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SOME CONTINUOUS MONTE CARLO METHODS FOR THE DIRICHLET
PROBLEM!

By MerviN E. MULLER?

University of California, Los Angeles, and Cornell University

0. Summary. Monte Carlo techniques are introduced, using stochastic models
which are Markov processes. This material includes the N-dimensional Spherical,
General Spherical, and General Dirichlet Domain processes. These processes are
proved to converge with probability 1, and thus to yield direct statistical esti-
mates of the solution to the N-dimensional Dirichlet problem. The results are
obtained without requiring any further restrictions on the boundary or the func-
tion defined on the boundary, in addition to those required for the existence and
uniqueness of the solution to the Dirichlet problem. A detailed study is made for
the N-dimensional Spherical process; this includes a study of the order of the
average number of steps required for convergence. Asymptotic confidence in-
tervals are obtained. When computing effort is measured in terms of the order
of the average number of steps required for convergence, the often-made con-
jecture that the computing effort of a Monte Carlo procedure should be a linear
function of the dimensionality of the problem is shown to be true for the cases
considered. Comments are included regarding the application of these processes
on digital computers, and truncation methods are suggested.

1. Introduction. Throughout this paper, D will denote a bounded finitely
connected N-dimensional domain in a Euclidean space. Further, I'[D] will de-
note the boundary points of D. A point in space will be denoted by z, where z
has coordinates (z1, x2, « -+ , Tw).

The N-dimensional Dirichlet problem. Given the domain D and a continuous
function f(x) defined on the boundary T'[D], the N-dimensional Dirichlet problem
consists in finding a function u(z) continuous in D +- T'[D], reducing to f(x)
on T'[D], and having in' D continuous partial derivatives of second order which
satisfy Laplace’s differential equation, i.e., in finding u(z) such that

(1.1) Au() = ZN; ‘92;;(? =0, z&D,
(1.2) u(z) = f(z), z ¢ T[D].
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Some writers have generalized the Dirichlet problem to allow the following:
In place of (1.1), the general linear elliptic operator

) N aZu N

L(u) = ;:: aii(x) (M—(%v; + 7;1 b;(x)
is introduced, where a;;(z), b;j(x) possess continuous second-order derivatives
in D; while in place of (1.2), they have u(z) = g(z), « ¢ T[D], where g(z) is
permitted to have points of discontinuity on I'[D]. These generalizations of the
Dirichlet problem will not be considered in this paper, even though some of the
material developed is applicable to the more general problem.

In essence, the Monte Carlo method is experimental. The tempting title
“Monte Carlo” is being used here as it has been by others, e.g., by Metropolis
and Ulam [17], in order to convey that an unknown solution to a given physical
problem is being estimated by a method which essentially depends on a statis-
tical sampling technique. This approach requires the utilization of random varia-
bles of an appropriate stochastic process such that samples of the process yield
valid statistical estimates of the desired unkown quantities.

The previous Monte Carlo studies on the Dirichlet problem (for a review of the
literature see Curtiss [2]) have given estimators for the solution to discrete re-
placements of the Dirichlet problem, since they initially replaced the given do-
main D by a network of points and replaced the differential operator by a dif-
ference operator. Further, the previous studies needed to impose assumptions in
addition to those made here concerning the regularity of the boundary of D. It
will be seen that the processes considered here yield direct statistical estimates
of the solution to the Dirichlet problem. Consequently, the only inherent possible
source of error with these processes results from the statistical fluctuation of the
estimators. Naturally, if these methods are utilized on a digital computer there
will be an additional “round-off”’ error due to the replacement of a continuous
variable by a variable which possesses only a discrete number of digits.

Since the one-dimensional Dirichlet problem reduces to finding a straight line
through two points, it will be completely omitted from subsequent consideration
in this paper.

We next consider the question of the nature of T'[D]. It has already been demon-
strated that the theory of probability, as such, can be used as a rigorous mathe-
matical tool in the study of differential and integral equations (see, for example,
Feller [7] and Kac [9]). However, the contribution that Monte Carlo studies
might make to boundary value problems, when the analytical questions of exist-
ence and uniqueness of a solution have not been settled, is a moot question. Con-
sequently, we make the following assumption:

Fundamental Assumption. Throughout this paper, the boundary T[D] will
be assumed to be of sufficient regularity to ensure that the Dirichlet problem has
a solution and that it is unique. Kellogg [12] and [13] has a detailed discussion
and bibliography concerning regularity conditions on I'[D]; see also de La Vallée
Poussin [22].
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2. Definition of the Spherical process. First consider a preliminary definition.

DerFiniTioN 2.1. Maximum N-sphere: K (x). Given a domain D with boundary
T[D], and any point x belonging to D + T'[D], then K(z) is the maximum N-
dimensional sphere with center z and radius r if » = inf,.rpf2’ — 2z|; K(2)
denotes the surface of K(x), where K(z) is empty if x ¢ T[D].

DerinttioN 2.2. The Spherical process. Given a domain D of N dimensions
with boundary T'[D], and any point « belonging to D + T'[D], then the N-dimen-
sional Spherical process originating from z is ®(x), where

(A) ®(z) = {S(z,0),0 = ¢ = 1}; ie., P(z) is the totality of all sequences of
points S(z, ¢), 0 < ¢ =< 1, where

(B) Each vilue of ¢ specifies a sequence of points S(z,¢) = {Pi(z, ¢),
1= 0,1, ---} generated according to the following stipulations:

(1) About the point Py(z, ¢) = x, determine the maximum N-sphere K (Py);

(2) Select the point Pi(z, ¢) uniformly at random on K(Py);

(3) The point P;,1(z, ¢) is determined recursively from P;(x, ¢) and K(P;)
in the same manner as Pi(z, ¢) was determined from Py(z, ¢).

In introducing the N-dimensional Spherical process, we have actually set up
a probability space whose underlying points are sequences of directions picked
uniformly at random and picked so as to be mutually independent. Probabilities
are defined as follows. Corresponding to the jth direction, i.e., the direction from
the point P; i(x, ¢) to the point P;(x, ¢), there is a point Q; on the surface F
of the unit N-sphere F. If F; is any Lebesgue measurable subset of F of measure
m(F;), then picking the jth direction uniformly at random is equivalent to setting
Pr {Q; ¢ F;} = m(F;)/m(F). Picking the directions to be mutually independent
is equivalent to setting

PriQueF,QueR, Qe R = ITPr Qe

for each s. It then follows, by the Extension Theorem due to Kolmogorov [14]
(see page 29), that the probability distribution on the space of infinite sequences
will be properly defined. Further, it will be seen that the Spherical process is a
Markov process with a discrete parameter.

‘We next consider the Einstein-von Smoluchowski stochastic model of Brownian
motion, since this model is of help in showing that the Spherical process furnishes
a valid direct statistical estimate of the solution to the Dirichlet problem.

3. The Brownian motion process. Let (2, & Pr) be a probability space—
ie., @ = {w} is a set of elements w, & = {E} is a Borel field of subsets F of Q,
and Pr () is a countably additive measure defined on & with normalization
Pr (@) = 1. ‘

Throughout this paper X(f, ») will denote the well-known N-dimensional
Brownian motion process starting from z, i.e.,

X(t, ) = {(2'(t, ), 22, @), -+, 2"t w) |0 St < o, we)
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is the Cartesian product of N mutually independent one-dimensional Brownian
motion processes satisfying the condition that

X(O, Cd) =T = (xl(o: O)), 11)2(0, w)y Tt xN(Oy w))-

For a detailed definition of this process, see, for example, Doob [4], page 97, or
Dvoretzky, Erdos, and Kakutani [6].

It is assumed that the basic probability measure is completed in such a way that
Theorem 3.1, to be introduced, is valid (see Doob [3] or [4]).

A sample function or path of the process X (I, w) is a function of ¢, defined for
0 = 1 < « and obtained by fixing w. When speaking of “almost all sample func-
tions,” this is to be understood to mean ‘‘almost all w.”

We have defined the particular Brownian motion process X (0, w) = x, where z
is a point in N space, so that in the sequel we can speak of a sample function
originating from a point z which is of interest. We shall now consider some of the
known and, in particular, new properties of the Brownian motion process that
will be pertinent. It will be seen that all subsequent material of this section will
rest on the following important theorem due to Wiener. A recent version is found
in Paley and Wiener [19]. A proof may also be found in Doob [3] or [4] or in Lévy
[15] or [16].

TaeoreMm [Wiener] 3.1. Almost all sample functions of the Brownian motion
process are continuous; t.e., the subset Qo of Q, consisting of all w for which X (t, w)
18 a continuous function of t for 0 < t < o, is &-measurable and Pr (Q) = 1.

The first-passage time of the process is defined in the following manner. Given
any point z belonging to a domain D with boundary I'[D] and any « belonging to
Q, consider the sample function of the process X (¢, w) originating from z. If there
exists a positive number 7 = r(z, I'[D], w) such that X(r, w) ¢ T[D] and
X(t, w) 2 T[D] for any ¢ with 0 < ¢ < , then =(x, T'[D], w) is called the first-
passage time to the boundary T'[D] for the sample function originating at the
point z.

If (x, T'[D], w) exists, then P(z, T'[D], w) denotes the point at which the sam-
ple function X (¢, w), originating from z, intersects I'[D] for the first time after
t = 0. P(z, T[D], w) is called the point of first intersection.

Following Kakutani [10] and [11], let @(z, T'[D]) denote the set of w & 2 such
that r(x, T[D], w) exists. His results imply that Q(z, T'[D]) is a measurable subset
of @ and that r(z, T'[D], w) is a real-valued measurable function of w on

Q(z, T[D)).

His material yields the following theorem, which in the form presented here can
also be found in earlier studies by Bachelier, Lévy, and Wiener.

TaeoreMm [Kakutani] 3.2. Given any point x belonging to a domain D with
boundary T'[D), then almost all sample functions of the Brownian motion process on
D originating at x intersect the boundary T[D], i.e., Pr {Q(z, T[D])} = 1.

The next two theorems are due to Kakutani [11]. The only conditions to be im-
posed on the domain D and its boundary T'[D] are that they be regular for the
Direchlet problem (see the Introduction). A subset E of the boundary T'[D]
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will be called an elementary set if it consists of a finite number of mutually dis-
joint nonabutting simple surfaces on the boundary I'[D], including or excluding
their closures, where a simple surface is a homeomorphism of the surface of an
N-sphere. P

Tureorem [Kakutani] 3.3. Given a domain D and its boundary T[D], and E an
elementary set on the boundary T[D), then the probability, Pr (z, E, D), that the
Brownian motion process originating from a point x belonging to D will intersect
the set E for some t > 0, without iniersecting T'[D] — E before it, 1s a harmonic
Sfunction of x in D, and lim,.p,zsz Pr (z, E, D) = 1 or 0 according as xz, ts an
inner point of E or of T[D] — E.

TueoreMm [Kakutani] 3.4. With the same conditions as given in Theorem 3.3,
let f(x) be a real-valued continuous function defined on the boundary T[D]. Then,
for any point xq belonging to D, the value u(xo) of the solution u(zx) of the Dirichlet
problem for the domain D and the boundary value function f(x) is obtained by
taking the integral of a Poisson type of f(z) with respect to the kernel Pr (o, E, D) on
T'[D], or by taking the mathematical expectation of the composed function

J(P(@0, T[D], w)):
o) = fr  Pr (,do, D)f@) = fn F(P(o , TID], ) deo

The details of the proofs of Kakutani’s theorems, and certain generalizations,
may be found in the recent paper by Doob [5].

The following definition of successive first intersections of the Brownian motion
process will be useful.

DerFinrrioN 3.1. Successive first intersections. Given any point 2 belonging to
a domain D with boundary I'[D] and any « belonging to @, consider the sample
function of the Brownian motion process X (¢, w) originating from z. If this sample
function has a first intersection on the surface K(Py = z), denote this point as
P;i(x, K(Po), ). Successive points Pin(z, K(P:), w), ¢ =1,2,---, of first
intersection on successive surfaces K(P,), if these points exist, will be defined
recursively as was done for the Spherical process (Definition 2.2). A sequence of
successive first intersections associated with a particular sample function exists if
Pz, K(P)), w) exists foreachs,7 = 0, 1, - - -. Let T'(z, ) denote this sequence,
i-e-y T((l?, w) = {Pi+1(x: K(Pt)y w)’ ¢ = O: 17 2, }

Before making use of Definition 3.1, the following remarks are in order. (1)
If z is the center of any N-dimensional sphere, say S(z), then the probability
distribution of points of first intersection, P(z, S(z), »), on the surface S(z),
for the sample functions of the Brownian motion process originating from =z, is
uniformly distributed on the surface S(z) for all w & Q(x, S(x)). (2) If the
Brownian motion process has a first intersection, say for ¢ = 7(w) = 7(z, F, ),
with a closed boundary F (of a specified type), with probability 1, then the process
X(s, + 7(w), w) in the new parameter variable s is again a Brownian motion
process. Moreover, the difference, X (s 4 7(w), ) — X(7(w), w), process is quite
independent of the original process, X (t, w), for 0 = t = 7(w).
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As intuitively obvious as these statements are, their proofs require measure-
theoretic considerations involving function spaces. Since the literature does not
include detailed proofs of the above remarks, the author wishes to express his
appreciation to Professor G. Hunt for demonstrating their proofs in a private
communication.

By Theorems 3.1 and 3.2, the totality of «’s having continuous sample func-
tions X (¢, w) originating from z and intersecting T'{D] has measure 1; i.e.,

Pr {Q(z, T[D))} = 1.

Consequently, the proof of the following theorem can be obtained by restricting
w € Q(z, T[D]) and by completing an induction argument which makes use of the
facts mentioned in remark (2).

THEOREM 3.5. Given any point x belonging to a domain D with boundary T'[D],
a sequence T(z, w) of successive first intersections exists for almost all sample func-
tions of the Brownian motion process originating from x. .

TuroreEM 3.6. Given any point x belonging to a domain D with boundary T'([D],
then with probability 1, the sequence T'(z, w) = {Piu(x, K(Py), w),¢ = 0,1,2, - -}
of successive first intersections corresponding to the sample function X (¢, w) of the
Brownian motion process originating from x converges to a point of the boundary
T'[D]. This point of convergence coincides with the point where the sample function
intersects the boundary.

Proor. We restrict w to that subset of @ for which the sample functions originat-
ing from the given point x are continuous, intersect the boundary I'[D] for finite
values of ¢, and have sequences T(x, w). From Theorem 3.5, this subset of Q
is Q(z, T[D]) and it has measure 1. Hence, to prove the theorem, we need only to
prove it to be true for all w £ Q(z, T[D]). So we now select any « & Q(z, I'[D])
and let # be the finite value of ¢ for which the sample function first intersected the
boundary T'[D], say at the point z. Using three major steps, we will now prove
that the corresponding sequence of points T(z, w) = {Piu(z, K(P)), w), 7 =
0,1, ---} converges to the point z. '

1. The sequence T(z, w) = {Piu(z, K(P;),w), 7 = 0,1, ---} converges. In
T(x, w), the t’s, ¢ = 1,2, - -+, of the successive first intersections are monotone
increasing and bounded by ¢ . Hence, the ¢/s are convergent, and T'(», ») con-
verges by continuity, since X (¢, ) is continuous.

2. The limit point of the sequence T'(z, w) is a boundary point. Assume the
contrary, i.e., that the limit point by Step 1, say @, is an interior point of the
domain D. Then there exists a d > 0, where d = inf..rm|2’ — . Since
Zo is the limit point for the sequence, there exists an 7o such that for all © > 4,
[|Piyi(z, K(Py), w) — x| < d/4. Consider any ¢ > 4o + 1. Then

[Pix, K(Pim1), ) — @l < d/4),

and the maximum N-sphere about P;(z, K(P;_1), w) i.e., the sphere K(P;), has
a radius r; = infyap ||Pi(x, K(Pis), @) — /|| > 3d/4. But by Definition
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3.1, the point P;i(z, K(P,), w) must lie on the surface K(P;), and since 7 +
1 > 4¢, the point P, .(x, K(P,), ) must also satisfy the condition

1Pija(e, K(Ps), w) — ol < d/4.

This is impossible. Hence, 2, cannot be an interior point; therefore, the limit
point lies on the boundary T'[D].

3. To prove that the limit point,  , of the sequence 7' (x, w) must be the point
z where the sample function X (¢, w) first intersects I'[D], ie., X(f, w) = ¢,
we will assume the contrary. By Step 2, we know a € T'[D]. Thus, we assume
xo # 2z and xo ¢ T[D]; further, let { be the corresponding limiting value of the
t’s in T'(z, w). If zo # 2, then { < t,. When the successive ¢/’s of T'(z, w) con-
verge to I, the corresponding X(¢;, w)’s converge to xo, and by continuity,
w0 = X (I, ). But by assumption, z was the point of first intersection of X (¢, w)
with the boundary T'[D]. Thus, this contradicts that { < #, and hence z, = 2.
Therefore, T'(z, ) must converge to 2, and the proof is completed.

With the relevant properties of the Brownian motion process taken into ac-
count, we now exhibit the relationship between the Brownian motion process and
the Spherical process that will be useful. We need only consider the mapping in
one direction—namely, that to each sequence T'(x, w) of the Brownian motion
process, there is a sequence S(z, ¢) of the Spherical process.

Using Theorem 3.5, remarks (1) and (2) concerning the Brownian motion
process, and the definition of the Spherical process, an induction arguments
yields the following desired result:

TrEOREM 3.7. Given any point « belonging to a domain D with boundary T[D],
then the probability distribution of the sequences of successive first intersections
T(x, w) = {Piu(x, K(P)),w), 1 = 0,1,2, ---}, of the sample functions of the
Brownian motion process originating from x, is the same as the probability distribu-
tion of the sequences of the successive points S(z, ¢) = {Pi(x, ¢),7 = 0,1,2, -+ }
of the Spherical process originating from .

Thus the results developed for the sequences 7'(z, w) can be reinterpreted for
the Spherical process. Consequently, we shall next show that the Spherical
process converges with probability 1 and yields the solution for any given
Dirichlet problem.

4. Solution of the Dirichlet problem by the Spherical process.

TaEOREM 4.1. Given any point x belonging to a domain D with boundary T[D],
then with probability 1, the Spherical process originating from x converges to a
point of the boundary T[D].

Proor. The proof will follow by applying Theorems 3.6 and 3.7. By Theorem
3.7 we know that to each sequence T'(z, w) of successive first intersections of the
Brownian motion process, we can associate a sequence S(z, ¢) of the Spherical
process. Hence, with probability 1, the sequence S(z, ¢) must converge to the
boundary T[D], since by Theorem 3.6, the sequences T'(z, w) converge with
probability 1 to the boundary T'[D].
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TueOREM 4.2. Given a domain D with boundary T'[D] and an elementary set B
of the boundary T[D], then the probability, Pr (S(z, ¢), E, D), that the Spherical
process originating from a point x of the domain D will converge to the set E, without
having converged to T'[D] — E before it, is a harmonic function of x in D and
limgep. oozq Pr (S(z, ¢)E, D) = 1 or 0 according as zq is an inner point of £ or
of T[D] — E. .

Proor. It is correct to speak of the distribution of the points of convergence on
T[D] of the Spherical process, since by Theorem 4.1, the Spherical process con-
verges to I'[D] with probability 1. By Theorem 3.7 we know that the distribution
of these points of convergence must be the same as those for the sequences
{T(z, w), w € Uz, T[D])}. By use of Theorem 3.6, the distribution of the points
of convergence of the sequences {7T(z, w), w € Q(z, T[D])} to I'[D] is the same
as the distribution of points of first intersection on I'[D] for the Brownian motion
process. Hence, Theorem 3.3 then yields this theorem immediately.

Exactly as Theorem 3.4 follows from Theorem 3.3, a similar result in light
of Theorem 4.2 can be stated for the Spherical process.

TaEOREM 4.3. With the same conditions as given in Theorem 4.2, let f(x) be a
real-valued continuous function defined on the boundary T'[D]. Then for any point
2o belonging to D, the value u(xo) of the solution w(x) of the Dirichlet problem for
the domain D and the boundary value function f(x) is obtained by taking the in-
tegral, of a Poisson type, of f(x) with respect to the kernel Pr (X (20, ¢), E, D) on
T[D] or by taking the mathematical expectation of the composed function

J(PGy, TID), ):
u@) = [ Pr (S, ),ds, D)f@) = [ f(P(ay, (D), ) de
T'[D] Q -

5. Generalizations of the Spherical process.

5.1. The Generalized Spherical process. An immediate generalization of the
Spherical process would be an attempt to use spheres whose radii are not neces-
sarily maximum. Specifically, the generalization of the Spherical process found
in Section 2 is as follows.

DerinNiTION 5.1. The Generalized Spherical process. Given a domain D of N
dimensions with boundary I'[D], and any point = belonging to D + I'[D], then
the Generalized N-dimensional Spherical process originating from z is &(z),
where

(A) &(z) = {S(x,¢),0 < ¢ < 1}, ie., d(x) is the totality of all sequences of
points 8z, ¢), 0 < ¢ =< 1, where

(B) Each value of ¢ specifies a sequence of points S(z, ¢) = {Piu(z, ¢),
i=20,1,2 ---,} generated according to the following stipulations:

(1) About the point Po(z, ¢) = z, determine an N-sphere K (P , e;), where
eo is the radius of the sphere and ey = Xo(@)ro, € < No(p) = 1, for some
positive ¢ > 0, and 7 is the radius of K(Py) of Definition 2.2;

(2) Select the point Pi(z, ¢) uniformly at random on K(P, e);
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(3) The point P.y(x, ¢) is determined recursively from Pz, ¢), and
K(P;, ¢,) in the same manner as Pi(z, $) was determined from Py(z, ¢).

To show that the Generalized Spherical process furnishes a method of ob-
taining the solution for the Dirichlet problem requires only the most obvious
restatement of the material developed for the Spherical process. The introduc-
tion of the requirement that e < M\;(¢) £ 1,7=10,1,2,---,0 =< ¢ < 1,is to
ensure that the process will not degenerate, i.e., converge to an interior point
of the domain D. With this requirement, and making the obvious changes, an
inspection of the proof of Theorem 3.6 shows the theorem to be valid in the pres-
ent situation.

We next consider the generalization of allowing the transitions to take place
on surfaces other than spheres.

5.2. The General Dirichlet Domain Process. We shall now specify the N-
dimensional domains that will be acceptable in place of the N-dimensional
spheres.

DerFiNITION 5.2. An admissible domain. Given an N-dimensional domain
D with boundary I'[D], then an N-dimensional domain, say D, with boundary
T'[D,] is admissible with respect to any point, say P, if P ¢ D and if the follow-
ing conditions are satisfied:

(A) PeD;and D; C D.

(B) The normal derivative of the Green’s function for the domain D; is known
on I‘[D,]

(C) The domain D, , with respect to the point P, has the property that, for
some ¢ > 0, for every ray originating from the point P, the ratio of the distances
along the ray from the point P to the points of intersection of the ray with I'[D,]
and T[D], respectively, is greater than e.

DeFINITION 5.3. General Dirichlet Domain process. Given an N-dimensional
domain D with boundary T'[D], and any point x belonging to D + T'[D], then
the N-dimensional General Dirichlet Domain process originating from z is
&(z), where

(A) &) = {S(x, ¢), 0 < ¢ < 1};ie., $(z) is the totality of all sequences
of points S(z, ¢), 0 < ¢ =< 1, where

(B) Each value of ¢ specifies a sequence of points S(z, ¢) = {P;(z, ¢),
1=0,1,2 ---} generated according to the following stipulations:

(1) With respect to the point Po(z, ¢) = , select any admissible domain,
say Di(¢);

(2) Select a point Pi(z, ¢) on the boundary T'[Dy(¢)] of Dy(¢) from the prob-
ability distribution satisfying the condition that the probability of
Pi(z, ¢)’s being in any Lebesgue measurable subset on T'[Dy(¢)] is
equal to the Lebesgue integral of the normalized normal derivative of
the Green’s function of T'[Di(¢)] over the subset in question;

(3) The point P;,i(z, ¢) is determined recursively from P;(z, ¢), and an
admissible domain D;(¢) in the same manner as P;(z, ¢) was deter-
mined from Py(z, ¢).
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The General Dirichlet Domain process furnishes a method for solving the
Dirichlet problem. This is seen by reviewing the material developed for the
Spherical process and making the necessary minor modifications. For example,
formerly we used the fact that the probability distribution of first intersections
on the surface of K(P;(¢)) for the sample functions of the Brownian motion
process originating from P;(¢) was uniformly distributed on the surface K(P(¢)).
We now would use the fact that the probability distribution of first intersections
on the surface I'[D;(¢)] of an admissible domain D;(¢) for sample functions of
the Brownian motion process originating from P;(¢) & Di(¢) is the same as the
probability distribution specified in Definition 5.3 for the given point Pi(¢)
and domain D;(¢). That the sample functions have this distribution follows
from Theorem 3.3. With this result, and making the necessary minor modifi-
cations in the material given for the Spherical process, the development would
be similar to that already presented. However, in order to ensure that the proc-
ess will not degenerate and to ensure that a result comparable to Theorem 3.6
is attainable, requirement (C) of Definition 5.2 is used.

6. Order of the number of steps. It is of interest to have some indication as to
the order of the number of steps required for convergence of the N-dimensional
Spherical process. A conservative indication can be obtained by studying first the
convergence of the process to an infinite (N — 1)-dimensional hyperplane in N-
space. The study will also be useful for showing that the computing effort, when
measured in terms of the order of the number of steps required, increases ap-
proximately as a linear function of the dimensionality of the problem.

In this section, y; = Pz, ¢),7 = 0, 1,2, ---, will denote a point in N-space
generated by the Spherical process with I'[D] an infinite (N — 1)-dimensional
hyperplane, where y, = Po(z, ¢) = o is the initial starting point of the process.
For convenience, it will be assumed that the coordinate system is so oriented
with respect to the given hyperplane that y; also denotes the distance along a
normal from the hyperplane to the point. From the definition of the Spherical
process, Y41 = Pip(x, ¢) lies on the surface K(P;). Thus, with the assumed
orientation of the hyperplane and the coordinate system, 6;,; will denote the
direction angle between the normal of the hyperplane passing through the
point y; = P;(z, ¢) and the radius vector of the N-sphere K(P;) at the point

Yit1 -
We then have

Z% = 1 cos 0i41,

where 0 = 0; £ 2m, 2 =0,1,2,.--.

From symmetry, and since we shall only be interested in the distance from
the given hyperplane, we can restrict the subsequent discussion to 8 in the range
0=60=m

TaeoreM 6.1. Let y; = P(x, ¢),7 = 0, 1, 2, - - -, be subject to the formulation
leading to condition (6.1). Then the N-dimensional Spherical process has the prop-
erty that with the boundary T[D] being an infinite (N — 1)-dimensional hyperplane

(6.1)
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in N-space, the expected value, E{log (yiy1 / ys) | N}, =0,1,2, .- -, 18 megative
for any value N and s given as follows:
(6.2) E{log 7%—“ N} = log 2 + W(A—T—%—l> —¥(N — 1)

for: =0,1,2, -,

where ¥ (2) is the psi, or digamma, function, i.e., ¥(2) = d /dz log T'(2), 2 > 0,
and T'(2) ¢s the gamma function. In particular,

(6.3) N = 2,E{lo,c;y-;%1 N} = —log 2,
N—2
(6.4) N odd,N = 3, E{log Yin N} =log2 — 1
Yi i=(N=1)/2 ]
N—-2
(6.5) N even, N = Ajt,E'{logyL+1 N} = — log2 + Z 1
Yi i=N/2]

Proor. From the definition of the Spherical process, it is a Markov process
where at each stage ¢ of the process the next point P;;i(x, ¢) is selected inde-

pendently and uniformly at random on K(P;), 7 = 0, 1, 2, - -- . Thus
Ef{log (yiv1 / y) | N} = Eflog (y1/ y0) | N}
for ¢ = 0, 1, 2, --- . Hence, it is sufficient to consider E{log (11 / 7) | N}.

Owing to the earlier-mentioned symmetry for 8; , we need only to consider select-
ing points uniformly at random on the surface of the appropriate N-dimensional
hemisphere. Thus, with respect to 6;, this implies that the probability measure
defined on the surface of the N-dimensional hemisphere is

sin¥-2 ¢ df
T b
f sin®* 6 df
o
where 0 £ 6 < =. By (6.1),

E {log h

Yo

f log (1 — cos 6) sin"* 6 do
. |

f sin" % 0 do
o

Using 1 — cos 8 = 2[sin 6/2)° and then letting
u = 6/2, sin 2u = 2 sin u cos u,

and using formula 483 in Peirce [20] and formula 6(c) of Table 338 in Grébner

and Hofreiter [8], we obtain
N-1\T
2“”2{[r ('—2‘>] }{\If (Z—V—;—}> - ¥V - 1)}
N} = log 2 + '@V —1) : .

vir(U5)/r (3)

B {log L
sy

1
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Upon simplification we have the desired conclusion (6.2). We then obtain (6.3)
from (6.2) by direct evaluation, e.g., by using Table 411 in Grébner and Hof-
reiter [8].

When N is odd and N = 3, we can use the result that

() — V() = f @ —=uh /A - wdue

(formula 8(b) of Table 411, Grobner and Hofreiter [8]). From formula 1(a) of
Table 161, Grobner and Hofreiter [8], we obtain upon simplification the desired
conclusion for (6.4).

(6.5) is obtained by a direct inductive argument which uses that ¥(z 4+ 1) =
¥(2) + 1/zand ¥(3) = —8& — log 4, where & is Euler’s constant. With the ex-
plicit form of the expectation being given by either (6.3), (6.4), or (6.5), we shall
now show that the expectation is negative. We proceed as follows: First, we note
that

q
(6.6) log ¢+1 < El < log g
P j=p J

p—1
for p and ¢ integers, with p < g.
For N odd, N = 3, we have from (6.4) and (6.6), with p = (N — 1)/2 and
g = N — 2, that
N —2

Likewise, for N even, N = 4, we have from (6.5) and (6.6), with p = N/2
and ¢ = N — 2, that

(6.7) log

1

< E’{log Yinr

N}<O, i=0,1,2 - .

(6.8) 1ogN];1<E{1ogi’/—;—f1 N}<0, i=0,1,2, .

7

Hence, by (6.3), (6.7), and (6.8), the expectation is negative for any finite
N = 2. Thus the proof is completed.

For large values of N, the following asymptotic result will be useful.

THEOREM 6.2. Subject to the conditions imposed on the N-dimensional Spherical
process in Theorem 6.1, E{log (yiy1/y:) [N}, ¢ = 0,1, 2, .-, ¢s asymptoti-
cally —iN for large N, i.e., 2N (E{log (yir1/y:) | N}) ~ —1.

Proor. From Theorem 6.1,
1@{]0{.{:%}’.’%3 N+1}=1og2+\1f<—2—>—\If(N), 1=0,1,2,---

From Noérlund [18], page 106, we have that

N

1 o~ B
¥ (2) log 2 % Z::l ST + Romia,

where ,

o BZm+2 1
Romir = @m ¥ 2)( F 0<A<3,
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and B,, is the mth Bernoulli number. Since B, = 3}, we obtain
log y_1 — 1 -
S5 N P
N+1} log 2 + 2 N 12<1_;_f+)“>

e = 2k - e ]~ -
2N 12(N + \p)? 2N’
Consequently, for large N, we have the desired conclusion, namely,

Yir1
E<log ==
{gy.

1

E {log Zi“’———l

1

1 ,
N} —Q—N, ’L—O,l,2,"'.

We will now use Kolmogorov’s form of the strong law of large numbers to
obtain the following result concerning convergence.

THEOREM 6.3. Given any ¢ > 0, n > 0 there exists an ng such that, subject to
the conditions placed on the N-dimensional Spherical process tn Theorem 6.1,

v}
or equivalently,

Pr{g" < eXp[_n< E{log?il‘NH — e)]for all n > no} >1—n
Yo Yo

Proor. By successive use of (6.1), we obtain that y./y0 = [[#=1 (1 — cos 6,),
or that .

<eforalln>no}>1—7l,

Pr f—l-log Yn 4 lE{log s
177' Yo Yo

logz—" = > log (1 — cos 6;).
0

t=1
Using (6.1) and dividing both sides by n yields
1

n

Yn ] .
yn—l

Consider the right-hand side of (6.9). From the definition of the Spherical
process and the remarks made in the proof of Theorem 6.1, the quantities log
(yiz1/ ys) = log (1 — cosb;41),¢ = 0,1,2, --- ,n — 1,are mutually independent
and identically distributed. Further, from Theorem 6.1 we know

Eflog (yiy1) / y: | N}

fort=0,1,2, ---,n — 1. Then, since the expectation of the sum is the sum
of the expectations (see for example Cramér [1], p. 173), condition (6.9) yields

that
N =E’{lo Yirr
} - et

A

1 Yn l: Y, Ya
6. Clog 2 = Zlloe L 4+ log 24+ --- + 1
(6.9) g ogy0+ ogy1+ + log

\
N}

1 Yn
E<=log ==
{" o8 Yo

Further, the expectation is bounded and nonpositive. Since log (¥iz1/ ¥s),
2=20,1,2 ---,n — 1, are mutually independent and identically distributed
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with bounded and equal first moments, we are able to use Kolmogorov’s strong
law of large numbers, (see for example Doob [4], Theorem 5.1, page 142). Hence,
the right side of (6.9) converges to E{log y1/ yo | N} with probability 1. Conse-
quently, 1/n log y./ye converges with probability 1 to E{log %1/ yo|N}.
Representing the strong law of large numbers in the more expressive form of the
¢, 7 notation, we have the desired conclusions of the theorem.

We next consider finding the variance of the statistic 1/n log ¥ / %o .

TuEOREM 6.4. Subject to the conditions imposed on the N-dimensional Spherical
process in Theorem 6.1, the variance of 1/n log y» / yo for fived n is a monotone
decreasing function of N and the variance is given as follows:

vp-ilr () - vor-)

where W' (2) is the trigamma function, i.e., the derivative of the digamma function.
Proof. As mentioned in the proofs of Theorems 6.1 and 6.3, the quantities
log (yis1/ys), 1 = 0,1,2, -+, n — 1, are mutually independent and identi-
cally distributed. Hence, using (6.9), we obtain
(6.11) 02{1 log L2
n

2 2

N} = lE{(log@> N}— 1[E{1ogyi’N}].
Yo n Yo n Yo |

We already know E{log (y1/ %) |N} from Theorem 6.1. Since
E{Qog 1/ y0)’ | N} = E{(log (1 — cos 61))* | N},

the problem is reduced to finding this latter expected value, i.e.,

(6.10) o {1 log U7
n Yo

fﬂ llog (1 — cos 6)]* sin™* 0 d6
E{llog (1 — cos O)I| N} = 0 .

f sin™2 6 do

0

Letting 1 — cos 8 = 2[sin 6/2]> and expanding, the above equals
(21og2)-2 [ log <sin _2‘?) sin"% 0 do

0

j sin¥2 @ df

0

T 2
4 f [log <sin g):l sin" 6 .do
0 2

f sin¥—2 9 df

0

(log 2)* +

..|_

Trom the proof of Theorem 6.1, we know that

" . 0 . N—2
2 f log <sm ~> sin” -~ 6 .d6 _
. 2 =\11(N21>—\1/(N—1).
f sin¥-2 9 db

0
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Letting u = sin 6/2 and sin 8 = 2 sin 6/2 cos 6/2 and then using formula 59,
Table 324, of Groébner and Hofreiter [8], we find that

] AT P<N2—1>I,<N2—1>
f [log <sin §>:| sin"?0dp = 2V*
0

(N - 1)

-{\Ir’ (N—;—l> — (N - 1) + [\If <N 2_ 1) - v(N — 1)]2}.

We obtain upon simplification that

E{llog (1 — cos 0 | N} = (log 2)* + 2 log 2{@ <N 2‘ 1> + ¥(N — 1)}

() v o) -]}

Thus, using (6.11) and making straightforward simplifications yields (6.10).

We next show that the variance for fixed n is a monotone decreasing function
of N, ie., that ¢’{1/n log y» /o | N} = o*{1/n log y./yo| N + 1} for any
N = 2. We shall have the desired result if we show that

v (L) w1

v’ (g) — ¥/(N)

Since ¥'(2) = Dm0l / (z + r)?, (6.12) is equivalent to showing that

(6.12) =1 " forany N = 2.

g(N—l—l—%)2 Z;)(N—l—l-r)?Z
>4 >y 1

=0 (N 4+ 21?2 (N + r)?
or that

= 1 = 1
3§(N—1+2r)2_§>(N—1+2r+1)221

5 1
L e BWEE T

or equivalently,

3g(N 1—!—27')“’+fz==:o(N+1—|—2r)2_4t§'>(N+2)2

But since each term of each series is positive, the question is reduced to asking
whether '

NV

fort > 1.

3 1 4
=S CE S



584 MERVIN E. MULLER

Straightforward algebraic calculations show this latter condition to be true.
Hence,

2 ]- yn
Zlog £
7 {n gyo

With this result the proof is completed.

We will now use Lindeberg’s form of the central limit theorem to obtain the
following result, which is useful for determining asymptotic confidence intervals
for the statistic 1/n log ¥, / o .

THEOREM 6.5. Subject to the conditions imposed on the N-dimensional Spherical
process in Theorem 6.1, the statistic 1/n log y. /yo + |Ef{log y1/yo| N}| 4s
asymptotically normally distributed with mean 0 and variance

o = o*{1/n log Yn/ Yo | N},

<ol

1 A
-5 f PR dt uniformly in \.
m

— o0

N}gf{%b;;%’N—l— 1} forany N = 2.
0

1.6.,

lim Pr [1 log 2= + { E{log %
n Yo Yo

n->00

Proovr. As in the proof of Theorem 6.3, we have that

1 Yn 1 Y1 Ya Yn

- log o l:log ” -+ log " + + log yn—l]‘
Likewise, the quantities log ¢s41/¥:,¢ = 0, 1, -+, n — 1, are mutually inde-
pendent and identically distributed. From Theorems 6.1 and 6.4, we know the
mean and variance of the quantities log ;41 / ysfors = 0,1, --- , n — 1. Since
the variance is finite, we can appeal to Lindeberg’s form of the central limit
theorem for the desired conclusion of the theorem (see for example Doob [4],
Theorem 4.3, page 140).

Hence, by applying Theorem 6.5, we can obtain asymptotic confidence inter-

vals for ¥, / 4o of the form
N }' -\ a)] = Yn
Yo

lim Pr {exp l:—n <'E’{log h
n->0 Yo
=< ex [—n < E{lo o N}' - A a>]}= _1_:_sz e gy
= P g Yo : \/27 A ’
A popular conjecture exists to the effect that a Monte Carlo procedure has its
utility increased as the dimensionality of the problem is increased. The basis
for this belief has been that while other numerical techniques usually require an
increase in computing labor which is an exponential function of N, a Monte
Carlo technique should only require an increase in computing labor which is a
linear function of N. By appealing to the material developed in this section,

(6.13)
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we see that in this given situation the conjecture concerning the nature of the
increase in computing labor when using a Monte Carlo technique is true. Clearly,
if the amount of computing labor is measured in terms of the average number of
steps required to be arbitrarily near the boundary, then in the present situation
the average number of steps required dependson 1/ (|[E{1/nlog y./yo | N}|) =
1/ (|E{logy:/ yo| N}|). But by Theorem 6.2, 1/(|E{log y1 / ys | N}|) is asymp-
totically 2N. Hence, the increase in computing labor as a function of N is
approximately linear in N.

Using the material of this section, we obtain the following numerical results:

Expectation Asymptotic n :;r:;:; Ctge , Appraisal of linea,rity1
Nog {1 log 22 I N} peiseriti 1, T 9wl 2L 1o 2n
n Yo P v’{;} log 5 Iv'} E{;’ log 5 l N} E{;‘ log PN l N + 1}
2 —.6932 —.2500 3.289 —1.817
3 —.3068 —.1667 1.000 —1.917
4 —.1932 —.1250 0.540 —1.962
5 —.1401 —.1000 0.361 —1.961
6 —.1099 —.0833 0.269 —2.000
7 —.0901 —.0743 0.213 —1.973
8 —.0765 —.0625 0.177 —2.011
9 —.0663 —.0556 0.151 —1.961
10 —.0587 —.0500 0.131
~ 0 0 0 -2

Thus, as N increases, we see that in the given situation the process will re-
quire, on the average, more steps to get arbitrarily near the boundary, since
|E{1/n log yn / yo | N}| decreases with increasing N. However, the process has
the interesting compensating feature that the variance o’{1/n log y» / ¥ | N}
decreases with increasing N so as to give rise to at least a more stable statistic
for fixed n.

We will now see that the material developed in this section for the N-dimen-
sional Spherical process, with T[D] being an infinite (N — 1)-dimensional hyper-
plane, can be used to yield an upper bound for the order of the average number of
steps required when D -+ T'[D] is any N-dimensional convex set.

THEOREM 6.6. Let xy be any point belonging to an N-dimensional convex set
D + T[D] and at distance dy from T[D]. Then, the order of the average number of
steps required for convergence to T[D] by the N-dimensional Spherical process,
defined on D + T'[D] and originating at xo , s equal to or less than the order of the
average number of steps required for convergence to any infinite (N — 1)-dimensional

" hyperplane by the N-dimensional Spherical process, defined with respect to this
infinite hyperplane and originating at distance dy from this hyperplane, i.e.,

1 Tn %N
i iy < z
E{ log " N}_ E{]ogy0 N},
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where r;, 1 = 0,1, 2, .-+, n — 1, denotes the successive radii of the N-dimen-
stonal Spherical process with respect to D + T[D], and yo = do denotes the distance
to a properly oriented (N — 1)-dimensional hyperplane.

~ Proor. Clearly, r./70 = []iZ0 ri41/ 7. Hence, we have

(6.14) %logﬁ=%[log%+log%+ -~—|—log-£i—l].

Let the Spherical process defined on D + T[D] be at the point z; at the ¢th
stage of the process, where ¢ is arbitrary. Then, r; denotes the radius of the maxi-
mum N-sphere K(z;) of the Spherical process defined on D - I'[D]. Since
D + T[D] is convex, it has an (N — 1)-dimensional supporting hyperplane
at each point of I'[D]. Consequently, r; also denotes the distance from z; along
a normal to an (N — 1)-dimensional supporting hyperplane of T'[D] which is at
a minimum distance from z;. With reference to this hyperplane, consider the
Spherical process, such as discussed in Theorem 6.1, where y; = d; has the mean-
ing attributed to it in Theorem 6.1. From Theorem 6.1, E{log yiy1/ y:| N} is
known. Further, since D + T[D] is convex, r;41 < yiy1. Thus, log rip /7 <

log yiy1/r: = log yey1/y:. Hence, Eflog ri11/ 7| N} exists and
Eflog riya /i | N} < E{log yiya / y: | N} = Eflog y1/ yo | N}

fore =0,1,---,n — 1. It is therefore permissible to apply the mathematical
expectation operator to both sides of condition (6.13) (see Cramér [1], page

173).
Taking the expected value of both sides of (6.14) yields that

E{l/nlogr, /1| N} < E{log yl/yolN}.

Thus, the proof is completed.

From Theorem 6.6 we are able to use (6.13) to obtain upper bounds for the
asymptotic confidence intervals for the average distance of the N-dimensional
Spherical process from the boundary I'[D] when D + T'[D] is any convex set.

7. Machine techniques.

7.1. Generation of positions. In order to utilize either the N-dimensional
Spherical or Generalized Spherical process on a computer, it will be necessary to
be able to generate positions uniformly at random on the surface of any given
N-sphere. Actually, it is the ease with which one will be able to carry out this
operation that makes these two classes of processes desirable. We shall restrict
the subsequent discussion to the unit N-sphere, since there will be no resulting
loss in generality.

The following procedure is one way to generate points on the surface of the
unit N-sphere uniformly at random. .

Generate N independent normal deviates x;, 7 = 1, 2, ---, N, then corre-
sponding to the point * = (z1, 22, -+, Zy), locate a point y on the unit N-
sphere having the N-direction cosines, z; /\/a2? + 22 + .-+ + 22,7 = 1, 2,
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-++, N. The points y obtained this way will be uniformly distributed on the
surface of the unit N-sphere. This follows by known properties of the normal
distribution (see for example Cramér [1], Chap. 24). The essential details are
that the density function of z, say g(x) = g(@1, 22, - - - , ), is an N-dimensional
canonical normal density function, and it is known that the N-dimensional
canonical normal density function has constant probability on surfaces of N-
dimensional spheres. It is not necessary to go into the details of how to generate
normal deviates, since Teichroew [21] gives detailed procedures for generating
normal deviates on high-speed computers.

For reasons of practical feasibility and economy when using a computer, any
of the processes discussed in this paper will require that they be modified by
the introduction of truncation procedures. By a iruncation procedure for a
process, we mean that when the particular process being used has come within
a prescribed distance, say 6, of the given boundary I'[D], the process is termi-
nated. We next give attention to the question of truncation.

7.2. 5-truncation of first order. With respect to any of the three given classes
of processes, a é-truncation procedure of first order is given as follows: The
first time the given process is within é of the boundary I'[D], the process is ter-
minated and the nearest point, say y; of the boundary I'[D] is recorded as the
point to which the process would have converged and the value f(y) is tallied.

The question then arises as to how this truncation procedure affects the solu-
tion of the Dirichlet problem, say at the point z, . For the sake of brevity, and
without loss of generality, we consider only the Spherical process for the present.
If we use the é-truncation procedure of first order, we shall be changing the es-
timate of Pr (S(zo, ¢), dz, D). The error introduced by this change will be
studied from a heuristic point of view. However, we know from Section 4 that
Pr (S(z0, ¢), dz, D) is a harmonic function in D and lim,yep,s>2 Pr (S(zo, ¢),
dz, D) = 1 or 0, according as z is an inner point of dz or of T'[D] — dz, where
dx represents an elementary set of I'[D]. Thus, Pr (S(x, ¢), dz, D) is, except
for the end points of dz, a continuous function on D -+ T'[D]. Further, f(x) was
given to be continuous, and thus bounded, on T'[D]. Let M = max..rip |f(z)|.
Further, the process is a Markov process with stationary independent incre-
ments. Consequently, given an ¢ > 0, it follows that there exists a 6 such that
the maximum error in Pr (S(z,, ¢), dz, D) from é-truncation of the first order
is <e¢/M. Thus, the absolute value of the difference between u(xzy) and the value
obtained by using the §-truncation process of first order can be made less than
¢ by selecting & small enough.

7.3. d-truncation of higher order. The following type of é-truncation is sug-
gested as a tentative procedure. This type of procedure represents an interesting
field for further investigation. This procedure differs from the §-truncation pro-
cedure of first order in that once having arrived at the point, say 2, within dis-
tance § of the boundary, a restricted N-dimensional solid angle is selected in-
stead of the closest boundary point. The method then consists in proceeding in
the direction selected until T'[D] is intersected. The value of f(z) at this point of
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intersection is used as the tally. For the Spherical or the General Spherical proc-
ess, the solid angle is selected uniformly at random in a restricted region. The
General Dirichlet Domain process would select the angle according to the nor-
malized normal derivative of the Green’s function of the particular admissible
domain being utilized. Regardless of which process is being used, the solid angle
is restricted to lie within the N-dimensional hemisphere determined by an in-
finite (N — 1)-dimensional hyperplane parallel to the supporting hyperplane
of the boundary point nearest to the given interior point z and passing through
z. This procedure seems worthy of study for the following reasons.

For the infinite (N — 1)-dimensional hyperplane in N-space the é-truncation
procedure of first order still produces an error. However the é-truncation proce-
dure suggested here provides an exact solution of this problem. This follows
from an N-dimensional generalization of the material given in Kellogg [13],
pp. 66-69. Consequently, for a well-behaved boundary T[D] and any point
sufficiently close to T'[D], it seems intuitively evident that the portion of the
boundary near the point in question can be approximated reasonably well by an
(N — 1)-dimensional hyperplane. If this is true, then clearly the é-truncation
procedure of higher order will contribute a smaller error than the é-truncation
process of first order. Other higher-order truncation procedures could utilize
knowledge of the curvature of T'[D] when the direction is selected. Likewise,
discrete analogs of these truncation procedures could be adopted in place of the
classical interpolation methods being used near the boundary for discrete ap-
proximations to the Dirichlet problem.
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