiment
Subject to known and unknown sources of error
Should be reproducible by peers
Should be easy to run anew with results that can be
combined to reduce the variance

2 Sources of errors must be controllable/isolatable
Programming/science errors under your control
Make possible RNG errors approachable

3 Reproducibility
Must be able to rerun a calculation with the same numbers
Across different machines (modulo arithmetic issues)
Parallel and distributed computers?
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What are Random Numbers Used For?
1 Random numbers are used extensively in simulation,

statistics, and in Monte Carlo computations
Simulation: use random numbers to “randomly pick" event
outcomes based on statistical or experiential data
Statistics: use random numbers to generate data with a
particular distribution to calculate statistical properties
(when analytic techniques fail)

2 There are many Monte Carlo applications of great interest
Numerical quadrature “all Monte Carlo is integration"
Quantum mechanics: Solving Schrödinger’s equation with
Green’s function Monte Carlo via random walks
Mathematics: Using the Feynman-Kac/path integral
methods to solve partial differential equations with random
walks
Defense: neutronics, nuclear weapons design
Finance: options, mortgage-backed securities
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What are Random Numbers Used For?

3 There are many types of random numbers
“Real" random numbers: uses a ‘physical source’ of
randomness
Pseudorandom numbers: deterministic sequence that
passes tests of randomness
Quasirandom numbers: well distributed (low discrepancy)
points

Cryptographic
     numbers

Pseudorandom
      numbers

Quasirandom
     numbers

Uniformity

UnpredictabilityIndependence
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Why Monte Carlo?

1 Rules of thumb for Monte Carlo methods
Good for computing linear functionals of solution (linear
algebra, PDEs, integral equations)
No discretization error but sampling error is O(N−1/2)
High dimensionality is favorable, breaks the “curse of
dimensionality"
Appropriate where high accuracy is not necessary
Often algorithms are “naturally" parallel

2 Exceptions
Complicated geometries often easy to deal with
Randomized geometries tractable
Some applications are insensitive to singularities in solution
Sometimes is the fastest high-accuracy algorithm (rare)
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The Classic Monte Carlo Application: Numerical
Integration

1 Consider computing I =
∫ 1

0 f (x) dx
2 Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

Rectangle: wi = 1
N , xi = i

N
Trapezoidal: wi = 2

N ,w1 = wN = 1
N , xi = i

N
3 Monte Carlo quadrature

I ≈ 1
N

N∑
i=1

f (xi), xi ∼ U[0,1], i.i.d.

4 Big advantage seen in multidimensional integration,
consider (s-dimensions):

I =

∫
[0,1]s

f (x1, . . . , xs) dx1 . . . dxs
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The Classic Monte Carlo Application: Numerical
Integration

1 Errors are significantly different, with N function
evaluations we see the curse of dimensionality

Product trapezoidal rule: Error = O(N−2/s)
Monte Carlo: Error = O(N−1/2) (indep. of s!!)

2 Note: the errors are deterministic for the trapezoidal rule
whereas the MCM error is a variance bound

3 For s = 1, E [f (xi)] = I when xi ∼ U[0,1], so
E [ 1

N
∑N

i=1 f (xi)] = I, and Var [ 1
N
∑N

i=1 f (xi)] = Var [f (xi)]/N.
Var [f (xi)] =

∫ 1
0 (f (x)− I)2 dx
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Types of pseudorandom numbers
Properties of these pseudorandom numbers
Parallelization of pseudorandom number generators

Pseudorandom Numbers
Pseudorandom numbers mimic the properties of ‘real’
random numbers

A. Pass statistical tests
B. Reduce error is O(N−

1
2 ) in Monte Carlo

Some common pseudorandom number generators (RNG):
1 Linear congruential: xn = axn−1 + c (mod m)
2 Implicit inversive congruential: xn = axn−1 + c (mod p)
3 Explicit inversive congruential: xn = an + c (mod p)
4 Shift register: yn = yn−s + yn−r (mod 2), r > s
5 Additive lagged-Fibonacci: zn = zn−s + zn−r

(mod 2k ), r > s
6 Combined: wn = yn + zn (mod p)
7 Multiplicative lagged-Fibonacci: xn = xn−s × xn−r

(mod 2k ), r > s
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Types of pseudorandom numbers
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Pseudorandom Numbers

Some properties of pseudorandom number generators,
integers: {xn} from modulo m recursion, and
U[0,1], zn = xn

m

A. Should be a purely periodic sequence (e.g.: DES and
IDEA are not provably periodic)

B. Period length: Per(xn) should be large
C. Cost per bit should be moderate (not cryptography)
D. Should be based on theoretically solid and empirically

tested recursions
E. Should be a totally reproducible sequence
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Pseudorandom Numbers
Some common facts (rules of thumb) about pseudorandom
number generators:

1 Recursions modulo a power-of-two are cheap, but have
simple structure

2 Recursions modulo a prime are more costly, but have
higher quality: use Mersenne primes: 2p − 1, where p is
prime, too

3 Shift-registers (Mersenne Twisters) are efficient and have
good quality

4 Lagged-Fibonacci generators are efficient, but have some
structural flaws

5 Combining generators is ‘provably good’
6 Modular inversion is very costly
7 All linear recursions ‘fall in the planes’
8 Inversive (nonlinear) recursions ‘fall on hyperbolas’
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Periods of Pseudorandom Number Generators
1 Linear congruential: xn = axn−1 + c (mod m),

Per(xn) = m − 1,m prime, with m a power-of-two,
Per(xn) = 2k , or Per(xn) = 2k−2 if c = 0

2 Implicit inversive congruential: xn = axn−1 + c (mod p),
Per(xn) = p

3 Explicit inversive congruential: xn = an + c (mod p),
Per(xn) = p

4 Shift register: yn = yn−s + yn−r (mod 2), r > s,
Per(yn) = 2r − 1

5 Additive lagged-Fibonacci: zn = zn−s + zn−r
(mod 2k ), r > s, Per(zn) = (2r − 1)2k−1

6 Combined: wn = yn + zn (mod p),
Per(wn) = lcm(Per(yn),Per(zn))

7 Multiplicative lagged-Fibonacci: xn = xn−s × xn−r
(mod 2k ), r > s, Per(xn) = (2r − 1)2k−3
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Combining RNGs
There are many methods to combine two streams of
random numbers, {xn} and {yn}, where the xn are integers
modulo mx , and yn’s modulo my :

1 Addition modulo one: zn = xn
mx

+ yn
my

(mod 1)

2 Addition modulo either mx or my

3 Multiplication and reduction modulo either mx or my

4 Exclusive “or-ing"

Rigorously provable that linear combinations produce
combined streams that are “no worse" than the worst
Tony Warnock: all the above methods seem to do about
the same
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Splitting RNGs for Use In Parallel
We consider splitting a single PRNG:

Assume {xn} has Per(xn)
Has the fast-leap ahead property: leaping L ahead costs no
more than generating O(log2(L)) numbers

Then we associate a single block of length L to each
parallel subsequence:

1 Blocking:
First block: {x0, x1, . . . , xL−1}
Second : {xL, xL+1, . . . , x2L−1}
i th block: {x(i−1)L, x(i−1)L+1, . . . , xiL−1}

2 The Leap Frog Technique: define the leap ahead of
` =

⌊Per(xi )
L

⌋
:

First block: {x0, x`, x2`, . . . , x(L−1)`}
Second block: {x1, x1+`, x1+2`, . . . , x1+(L−1)`}
i th block: {xi , xi+`, xi+2`, . . . , xi+(L−1)`}
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Splitting RNGs for Use In Parallel

3 The Lehmer Tree, designed for splitting LCGs:
Define a right and left generator: R(x) and L(x)
The right generator is used within a process
The left generator is used to spawn a new PRNG stream
Note: L(x) = RW (x) for some W for all x for an LCG
Thus, spawning is just jumping a fixed, W , amount in the
sequence

4 Recursive Halving Leap-Ahead, use fixed points or fixed
leap aheads:

First split leap ahead:
⌊

Per(xi )
2

⌋
i th split leap ahead:

⌊
Per(xi )

2l+1

⌋
This permits effective user of all remaining numbers in {xn}
without the need for a priori bounds on the stream
length L
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Generic Problems Parallelizing via Splitting

1 Splitting for parallelization is not scalable:
It usually costs O(log2(Per(xi ))) bit operations to generate
a random number
For parallel use, a given computation that requires L
random numbers per process with P processes must have
Per(xi ) = O((LP)e)
Rule of thumb: never use more than

√
Per(xi ) of a

sequence→ e = 2
Thus cost per random number is not constant with number
of processors!!
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Generic Problems Parallelizing via Splitting

2 Correlations within sequences are generic!!
Certain offsets within any modular recursion will lead to
extremely high correlations
Splitting in any way converts auto-correlations to
cross-correlations between sequences
Therefore, splitting generically leads to interprocessor
correlations in PRNGs
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New Results in Parallel RNGs: Using Distinct
Parameterized Streams in Parallel

1 Default generator: additive lagged-Fibonacci,
xn = xn−s + xn−r (mod 2k ), r > s

Very efficient: 1 add & pointer update/number
Good empirical quality
Very easy to produce distinct parallel streams

2 Alternative generator #1: prime modulus LCG,
xn = axn−1 + c (mod m)

Choice: Prime modulus (quality considerations)
Parameterize the multiplier
Less efficient than lagged-Fibonacci
Provably good quality
Multiprecise arithmetic in initialization
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New Results in Parallel RNGs: Using Distinct
Parameterized Streams in Parallel

3 Alternative generator #2: power-of-two modulus LCG,
xn = axn−1 + c (mod 2k )

Choice: Power-of-two modulus (efficiency considerations)
Parameterize the prime additive constant
Less efficient than lagged-Fibonacci
Provably good quality
Must compute as many primes as streams
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Parameterization Based on Seeding

Consider the Lagged-Fibonacci generator:
xn = xn−5 + xn−17 (mod 232) or in general:

xn = xn−s + xn−r (mod 2k ), r > s
The seed is 17 32-bit integers; 544 bits, longest possible
period for this linear generator is 217×32 − 1 = 2544 − 1
Maximal period is Per(xn) = (217 − 1)× 231

Period is maximal ⇐⇒ at least one of the 17 32-bit
integers is odd
This seeding failure results in only even “random numbers”
Are (217 − 1)× 231×17 seeds with full period
Thus there are the following number of full-period
equivalence classes (ECs):

E =
(217 − 1)× 231×17

(217 − 1)× 231 = 231×16 = 2496
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The Equivalence Class Structure

With the “standard” l.s.b., b0: or a special b0 (adjoining 1’s):

m.s.b. l.s.b. m.s.b. l.s.b.
bk−1 bk−2 . . . b1 b0 bk−1 bk−2 . . . b1 b0

� � . . . 0 0 xr−1 � � . . . � b0n−1 xr−1
0 � . . . � 0 xr−2 � � . . . � b0n−2 xr−2
...

...
...

...
...

...
...

...
...

...
� 0 . . . � 0 x1 � � . . . � b01 x1
� � . . . � 1 x0 0 0 . . . 0 b00 x0
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Parameterization of Prime Modulus LCGs

Consider only xn = axn−1 (mod m), with m prime has
maximal period when a is a primitive root modulo m
If α and a are primitive roots modulo m then
∃ l s.t. gcd(l ,m − 1) = 1 and α ≡ al (mod m)

If m = 22n
+ 1 (Fermat prime) then all odd powers of α are

primitive elements also
If m = 2q + 1 with q also prime (Sophie-Germain prime)
then all odd powers (save the qth) of α are primitive
elements
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Parameterization of Prime Modulus LCGs

Consider xn = axn−1 (mod m) and yn = alyn−1 (mod m)
and define the full-period exponential-sum
cross-correlation between then as:

C(j , l) =
m−1∑
n=0

e
2πi
m (xn−yn−j )

then the Riemann hypothesis over finite-fields implies
|C(j , l)| ≤ (l − 1)

√
m
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Parameterization of Prime Modulus LCGs

Mersenne modulus: relatively easy to do modular
multiplication
With Mersenne prime modulus, m = 2p − 1 must compute
φ−1

m−1(k), the k th number relatively prime to m − 1
Can compute φm−1(x) with a variant of the
Meissel-Lehmer algorithm fairly quickly:

Use partial sieve functions to trade off memory for more
than 2j operations, j = # of factors of m − 1
Have fast implementation for p = 31, 61, 127, 521, 607
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Parameterization of Power-of-Two Modulus LCGs

xn = axn−1 + ci (mod 2k ), here the ci ’s are distinct primes
Can prove (Percus and Kalos) that streams have good
spectral test properties among themselves
Best to choose ci ≈

√
2k = 2k/2

Must enumerate the primes, uniquely, not necessarily
exhaustively to get a unique parameterization
Note: in 0 ≤ i < m there are ≈ m

log2 m primes via the prime
number theorem, thus if m ≈ 2k streams are required, then
must exhaust all the primes modulo
≈ 2k+log2 k = 2kk = m log2 m
Must compute distinct primes on the fly either with table or
something like Meissel-Lehmer algorithm
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Parameterization of MLFGs

1 Recall the MLFG recurrence:
xn = xn−s × xn−r (mod 2k ), r > s

2 One of the r seed elements is even→ eventually all
become even

3 Restrict to only odd numbers in the MLFG seeds
4 Allows the following parameterization for odd integers

modulo a power-of-two xn = (−1)yn3zn (mod 2k ), where
yn ∈ {0,1} and where

yn = yn−s + yn−r (mod 2)
zn = zn−s + zn−r (mod 2k−2)

5 Last recurrence means we can us ALFG parameterization,
zn, and map to MLFGs via modular exponentiation
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Quality Issues in Serial and Parallel PRNGs

Empirical tests (more later)
Provable measures of quality:

1 Full- and partial-period discrepancy (Niederreiter) test
equidistribution of overlapping k -tuples

2 Also full- (k = Per(xn)) and partial-period exponential
sums:

C(j , k) =
k−1∑
n=0

e
2πi
m (xn−xn−j )
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Quality Issues in Serial and Parallel PRNGs

For LCGs and SRGs full-period and partial-period results
are similar

. |C(·,Per(xn))| < O(
√

Per(xn))

. |C(·, j)| < O(
√

Per(xn))

Additive lagged-Fibonacci generators have poor provable
results, yet empirical evidence suggests
|C(·,Per(xn))| < O(

√
Per(xn))
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Parallel Neutronics: A Difficult Example

1 The structure of parallel neutronics
Use a parallel queue to hold unfinished work
Each processor follows a distinct neutron
Fission event places a new neutron(s) in queue with initial
conditions

2 Problems and solutions
Reproducibility: each neutron is queued with a new
generator (and with the next generator)
Using the binary tree mapping prevents generator reuse,
even with extensive branching
A global seed reorders the generators to obtain a
statistically significant new but reproducible result
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Many Parameterized Streams Facilitate
Implementation/Use

1 Advantages of using parameterized generators
Each unique parameter value gives an “independent”
stream
Each stream is uniquely numbered
Numbering allows for absolute reproducibility, even with
MIMD queuing
Effective serial implementation + enumeration yield a
portable scalable implementation
Provides theoretical testing basis
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Many Parameterized Streams Facilitate
Implementation/Use

2 Implementation details
Generators mapped canonically to a binary tree
Extended seed data structure contains current seed and
next generator
Spawning uses new next generator as starting point:
assures no reuse of generators

3 All these ideas in the Scalable Parallel Random Number
Generators (SPRNG) library: http://sprng.org
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Many Different Generators and A Unified Interface

1 Advantages of having more than one generator
An application exists that stumbles on a given generator
Generators based on different recursions allow comparison
to rule out spurious results
Makes the generators real experimental tools

2 Two interfaces to the SPRNG library: simple and default
Initialization returns a pointer to the generator state:
init_SPRNG()
Single call for new random number: SPRNG()
Generator type chosen with parameters in init_SPRNG()
Makes changing generator very easy
Can use more than one generator type in code
Parallel structure is extensible to new generators through
dummy routines
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Quasirandom Numbers

Many problems require uniformity, not randomness:
“quasirandom" numbers are highly uniform deterministic
sequences with small star discrepancy
Definition: The star discrepancy D∗N of x1, . . . , xN :

D∗N =D∗N(x1, . . . , xN)

= sup
0≤u≤1

∣∣∣∣∣ 1
N

N∑
n=1

χ[0,u)(xn)− u

∣∣∣∣∣ ,
where χ is the characteristic function
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Star Discrepancy in 2D
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Quasirandom Numbers

Theorem (Koksma, 1942): if f (x) has bounded variation
V (f ) on [0,1] and x1, . . . , xN ∈ [0,1] with star discrepancy
D∗N , then: ∣∣∣∣∣ 1

N

N∑
n=1

f (xn)−
∫ 1

0
f (x) dx

∣∣∣∣∣ ≤ V (f )D∗N ,

this is the Koksma-Hlawka inequality
Note: Many different types of discrepancies are definable
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Discrepancy Facts

Real random numbers have (the law of the iterated
logarithm):

D∗N = O(N−1/2(log log N)−1/2)

Klaus F. Roth (Fields medalist in 1958) proved the following
lower bound in 1954 for the star discrepancy of N points in
s dimensions:

D∗N ≥ O(N−1(log N)
s−1

2 )

Sequences (indefinite length) and point sets have different
"best discrepancies" at present

Sequence: D∗
N ≤ O(N−1(log N)s−1)

Point set: D∗
N ≤ O(N−1(log N)s−2)
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Some Types of Quasirandom Numbers

Must choose point sets (finite #) or sequences (infinite #)
with small D∗N
Often used is the van der Corput sequence in base b:
xn = Φb(n − 1),n = 1,2, . . . , where for b ∈ Z,b ≥ 2:

Φb

 ∞∑
j=0

ajbj

 =
∞∑

j=0

ajb−j−1 with

aj ∈{0,1, . . . ,b − 1}
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Some Types of Quasirandom Numbers

For the van der Corput sequence

ND∗N ≤
log N
3 log 2

+ O(1)

With b = 2, we get {1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 . . . }

With b = 3, we get {1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 . . . }
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Some Types of Quasirandom Numbers

Other small D∗N points sets and sequences:

1 Halton sequence: xn =
(
Φb1(n − 1), . . . ,Φbs (n − 1)

)
,

n = 1,2, . . . , D∗N = O
(
N−1(log N)s) if b1, . . . ,bs pairwise

relatively prime
2 Hammersley point set:

xn =
(n−1

N ,Φb1(n − 1), . . . ,Φbs−1(n − 1)
)
, n = 1,2, . . . ,N,

D∗N = O
(
N−1(log N)s−1) if b1, . . . ,bs−1 are pairwise

relatively prime
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Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Halton sequence: example

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Good Halton points vs poor Halton points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Good Halton points vs poor Halton points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prof. Michael Mascagni RNG: A Practitioner’s Overview



Types of random numbers and Monte Carlo Methods
Pseudorandom number generation

Quasirandom number generation
Conclusions

The Koksma-Hlawka inequality
Discrepancy
The van der Corput sequence
Methods of quasirandom number generation
Randomization and Derandomization

Some Types of Quasirandom Numbers

3 Ergodic dynamics: xn = {nα}, where α = (α1, . . . , αs) is
irrational and α1, . . . , αs are linearly independent over the
rationals then for almost all α ∈ Rs,
D∗N = O(N−1(log N)s+1+ε) for all ε > 0

4 Other methods of generation
Method of good lattice points (Sloan and Joe)
Soboĺ sequences
Faure sequences (more later)
Niederreiter sequences
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Continued-Fractions and Irrationals

Infinite continued-fraction expansion for choosing good
irrationals:

r = a0 +
1

a1 + 1
a2+...

ai ≤ K −→ sequence is a low-discrepancy sequence
Choose all ai = 1. Then

r = 1 +
1

1 + 1
1+...

.

is the golden ratio.

0.618, 0.236, 0.854, 0.472, 0.090, . . .

Irrational sequence in more dimensions is not a
low-discrepancy sequence.
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Lattice

Fixed N
Generator vector ~g = (g1, . . . ,gd ) ∈ Zd .

We define a rank-1 lattice as

Plattice :=

{
~xi =

i~g
N

mod 1
}
.
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An example lattice
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Lattice with 1031 points
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Lattice

After N points the sequence repeats itself,
Projection on each axe gives the set { 0

N ,
1
N , . . . ,

N−1
N }.

Not every generator gives a good point set.
E.g. g1 = g2 = · · · = gd = 1, gives {( i

N , . . . ,
i
N )}.
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Some Types of Quasirandom Numbers
1 Another interpretation of the v.d. Corput sequence:

Define the i th `-bit “direction number” as: vi = 2i (think of
this as a bit vector)
Represent n − 1 via its base-2 representation
n − 1 = b`−1b`−2 . . . b1b0
Thus we have

Φ2(n − 1) = 2−`
i=`−1⊕

i=0, bi=1

vi

2 The Soboĺ sequence works the same!!
Use recursions with a primitive binary polynomial define the
(dense) vi
The Soboĺ sequence is defined as:

sn = 2−`
i=`−1⊕

i=0, bi=1

vi

Use Gray-code ordering for speed
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Some Types of Quasirandom Numbers

(t ,m, s)-nets and (t , s)-sequences and generalized
Niederreiter sequences

1 Let b ≥ 2, s > 1 and 0 ≤ t ≤ m ∈ Z then a b-ary box,
J ⊂ [0,1)s, is given by

J =
s∏

i=1

[
ai

bdi
,
ai + 1

bdi
)

where di ≥ 0 and the ai are b-ary digits, note that
|J| = b−

∑s
i=1 di
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Some Types of Quasirandom Numbers

2 A set of bm points is a (t ,m, s)-net if each b-ary box of
volume bt−m has exactly bt points in it

3 Such (t ,m, s)-nets can be obtained via Generalized
Niederreiter sequences, in dimension j of s:
y (j)

i (n) = C(j)ai(n), where n has the b-ary representation
n =

∑∞
k=0 ak (n)bk and x (j)

i (n) =
∑m

k=1 y (j)
k (n)q−k
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Nets: Example
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Good vs poor net
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Randomization of the Faure Sequence

1 A problem with all QRNs is that the Koksma-Hlawka
inequality provides no practical error estimate

2 A solution is to randomize the QRNs and then consider
each randomized sequence as providing an independent
sample for constructing confidence intervals

3 Consider the s-dimensional Faure series is:
(φp(C(0)(n)), φp(C(1)(n)), . . . , φp(Ps−1(n)))

p > s is prime
C(j−1) is the generator matrix for dimension 1 ≤ j ≤ s
For Faure C(j) = P j−1 is the Pascal matrix:
P j−1

r ,k =
(r−1

k−1

)
(j − 1)(r−k) (mod p)
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Another Reason for Randomization

QRNs have inherently bad low-dimensional projections
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Another Reason for Randomization

Randomization (scrambling) helps
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General Randomization Techniques

1 Random shifting: zn = xn + r (mod 1)

xn ∈ [0,1]s is the original QRN
r ∈ [0,1]s is a random point
zn ∈ [0,1]s scrambled point

2 Digit permutation
Nested scrambling (Owen)
Single digit scrambling like linear scrambling

3 Randomization of the generator matrices, i.e. Tezuka’s
GFaure, C(j) = A(j)P j−1 where Aj is a random nonsingular
lower-triangular matrix modulo p
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Derandomization and Applications

1 Given that a randomization leads to a family of QRNs, is
there a best?

Must make the family small enough to exhaust over, so one
uses a small family of permutations like the linear
scramblings
The must be a quality criterion that is indicative and cheap
to evaluate

2 Applications of randomization: tractable error bounds,
parallel QRNs

3 Applications of derandomization: finding more rapidly
converging families of QRNs
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A Picture is Worth a 1000 Words: 4K Pseudorandom
Pairs
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Sobol′ sequence
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Future Work on Random Numbers (not yet completed)

1 SPRNG and pseudorandom number generation work
New generators: Well, Mersenne Twister
Spawn-intensive/small-memory footprint generators:
MLFGs
C++ implementation
Grid-based tools
More comprehensive testing suite; improved theoretical
tests
New version incorporating the completed work
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Future Work on Random Numbers (not yet completed)

2 Quasirandom number work
Scrambling (parameterization) for parallelization
Optimal scramblings
Grid-based tools
Application-based comparision/testing suite
Comparison to sparse grids
“QPRNG"

3 Commercialization of SPRNG
FSU-supported startup company
Commercial licenses and SPRNG consulting
Funds will support continued development and support
SPRNG will continue to be free to academic and
government researchers
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[Y. Li and M. Mascagni (2005)]
Grid-based Quasi-Monte Carlo Applications,
Monte Carlo Methods and Applications, 11: 39–55.

[H. Chi, M. Mascagni and T. Warnock (2005)]
On the Optimal Halton Sequence,
Mathematics and Computers in Simulation, 70(1): 9–21.

[M. Mascagni and H. Chi (2004)]
Parallel Linear Congruential Generators with
Sophie-Germain Moduli,
Parallel Computing, 30: 1217–1231.
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[M. Mascagni and A. Srinivasan (2004)]
Parameterizing Parallel Multiplicative Lagged-Fibonacci
Generators,
Parallel Computing, 30: 899–916.

[M. Mascagni and A. Srinivasan (2000)]
Algorithm 806: SPRNG: A Scalable Library for
Pseudorandom Number Generation,
ACM Transactions on Mathematical Software, 26: 436–461.
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