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INTRODUCTION

These notes were prepared from tape recordings with comparatively

1ittie editing. They furnish once again & conclusive proof that the arts of

speaking and writing are vastly different. and, perhaps, even incompatible.

In writing one doesn't‘have the recourse to the most powerful instrument of

a speaker--the use of hands. In speaking one cannot conveniently refer to

the learned and amusing treatise of Mr. Fowler on the proper usage of English.
If the only price for preservation of the immediacy of a live

lecture is the number of split infinitives and garbled or unfinished sentences,

then perhaps it is worth paying.
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FIRST LECTURE

This series of lectures will be devoted to a subject which is

becoming more and more popular and useful -~ probability theory. I will not
take the tertbool line of development —— I will rather illustrate how some

of the notions and methods have originated in important, simple problems in
physical science. I will start with things which look very simple and progress
towards more and more complicated things towards the end.

I would like to introduce one possible innovation in colloquia. To
speak for an hour and a half is reasonably easy, especially if you are a

college professor and are used to it. But to listen for an hour and a half

is difficult. In fact, T think the span of attention of a human being is

somewhat around fifty minutes, After that you may speak in the most flowing
terms, tell the most beautiful jokes, and it is simply impossible for the
listener to absorb it. Consequently, after about fifty minutes we will have

a. short break, so we can stretch ourselves for a few minutes. I would like
also to devote some of the time, perhaps twenty minutes, to questions which
might arise in the audience. The material will, perhzps, be somewhat strange
to you, and it would be much better to settle some of the difficulties right
off the bat, Do not be afraid to ask a question. Everybody has the fear that
he may appear terribly ignorant. We all are ignorant -- the only difference

is the degree of ignorance.‘ Some of your questions I assure you I will not be
able to answer; sometimes I may be able to give you a reference; sometimes I
will go to the library and look it up and give you thé‘answer tomorrow; and
sometimes I will give you the answer right off the bat. The difference between
you and me is that I have s?ent fifteen years on this subject, and you are
going to spend probably only one week, Of course, I hope to convert you to the

subject, so that you will be spending more and more time from now on,
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I would like to start, after these preliminaries, with a little
history. As you probably know, the theory originated in the very lowly
problems §f gambling. But that's not really how it entered science. It
entered serious scientific thought in the latter part of the nineteenth
century -- although some indications were already present early in the
pineteenth century -~ in connection with the kinetic theory of matter. Since
the kinetic theory of matter is now so well known, it is interesting to tell
you that it was by no means easy to convince people that atoms are something
which exist. In fact, Boltzmann was severely attacked for empty speculation
by the reviewers of his book. There are actually many reasons for that.
One of the serious reasons was that the subject was plagued by certain paradoxes,
It was in btrying té resolve these paradoxes that the probability theorj - We
might even say the statistical way of thinking -- came into being, at least in
physics.
Now where did these paradoxes originate? That is a very interesting
story, very educational, which I will tell you by way of an introduction to
the subject. You probably know that Boltzﬁann, following people like Clausius
and Meyer, tried to explain the behavior of gases oﬁpthe basis of a mechanistic
model, A gas was regarded as a system of a large number of particles, and ths
iaws of mechanics were used.to derive the equation of state and other things.
The crowning achlevement of the work of Boltzmann and of Maxwell is the
derivation of the so-~called H theorem, This is one of the things Professor
Dresden spoke about when he discussed the Bolizmann equation and how it is
related to hydrodynamics. We will devote a certain amount of time to Boltzmann'

equation from a somewhat different point of view, We assume to begin with that
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we have a spatially homogeneous gas. This means that the spatial distributien
of particles is uniform. This is not the case Professor Dresden treated,

because for hydrodynamics the whole problem is how the spatial distribution

changes,
. e . N
Now let '_rr(\f'l ‘If)d\/’ be the velocity distribution in velecity space.
Boltzmann actually interpreted this as the number of particles having velocity
¥ at time t within the volume element cﬂ{? . He wrote out a complicated

integro-differential equation from which he derived the H theorem:

d o~ N . ‘
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The integral (it is aétually a triple integral) is denoted by H. Consequently,

H= \§ 604 g L6 4)d0 -

decreases, or at least does not increase in time. This was a remarkable achieve-
ment which particularly plessed Boltzmann because H clearly was some kind of an
analog of the negative entropy. Tt was well known from classical thermodynamics
that this function of state has the remarkable property that it never decreases,
Here Boltzmamn had managed to construct a mechanietlis quantity which had a
similar behavior,

All was well until it s pointed out that this was clearly untenable,
since it was in contrazdiction with mechanics. The objections were crystallized
in two paradoxes. One was the reversibility paradox of Loschmidt (around 1876)

and the secend was the rscurrence paradox due to Zermelo and Poincare', That
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came a little later, after 1900, I think. The reversibility paradox is the

simpler of the two and in a way more basic. It simply says the following:

A1l equations of mechanics are time-reversible. This means that if you perform

the transformation é — -"é (that is, replace time by minus time) then the
equations do not change. This is simply due to the fact that in mechanics all
derivatives with respect to time are of second order. There is no way to
distinguish the equations written with time going forward and time going backward.
Using a mors philosophically aprealing terminology, there is no mechanical

experimertt that will tell jyou which way time is flewing. Censequently,

said
Loschmidt, something must be wrong, because this H presumably is a quantity
which can he derived Trom o mechanistic description of the system. But now, if

I change t to minus t, the ouantity instead of decreszsing, will increadse. Thus

N

from a purely reversible model, we draw an irreversible conclusion and something

clearly is wrong.

It's interesting that in mathematics one contradiction is enough; it
is even enough to think that somét“ing is wrong, to have doubts. But in physics,
you mush have several waradoxes before people will believe that something is
wrong. So, to provide another one, Zermelo (who at the turn of the certury vias
also interested in the lorical foundations of this subject) recalled a theorem
of Poincare'. It's a very famous and very beautiful theorem. It says that any
conservetive, closed, dynamical system is such that (I will first state it very
loosely) if you start from somewhere, then unless you are extremely unlucky in
choosing your starting point, you are bound to comz back arbitrarily close to
the starting point. To pul it another way: conssrvative dynamical systems with

finite energy are quasi-vericdic. That is, states tend to recur. Consequently,
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if this quantity H were a mechanical quantity then it would have to oscillate,

e e

Starting from a certain value, it would eventually have to come back arbitrarily
near to that value. This would certainly contradiet the result that H changes

in only one direction.

— T R ™
'

Before I proceed to elucidate this paradox, I would ;ike to prove the

| Poincare! theorem for you. It is very simple, and it illustrates a rather

\ important pedagogical énd fundamental point about general mathematical thought.

[ I will emphasize this particular point many times during the conference.

L '

l Suppose you have a system of mechanical particles with some strange arbitrary
S forces between them. Then everybody knows that the motion of the system can be

described in terms of Hamilton's equations of motion, I don't even need to
b know the exact fofm of the Hamilton equations of motion. All I nee& to kn;w
/s ' is that there is a certain function H of the positions (generalized positions,
if you wish) and momenta, and that in terms of this function certain differential f
! equations can be written which describe the motion of the particles. Since the :
Hamiltonian depends on the positions and romenta, this suggaests that it would be
' nice to look at a 6n~dimensiona1.space, the coordinates being the q's and the
[‘1 p's. As most of you know, this épace is known to us as the phase spéce.

The Hamiltonian equations of motion can be written in:an extremely

1 ;~ simple, concise way, under the name of the Liouville theorem. It simply says

1 ‘ the following: suppose you take a little region or set A, (Refer to Figure 1

i

C where the phase space is visualized as a plane).

L p
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Now every point in this set A can be looked upon as a starting point for ny

gystem. And the trajectcry will then describe the motion of the system

according to the equations of motion., I now consider all the points in this

little set A as the initial values for my system and look to see what happens
after time t. After time t I collect them again into a set which I am going

to call Ay, This is the set we get from A after time t due to the motion of

the points, You might think of this set Ay as a very simply shaped one, some-~
thing like a circle or a sphere, Actually, because of the complexity of the
motion in the 6én-dimensional space, the shape of the thing would be tremendously

complex. But the important thing is that its volume remains the same. And

that's.the Liouville theorem. It states that the volume of A is an invariant
measure, This both implies and is implied by Hamilton's equations of motion.
So, if you want to remember once and for all the simplest way to describe the
motion of a system of partieles, it is simply that the volume in phase space
is conserved by the motion.

Since I mentioned that the system is conservative, we must take one
further step. Not all phase space is being used, since the energy is being
conserved. The Hamiltonian plays the role of the energy, so you are really not
just anywhere in phase space, you are confined to the surface H Cﬁ}'ﬁ) = B,
This surface has to be assumed to be bounded. It 1s part of the assumptions
of Poincare's theorem that this so-called energy surface is bounded. However,
it is extremely easy to use Liouville's theorem (I will skip the details because
that's unimportant for our purposes)‘to see what happens on the surface itself.

A1l you have to do is to take a nearby surface and look at a little cylindrical

&
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volume bounded by these two surfaces. Liouville's theorem tells us that this

volume is invariant under the motion. We need only transform this knowledge

to what happens on the surface hy letting the two surfaces approach each other.

“when you do that, you discover the following: If you take a surface

element do- , that is, a small element on the energy surface, and watch it

move, then after time t the surface element is unfortunately not the same. What
does remain the same is dg~ divided by the square root of the absolute value
of the gradient of H. If you now take a set A which lies on the energy surface,

then the sct A, alsc is on the energy surface —- this is because the energy is

reserved. ‘“hat we can say now is that
p

do- - _..‘_*f_’.’_..._._._ (3)

\ [qradd] AJ@\"&JH]

It is not a new fact., It is a simple, concise statement of the dynamics for

closed, conservative systems.

Now the mathematician, if he is worth his name, extracts from this

what is essentizl. 'What is essential here, for the whole picture, is not that

we are dealing with a mechanical system pursuing the Hamilton equations of

motion, but rather that we have the following very simple situation. Consider

an abstract set, call it L2 s which will be the analog of the energy surface,

I will call the points of this set & . Supvose I also have a one-parameter

family cof transformaztions Ty of Ll -- tris is an arbitrary family and depends
only on time. The only condition these transformations satisfy is that T, e Tg

Ty ,s+ You cen see this inmediately: ‘here you arc afler time t + s is deter-

mined by where you were at the time t and, starting from there, the motion for
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an additional time s. This property is called the semi-greup property. That
is just a name and it doesn't matter. The important thing is that we have
such a one-parameter family of transformations which correspond to the motion.
If oo is my starting point then Ty (0) is where the starting point will be t
seconds later.

Now finally comes the heart of the matter: I have a measure con
this space., Now when I say measure I don't want fo go into the matter in
extreme detail; all I need is & class of sub-sets to.which I know how to attach
a number like volume. So for' a large class of sub-sets there is a éértain
measure which I am going to calJ.J}L(A), or {Al . If you sc wish, this

corresponds simply to the integral:

do-
/UL <)\> = ;\‘I%§;;;;¥I ' (4)

Finally, what is very, very important, is that the transformaticns are measure-
preserving. Now, what does this mean? This means that if we teke a set A and
the transformed set Ay then the measure of A is the same as the measure of(At.
Now I have abstracted all I know from mechanice: I abstracted the
energy sufface, I abstracted the motion, I abstracted the statement of the
Liouville theorem, which simply is that the méasure is preserved., With this I
am going to prove {0 you in fhree lires the Poincare' theorem. Rather than to
consider continuous time, I am simply going to discretize it and to select Ty,
To, TB’ e+evey vhich are the Ty's after cne, two, three secords, etc. We can
write that T1 is equal.to T, Tp equals T2, TA equals Th, eftc, An important

conditioen, which we have mentioned, is that the measure of Llhe vhole space is

|
|
|
1
|
|
|
]
|
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finite. This is an abstraction of the assumption thal we ere dealing with &
bounded energy surfacé,

Now let me take a sst 4, and let me take a point (0 from it and see
what, happena to this point. I start with (0 ; this is transformed to T@Lﬁ s
then to T2ﬂng, and to TBQD), etc. /This set of points is called an orbit. Now
what I want to prove is that unless I was very unlucky in choosing my initial
point () , then eventually I will come back into A. That is, I want to prove
that some Tkﬂﬂ) is again in the set A, This will help us decide also what it
means to be unlucky.

Supposé that this is not so, that some points are such that they
never return, or rather that their images never return. We are going to
consider a set B, which is the set of points in A which never return. I must
somehow show that set B must be very small: It must be an accident to choose
a starting point from B. If this is so, then meost of the starting points will
be such that eventually I will return.

I now operate very simply. I take B, the image of B, the image of
the image of B, etc, These are the sets B, T(Rp), TQ(B)S etc, Now I claim

that these sets do not overlap. Why not? Well, suppose for the sake of argument,

that T(B) and T5(B) overlapped; this means thabt there ig a point which belongs
to both of them, (I should bave s531d thai the transformation T is invertible,
that it is uniguely inverlible. This is certainly so in mechanics, since if you
know where you are now, you can ceriainly determine whers you were ten minutes
8go.)

Now suppose vhat P is a point common to T(B) and Ta(B)ﬂ Consider

T”l(P): We are simply taicdng the poini back one step. Tne result must bhe a

e
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point of B since we staried with a point in T(B). It must also be a point in
TZ(B) since the point P was in TB(B). This argument produces a point lying in
both TZ(B) and in B, But this can't be: B was a set, none of whose polinhts
returned to B. Thus, our assumption that T(B) and T3(B) had & point in common
must be rejected. The same argument can be applied to show that none of our
sets overlap.

Now we are through -- because now I have infinitely many sets which
do not overlap. They all have the same measure,. because @he transformation
preserves measure, Now all these sels lie on the energy surface, which is a
set of finite measure. If the measure of each of these sels were positive,
then we would have infinitely many non-overlapping chunks, each having positive
measure, to be included in a set of finite measure, This is clearly impossible,

-

That means thal the measure of the set B must be zero., Otherwise these
infinitely mony sets could rot be made to fit, When I say that I have Lo be
terribly unlucky to chcose a starting point which behaved badly, what I mean
is that the mea8ure.of the set of such points is zerc. And that's exactly

the meaning of Poincaré’s recurrence theorenm.

I wanl tc show you how.very often mathematical abstraction-~that is,
throwing away whet is non-sssential, ‘and keeping only what 1s perbtinent to the
provlem~~sinmpll fies, Really, there is abs&lutely no problem at 2ll in proof
¢f the Poincare' theorem, once you know this. You don't have tc think of a
swarri of points mcving in a complicated way in thres-dimensional spate. The

whole thing is reduced te a very simple, veryv intuitive noticn. That of the

n phase space, the motion being described by means

fude

moticn of a single peint

of & measure-preserving transfermation.
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Coming back to the paradoxss, we now have two. One was the reversibility
paradox, and the other the recurrence paradox based on this theorem. Looking ’
at these paradoxes, we are faced with a disturbing situation, On the one hand,
it was extremely appealing to have the H theorem, which, so toc speak, links
thermodynamics with mechanics. On the other hand, it was extremely disquieting
that the link was not entirely correct. Consequently, the problem was how to
reconcile the proof of the H theorem -~ which everybody believes contains some
truth--with the difficulties exemplified by the paradoxes I have described.
Boltzmann himself, as well as other peoplé, has proposed that the solubion of
hese difficulties would be found in & probabilistic trestment. We chould say,
well, it is not always so, but with overwhelming probability, it is so. To
quote Gilbert and Sullivan, "Whet, never? No, never, What, never? Well,
hardly ever." The intent was to express the immutable statement "in every case!

into some kind of a proba®ilistic setting. Boltzmann himself and his fellowers

of that time were not quite clear in their explanations.

As a matter of fact, even now we do not know the answers to all the
questions. But at least we can give a consistent description without any
contradictions. I will do so, at least with the case of the ideal gds, to show
you how this can be done. By means of an extremely simple modei I will now
explain to you again both the illness and the cure, Actually, the model which
I am going to describe to you is a simplification of another model which was
proposed for similar purposes many years ago by Ehrenfest. I think I will skip

the Ehrenfest model, because the one I am going to describe will have all the

features. Moreover, it will be very easy to calculate., Now again, this is a
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time~honored device in science: that you are trying to extract from an
extremely complicated situation, a simple situation which has the difficulty
of the old one, but not the morass of details. We want an example which will
have similar difficulties, but.from which we can compute, calculate, discuss,
or do anything we want. I am going to give you such a simple model with which
I can follow what Boltzmann did, and also what Gibbs did. I will show you all
ﬁﬁe difficulties which come up -- exactly the same two paradoxes -~ and how
finally one can resolve them, at least to some satisfaction. It will also give
us the opportunity to go into the actual Boltzmann equation and to connect it
with other things.

The model I am going to consider has nothing whatsoever to do with
a gas or mechanical system. But don't let that worry you, because I will show
you all the analogies, The mcdel is the following: Take a circle, and on the
circle take n equidistant points (vertices of a regular n-gon). Of these a
certain number is marked, and I am going to say that m of them are marked, These
m points form a set which I will call S, just for abbreviation, Now on each of -
the'g'points there sits a ball. This can be either black or white. In order to
be complefely definite, let us say that at time t¥0, all the balls are black.
Now comes the dynamics of this model, During each time unit (the model will be
discrete in time, and the length of the elémentary time interval will be unity)
every ball moves one step counterclockwise. But with the following proviso:
A ball moving from a point in the set S changes color. If the point isn't in S,
the ball doesn't blush; it meintains its cwn color. 4t the next step some new
balls will now be in S and égain move counterclockwise, All those which are in

S change color and those which aren't in S don't change color. So you go on.

i
3
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Now the question is, what is going to happen in the long run? You
can first of all argue quite intuitively that if the set S, where the blushing,
the changing of cclor occurs, is sufficiently irregular, then evenbualily we are
going to have roughly half white and half black ones. I can assure you that
if you take a poll of public opinion, this is the answer you will always get.
Let us now analyze this answer, Our analysis wili be a direct imitation of
what Boltzmann did, and you will see where one gets the paradox. Let me denote
by N, (t) the number of white balls at time t, and by Nb(t)-the mmber of black
balls at time t. At the beginning I have the condition that N (0) is equal to n.
That is my initial condition. Let NhKS,t) and Nb(S,t) be thé nurber of white

and black balls in the set S at time t. We have the conservation law:

N (S )N, (S)f) = m (5)

Now I am going to write the other conservation law for this model. I will follow
Boltzmann, religiously copying what he did for the case of the gas. What can I
say about Nb(t+l), the number of black balls at time t+17 It is certainly the
number of black balls at time t plus the ones I gain minus the ones I lose. Now
what do I gain? I gain all the white ones which are in the set 8. I losejall

the black ones in the set §. Therefore:

Ny (€ +1) = N () + N, (8;0—/\/5 (S, # 6)

No(te1)= N (€)+ M, (S£)- Ny(S,£) (7)
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To go further, we must make & special asswaption. After some time
has gone by, and if set S is pretty irreguler, the balls should be fairly
distributed, Thaﬁ is,‘the proportion of white balls in the set S ought to be
inlthe sane prbportion as in the set of all the balls, That is, a reasonable

approximation ought to be:

NG (St ) = Nb (€) | (8)

lw

N

o

p :
(S4) =N (¢) (9)
No saﬁe person would argue with this. I assure you that if a situation like
this came up in your daily work you would unflinchingly mske this assumption.
As & matter of faci, I wouldn't blame you, because if we didn't make such
assumptions we would be working against the progress of science -~ because it
is clearly, obviously so,

We can now begin to solve the whole thing. For subtracting equation

(7) from equation (6) and making use of our assumptions, we get:

NNl ) 2 (-2 2) M0 - Na4)] @

This is the simplest possible difference equation; it simply relates what happens
at time t+1 to the situation at time t. It will take you exactly a second to
see from this that the excess of black balls over white balls at time t is given

by:

C

1) =No@®)  ~ N O)-Nulo) (!wyf_q_'”é’ <)
n 7
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I will now make the assumption that 2m is 1ess'than n 3 in faect, I am going
to put }L equal to '-';?-“ , and assume that /.L is less than 1/2. Now if we
believe all this, then the excess of black over vhite balls will decay
exponentially, and hence, after a long enough time, they will nearly squalize.
And moreover, we have the feature of the H theorem: not only will the numbers
equalize, but the equalization will be irreversible.

This corresponds so well to our intuition that we are apt to overlook
the difficulties. So now we take a second look at the model, First of all,
the model is completely reversible., Again, I have exactly the same thing as
in dynamics, because suppose that it were an exact conclusion that the numbers
equalize. I start with "L black balls and take, say, & thousand steps. If
I rotate the set S one unit counterclockivise and then calling every black ball
white and every white ball black, I make the balle go around clockwise instead
of countarclockwise. The model doesn't know the difference, so the excess would
still keep decreasing exponentially. But after 999 steps I will have to come
back to where I started. So clearly, the conclusion is untenable. That's the
reversibility paradox applied to the model.

The second paradox is very simple here, because you see that after
27 steps you come exactly to the initial situation. The model is so designed
that it is strictly periodic. Let us represent the coler by either +1 or ~1;
let's say that black is +1 and white is -1. Then in y\. steps each ball, no
matter where it started, will have passed through all the points in the set S,
The. color will, therefore, 5ave changed yvi times, so that the final cclor will

be (~1)®. If v were cdd, then the black ball would have come ocut white.
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However, if you run over iLhe course again you again change color n times so
that you certainly come back to the initial color. 3o, the model is ccmpletelya
periodic with periodIZYL , and you have exactly -- or certainly & very strong
analeg with -- the situation of an actuai ras, with the exponential decay in
the rocle of the H theoren. )

| Mow the question is, where is the offender? This mcdel is very nice,
Because‘the offender sticks out. The offender clearly sits in the assumptions
(2) and (9), because there is no doubt that the conservation laws are valid,
and that's all we've dene, From there on, it was the simplest possible
elementary algebra., This assumption, or the analog thereof, was already made
by Boltzménn +~ only he didn't know it was en assumption. It is now so recognized
anc is referred to.usually by the German word "stosszahlansatz". There seems to
be no good Inglish translation, but we may call it the "collision number
postulate", In the original derivation of Boltimann, it seemed that this was
nol a new assumption, but that it was somehow inherent in the model, sco to spesak.
However, we now see clearly that it is an assumption’and mist try to justify it
in some way.

If we want to maintain our conclusion -- which we think is more or
less reasonable -- then we must somehow re-formulate cr re-interpret the model.,
Perhaps by calling things by different names we can save our result. This is
8lso a time~honcred scientific practice: if you cen't veat them, join them.

If there is somelhing wrong with the derivetion, but the result sesms tc be
ore or less reasonchile, the problem is te re-label and recrganize things to

make sense. And that is what I will show you, that we can get out of all these

difficulties by simply thinking statistically.
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Some of the objections can be answered almost immediately. After all,
with the recurrence paradox, we only run into difficulties at ’ext‘remel‘y long
times, of the order of n, If n is the Avogadro number,r\11023, and if it takes
a tenth, or hundredth, or a millionth of a second to perform an experiment, then
it will be éffer all quite a long time before this happens. laybe we can
save our results by saying that they hold only for time small compared to n, If
that is correct, then we will discover how this proviso has to be made. But
the other objection, ngmely of going for awhile in one direction, then violently
reversing the model and coming back, still.holds. That's a short time business.
It holds for one step or for two steps. There is nothing to prevent us from
moving just 2 few steps counterclockwise, shifting the set S one unit ccunfere
clockwise, chenging the colors of the balls, and going back. So clearly it
cannot be tenable to say that the excess of black balls is strictly decreasing
as our formula indicates. Now the question is, how to extricate ourselves in
a natural way from this situation and still end up with a result which is at
least reminiscent of this one. And that is where the probabilistic analysis
comes in.

Now let us be slightly more sophisticated -~ the sophistication will
increase as we go along. I'm moing to get a little formalism going, which I
will start now and finish in the next lecture. Let me introduce the following
notation: I'm going to number the points from 1 to n; p will be a number
between 1 and n; ' )

1 f pisin S

+ 10 f P is not "xvn S | (10)
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(-H 3? the ball o} o 8} 4ime 4 1S ;o[ack
O? Gt) = " . (11)

P

" ii:*i “I{-\ 'Hme« ba“ a’{ P a‘k *{'s'mg {; '(5 L\)‘\"{Q

This last quantity, of course, changes from time to time -~ at various times the

balls will be black or white. Now let me write out what I know about the model.
qu(t-a-l') is the color of the ball at the point p and time t+l. The ball

came there from p~l, and it changed color or it did not change color depending

on whether p-l1 was in the set S or wasn't in the set S. So it immediately

follows that:

/)Z? (‘t‘H) = EP“I'}ZP“‘ (ll:) : (12)

This is merely the symbolic way of writing tk;e dynamical description of my
model. It says that the color of the ball at p &bt time t+1, is the color of
the ball at the previous point at the previous time multiplied by -1 or +1
depénding on whether the color changed there or did not change there. If we

continue this recursicn we get, very easily, that
-L ( ) * s 5 o ’ T
C ) OZP O \/(J-l CP -2 59-—‘{: (13)

That's simply repeating this thing, p times. Since I assumed that at time zero
all the balls are black then ,(f t‘{o) is simply 1, because at time zero all the
’7( 5 are equal to one, That was my simplifying assumption. Now take the sum

of all the 7?
P

= Vo e (14)
T4 = LG Er
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What is the meaning of this sum? 72F’ is +1 for a black ball and ~l for a
white ball, so this sum is simply the number of black balls minus the pugber
of white balls. WNow I will divide the whole thing by n and speak then of the
proportional excess:
MO N l] = £ En Bt Bt
You see again that this is as far as I can go. But now I'm going to
say to myself the following: Suppose that all I know about this set S is that
it has exactly m elements But I have no idea where they are located. Then
{ for each possible location of the set S I can follow through and find this
number which I call the proﬁortional excess, At the end, I can look at all

these numbers. In other words, I will not study one individusl set S, but

I will rather study all possible sets S. I will look at the numbers

%{ [Nb('é)"Nw“) | (16)

S

one for each possible set S. And I hope that I will nctice the remarkable
phenomena that most of them cluster around (l-%p)t. True, we are going to
have a few of them away from this value, but most of them, in fact an overwhelm-
ing proportion of them, I hope to be very close to (l—2ft)t.

But first I will aim for the more modest result that the average of
all these numbers ~- that is; the average over all possible positions of the
set S -~ is precisely (l—%}L)t. So the problem now is to perform this average,
and I will demonstrate with complete precision in the next lecture that the

result is exactly the one we want. The operation is not completely specified,
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because I must tell you how to average. And that's alwaoys an element of
arﬁitrariness which, in my opinion, can never be entirely disposed of in any
physical situation. Somewhere you are going to get to a point where you will
have to decide how to perform the averaging. For the immediate purposes I
am going to assume that all positions of the set S are equally probable. That
means, there is-no way to distinguish, to prefer, one position over another.

Our results must then be qualified by saying that they are obtained under the

assumption that the positions of the set S are equally"probable,

S ot e
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SECOND LECTURE

Now I want to find the average:

* [Nb@f )-Ney Hﬁﬂ?g} = '<f}{_>;89~l Cop " Cprt 3 an)

Whatever else about averages can be said, an average of a sum is always the
sum of the averages. So now I put the average inside the sum (it will be
understood that we are averaging over all positions of S, so I can suppress the

symbol §.)¢

GRhowE]) = £ S (EFr By o

A1l you have to notice now is that all these averages are the same, Because
it doesn't really matter what p is. You can simply take any point -- and moreover

you can run the summation in the opposite order. Therefore, £

<qu' B\IJI;G:)“NW ({U> = & Szﬁ cos E&> (19)

How to calculate this average? So far, I haven't done anything ~- I
simply used the most rudimentary properties of the averaging operation. But
now we mﬁst define a littie bit of what we mean by this. We mean by this the
following: That all the (EEP afé either 41 or -1 subject to a condition. They
are subjegt to a condition because I know that I have exactly m eleﬁents in
this set S. So what is the.condition? It is thet if I sum all the Eponp
then I get m minuses and n-m pluses, or a total of n-2Zm. Thus the condition
which expresses the fact that.I have exactly m elements in the set S is

Z&P:n~%m - (20)
P

We can now say what the average means. It simply means to sum over all possible
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sequences 65,5€Eé,"‘63t subject to condition {20) and then divide by the
number of all possible sequences, That!s the definition of the average.

The number of possible sequences is very easy to get because I have
m elements to choose out of n objects, That's the binomial coefficient (:;,),
so we have the denominator out of the way. The nunerator is a little bit more
complicated. It is the quantity Eﬂ&i;"f% summed over all possible sequences
subject to the condition (20). I will now show you a trick for evaluating this
sum. Notice that it is the condition on the EEF which is the nuisance.
Because if we were free to sum over all possible.sequences, then it would be
very, very easy. In fact, it would be extraordinarily easy because you would
simply have és, summed over all possible values, times éfi summed over all
possible values, times 555 etc, Since the E;P can only be either plus or
minus one, these sums are trivial,

| Our trouble then is with this conditicn (20). This type of thing

occurs over and over again in all probability problems -~ this is a very
elementary example of it. We use the following trick: Noticing tha; all

numbers involved here are integers, consider the following formula:

P S = ’ ‘
fri‘L Q.‘f" < _
< Z } z{ =0
This is simply & standard formula in complex varisble theory written in a

somewhat un-standard form, The contour of integration is a circle around the

origin. Now in this formula, put ﬁ, ::%;é%,—f%+2ym « Let us then write down
F

this formula:




Pl
e

~

~2 3~ o
L Az (0if E5knam

— - (22)
' E+E &~ N+ 2m+ | :
N I O 1 |F PZ@nH-—Lm

But now the sum I am seeking is just

&‘Eq_“‘ag WML Etoo o+ Eym MM |
L Fe ) %
over all E%

Where now the sum is over all epsilons, since our nuisance condition is now
taken care of by the integral,

And now you interchange the integral with the summation:

._..’_..._ J-% S g gz"“"E{:
Z'ﬂ"{iu %Qm -n + 1 - i£'+ e, (24)

over oll E«'s

And the nice thing is that this sum I can calculate very easily, Because you

see that the general term in this summation can be written as follows:

t o n V \ _
ok - fﬁ<
‘ l /z&. ‘ ‘ Z (25)
k=1 k=t+]

Where J assume that t is less than n, The general term splits up into &
product of factors -- and the factors all depend ofx different sxibscripts. So
you can simply sum each factor separately, and then multiply them out. That
is, you can first perform the summation over E, s then over 67, , etc. Now
what happens if you sum the first factor over E‘ ? 5 ; is either plus one

f

* . . » Lrompul N o .
or minus one, so the result is simply (% — & ). How many such things are

there? All together, t of them. The last factor will behave differently,
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because there is no ¢ in the numerator. It gjvex, (= Z ), and there are

T

n~t such terms. So all the sum simply becomes (*‘9 - )t { m+§‘ )t and

now I can express my sum as a very neat integral:

n—t

Aoy dem Y28 .
20 Z'Zm “nel \ R ~ tE : (26)

‘This is a very simple, but a very common trick, and it is important to under-

stand all the steps. Now when you clean this up a little bit algebraically

you get |

¢ 2
._[_’ | _"“EL (H“E> G{E ‘ (27)

Zﬂ\(: z { + 2_'1 ‘:&zyﬂ

. Remember that I must take this expression and divide the whole thing

g

n
by { yq e
for ( 2} ) which will be of the same form. Indeed,

. dz

!

: H ' :::M 4 : 28
” 2m EE,-&--:W&,, REm+1 . | (28)
over all s
Because I'm simply counting each time ZPS»P is n-2m, and otherwise I cdon't

count at all. The expression on the right is the same as formula (23) when

t = 0. So it ought to be that

N O (2 I
m/ = anl § & 2 )

which is simply what you get from formula (27) by putting © = O. And it is

Now as a matter of fact, we can also write a very compl lcated formule

CPFLEETIN AT e T X R R ey L D e SRR T S e N SR 03 I e e A R MBS T R
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very easy to verify that this is indeed so. I will now write out, in its full

glory, the average which we want: :
% “ U+ = ) dz
<Nb@ N, (19> ‘ HZ Z (50)

(H-Z) Az
Z"

Z‘

That is a nice compact way of writing it, if you like it. Buet it
also gives me a way to calculate, It will be a nice simple exercise in the
method of steepest descent. I am interested in the case where n is very Jarge,
and T will assume that *m—‘ approaches /(,(, as n approaches infinity. Moreover,

n
I assume that Z,},l is less than one. Now I hope you are familiar with the

o PR e et g e,

principle of the method of steepest descent. We will apply it first to the
integral in the numerator. The first step is to write the integrand in
exponential form, It will be enough to consider only the factor that involves
n and m. The rest is a perfectly well defined function which doesn't change

<

with n and m, So we have that

(H,.Z‘)ﬂ' _ eﬂb?(""Z‘L)“ZMQ&B%

?_-Lm (31)
There is no point in worrying about the branch of the logarithm -- it doesn't

affect the result. Now we must find the place where the derivative of the

exponent is zero -~ that is the saddle point. Now what is the derivative of
this? It i _Z.:__V)_Z. . im For this to b impl, th ;E/ Ao
87 S . or is to be zero, simply means that
[+2* & ’ s

_’3__ s, which I can say isp, « (I may as well assume it is exactly equal tu/(L Js

|

Now if I subtract from one, I get 1 - /J‘\_ = ~- &nd I think that is all I

s
| 2,
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need to find Z s + TIhere are two values and we will take the positive one;
although it doesn't matter., Now, having found the saddle point, you substitute
fdriz.wherever you see it, the value of the saddle point.

What I need to calculate now is the saddle point for the integral
in the denominator. But the equation determining the saddle point is just the
one we have already written. The part of the integrand involving n and m hes
the same asymptotic behavior as before. The iz‘ is also exactly the zame, So
all that is left is simply the value of {_E't «z"}/(u-z."')] at the saddle point.
And what is 3t? Tt is just I-—Zf/l)é. Hence, by the saddle point method the

N (1‘: )~ Ny (‘é‘)) N (/-"Z/U. (32)

This simply means that the average over all possible positlcns of the set S -~

if these positions are assumed equally probablgv«~ agrees exactly with what we
had before. However, notice that in performing this limiting operation, I make
certain assumptions. I kept t fixed while n and m went tc infinity. The
important thing is that t was fixed while n went to infinity, which in terms of
physics means that t must be small compared to n., Otherwise you could not use
thevmethod of steepest descent, .If t weré of the order of mzgnitude of n, then
of course, the whole thing would not be justified. I would have to include the
factor invelving t in writing out the exponent, and the position of the saddle
point would be entirely different -~ the asymptotic behavior would be entireiy
different,

So it's only if t is small compared to n -- or better yet, if ¢ is

fixed while the number of points tends to ) ouwr statement can be maintained.

g o,

R A A A aatias
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Now this is completely in agreement with what is usually thought in statistical
mechanics and kinetic theory, that you can only believe in the conclusions of
kinetic theory or statistical mechanics if the times of observation are shert
compared to the underlying Poincare! cycle. (Remember I spoke earlier of
Poinéaré's theorem; the Poincare! theorem tells me that I eventuslly have t¢
come back close to my starting point in phase space. The mean time I heve to
walt before coming back -~ this can be very long -- is called Foincare' cycle).
In our model, the Poincare' cycle is 2n because the whole thing is periodic
with this period,

Let us think a little bit about what all this means. Suppose I'm
going to plot,ﬁ [Nb(\‘)‘ Nw(ﬂ 3 against t. How many curves am T going to get? I
am going to get (;%) curves because I get a different one for each choice of
the set S. "Each of these curves starts always with one, and is periodic with
period 2n., Now I am going to fix myéelf a t == I'm going to look at% these
curves only at one point. Think of n as being very large compared to t ~- think
of n being 1023, and of t being 106. Now at the time t each of the curves has
some value, and all these values concentrate very sirongly near (l;Z/Q)t. If T
were to draw the exponential curve (1~2/2)t, then I will observe that at any
fixed t most of the curves lie very close to it, I haven't demonstrated this
yeto, All I have demonstrated is that the average is exactly (l-E/Q)t. Now I
need something slightly more ;efined, namely the variance, I will skip this
calculation -~ it's elementary, but it's much more lengthy. What you do is to

colculate the average of this thing:

Nb(f)"Nu/(.ﬂ — (’k-* 2/'()

2
€

(33).

n
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over all possible positicns of the set S. This ie known as the variance; and
if you take the square root you get the standard deviation. I you caleulate
the standard deviation you will discover (2nd this is very interesting) that
with t fixed as n goes to infinity, the standard deviation is of order L%fﬁ? .
Roughly speaking, using the statistica1:3cr'business, this means that only 2
negligible.portion of my values lie more than three standard deviations away
ffom the mean (i~13/k)t. Now remember that n went to infinity, so the larger
n is the more these values concentrate at the mean. So really, it takes
extremely bad luck to observe a sizable deviation from this ( (-§3f}v)t.
. However, in spite of the convincingness of this argument, cne should
remember that an arbitrary assumpticn is floating around. Namely, in performing

my average I count all the sets S as being equal -~ as being peers of each

et e L e

other. This is something which one cannot justify. It seems natural, because
why should one set S be better than another one? Bub still, you can certainly
choose a set 3 for which the whole thing will deviate wvery much -~ all you ‘
have to do is to pick a set S very regularly., But the point that'is made
obvious is that such a set must be very special. 'Because they are really
proportionately extremely small in number. The predominant number of sets will
lead to this nice decreasing exponential curve. And that's how thermodynamics
or thermedynamical conclusiops ought to be understood. An appropriate way of
stating it is that for most of the configurations you're going to observe what
you think you ought to cbserve, Why nature is so kind that it agress with that,

is a philosophical question that I am not prepared to discuss with you herse,

because I really dontt know,




Since we have already learned something from this model, I would
like to push it somewhat further and finally to commect directly with the
Boltzmann equation and some of the more refined ways of discussioﬂg stochastic
phenomena in physics. The first step is to fird some way to awoid the
integrals, These integrals plague me because I wes such‘an honest fellow and
stuck laboriously and religiously to sets with exactly m elements. Now every-
body knows that I could allow certain leewey in the number of elgnents, so I'm
going to simplify my life in the following way. I will assume that only on the
average does the set S have m elements, The set S may have more or 1t mey have
less, bul on the average it ought to have m. I did not make this assumption
before, because one ought to go through the czleculstion cnce, at least, and see
that nothing bad happens. Besides you have seen & 1little trick which mﬁy-prove
useful to you in the future.

But now I'm going to change thé model slightly, and assume the
following. I am not going to determine my set S by placing m points, Instead
I am going to have a coin which has the probability /J. of falling heads and
the probability L—}l. of falling tails. And 2t each point of my circle I am
going to toss this coin, If it is heads, I'm going to put the point in the
set S. If it is tails, I'm not going to put it in the set S. So now the EE%

themselves are not any more the well defined quantities of one or minus one

vhether you're in the set 3 or not., They now depend on the outcome of the flip
of the coin ~- or in technical Jjargon, they beccome random variebles., Kach EE&

is -1 with probability /UL , and +1 with prebability 1w/j, . Moreover, they
are completely independent, because I assume that each time I move from one

point to another, I'm going to flip this coin zgain, irdependently of the

previous toss,

R
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Now, how many elements are there in the set 57 Well, that i§ not

a well defined quantity snymore ~- it is clearly also a random varieble. The

. S v
number of elements in the set 8 can be found from the summation of 2l the C Ea 0

That won't quite give i%t to me because the sum is ]~Z [V} just as before. So

you see that <
[fY] - <EE:>éEE§)
‘ 2

Now what is the average number of elements in the set $? This is just

<[m> = ?‘j (h “Z<Ef>) 3 (35)

and the average <EEEF;> is simply'l~%LL . So by the time you figure this out,

Gy = np
12) | .

and /LL wa.s ~?T- you remember, so on the average I have the right number of

(34)

LRt B e fonge i e et o)

you get

Bewa s
o

elements, Also you can show that if you take the actual number of elements in

S minus the average number, if you square this, average it, and then take the
‘square rcot to get the standard deviation, then this is of the order of the
gquare root of n. You might say that the number of elements in & is roughl§
7?}}, with an error of‘the‘order of,V/;ajw . That means wvery close to {}fL, , so
we'lll expect that a result obtained from this model ought to be exactly the

same as the result obtaingd from the other medel. And this one is going to be

much easier,

These of you wno have studied a little bit of the standard statistical

mechanics may have heard of the grand canonical ensemble, The grand canonical
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ensemblé is the one in which you allow the number of particles in your system
to vary, Yet the results of calculations using the grand cenonical ensemble.
are exactly the same -- because although you allow the number of particles to
vary, the mean is the prescribed one and the variations are very small, What I
am doing right now, really, is replacing & canonical by a grand canonical
ensemble. If you look at the text books on statistical mechanies, you will see
tﬁat with the canonical ensemble you always have the steepest descent calculé~
tion, always these complicated integrals. With the grand canonical ensemtle
you avoid them., Of course, you have to prove the equivalence, and that is

usually done only roughly., Sometimes they aren't equivalent, but I am not going

]

to worry you with that, In simple cases, it stands to reason that if you allow

fhe number of elements to vary, very little, the results should not change very
much.
Now, had I chosen this model from the beginning, I'd have no

difficulties at all. You remember that I had to calculate

- N\
\/C,EL-----‘EE/ , (37)
But now the averaging is different. We not only have many possible positions

of the set §, but now we have also the variability in the number of elements,

In fact, the averaging is ncow simply the kind of averaging you would use in
playing this game of tossing a coin, And everything is extremely simple because
the tosses are independent; I assumed so. The probability theory that everyoody

knows tells us that the average of a product of independent things is the product

of the averages. Thereforé,

N L ENCEN L e N, o
Em Y ~(E)CEY e
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i N AN _
Since a1l the averages are equal, this is simply the average \§~;> » But
we have seen that <§ij7 :"“?fo. , so again you find the result

. £+ : ,

N, ) .

'/E‘EL""“E.L7 _— (]__2/’.&> (39)
We are not surprised, but at the same time we ought to be mildly pleased, Since
we also got this result from the exact calculation,* there clearly is no
question of the zgreement within the cancnical and grand canonical treatments
in this particular case; And we have here the wonderful thing thati this
calculation was immediate, Now with this change in model, I am going to rediscuss
the whole problem, [

(Remark: I always have to assume that /.L is less than 1/2. If if

is equal to 1/2, then nothing will ever change from the average because \~~§ka,

R a a

is zero, If }). is bigger than 1/2 it is very interesting, because the whole

thing oscillates. We have to have /A, less than 1/2 so that the change of

L

color will not be too common an event., That's all the assumption I need, and

I will assume from now on that this is so. Of course, if }L‘ i8 close po 1/2,
then you will change colors so actively, and so often, that tﬁe equalization wili
take place very quickly.)

I would like now to tune up the whole problem anew and bring out further
analogies with thermodynamics. In this treatment we'll try to parallel that of
Gibbs., The idea of Gibbs was the following: Initially, at time t=0, you are
given a certain distribution of systems in phase space, Then as time progresses,

this distribution evclves in a certain way. You try to prove that in some sense

this distributicn becomes more and more uniform on the energy surface., To put
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it another way, if you have a localized distribution at time t=0 -- the

probzbility is concentrated mainly over a small region of space ~- then to

begin with you know where your system is, more or less., As time goes on, you

know less and less of where the system is. The system, so to speak, wanders

around, dissolves. And the knowledge as to where it is gets less and less

because of the motion. This is not quite correct, because you really have to
introduce all sorts of auiiliary notions such as the coarse-grained density,
etc. But one can imitate still, to some extent, what Gibbs tried to do and then

see where one runs into difficulties again. Fortunately, for this particular

model, one can solve everything. The behavior is simple enough that one can

-

see easily what happens.

The model is the one with the modification that the éf} are now

+

independent (chosen independently by tossing this fi.-coin, you might say). Let
us produce a dictionary of terms. First, what is phase space for our model?
Well, it's very simple space in this case, In mechanics, it's the space of
all coordinates and momenta -- that means all the attributes required to define
the system uniquely. What do I have to do to define my system uniquely? I have
to know which ball is black and which is white on each point. That is, I have
to know a sequence of plus and minus ones. So the phase space, here, is simply
a finite set of points, each point being a sequence of n plus or minus ones.
n n
There are 23 such sequences ~- that is,?L points in my phase space,
Now suppose that initially at time zero I have a certain distribution.
- — .
?(’7 s 0) ( ﬁl is a point in my phase space, that is a sequence of * 1's ,
%A

n
which I abbreviate by a vector). 72 can assume A, different values so that

o e )
?(72 . O ) is really a set of numbers. These numbers give me a distribution if
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none are negative, and if they all add up to one. That is, if
70) >0 md ?(ﬁ,o = | (ko)
P’)z, / / ey .
| n

—
I have a distribution. For example, you can say that ?("fz ,0 ) is 1 for

—

the vector ’72‘ = (1 I} «+,1) , and is O for all other ones. That would
mean that I would know initially with complete certainty that all the balls are
black. But I don't have to take this particular distribution. I can say that
I have only partial knowledge at the beginning, then take‘any distribution I
like for ?('7{ y Q).

The question is, how does the distribution evolve in time? That

depends, of course, on the position of the set S. The distribution evolves in

time according to the equation

9(“21,'.,...‘3’?h3t+!)= ?(E,V(L,Eﬁ?sa-“ua?’(' ','é) !(ul)
ol

Y
This is the equation of evolution of ? (3)2 ,'f:). For those of you who are

B Y

familiar with the terminology, this is the Liouville equation for the model. It.
tells you how the inii:ial density of an ensemble of systems evolves in time,A if
the individual systems follow the equations of motion., In statistical mechéniés )
the Liouﬁlle equat.i:m unfortunately cannot be solved explicitly. This model,
of course, was so designed as to be able to solve it. Let me now decide that

since I already have probability in the whole business, I will treat the problem

probabilisti cally,

Let me completeiy forget that there is a deterministic way in which

the whole thing evolves., T can set up what will soon emerge as a very simple
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Markov chain and argue as follows. The state of & system is defined entirely
Y : .
by a vector such as ’)Z . At each time step I make a transition from this
vector to another vector depending on what my set § is. What I know is that
-
if at time t my model is in the state 8 then at time t+1 it will be 4in the
) A v -A . é
state 72 where 72 is simply related to 8 . Namely,
5 = &My
5 = &, (L2)
)2 -2,
on = gn’ng |
If I lmow what my set S is, then I know the Es —sol know the exact transi-
tion. That's perfectly clear, But in this model, the E § are random variables,
So I must ask, what is the probability of this transition? That is, what is the
probability that I make a specified transition in one step. Let me call this

,)2) » It is given by

transition probablllt.f P( o
P(leaz}:?ro[) €i= SPZM 575"53?33' ) 8n=gn¢2‘ (43)

/
!
(remember that all the Es s 72 S, and 8 S are either plus one or minus one,
|

—

I
so whether you write E or = '}z ort or
¥ g ' £ \“'72, 3 S : 5 s
it doesn't matter., It is a very nice algebra). Now this can be easily

{
calculated because I know that the E S are independent, To say that the epsilons

are chosen independently means exactly that

; Reb2E=27 5 &= 527235"""38n=gh'7z‘} — ( Lk)
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" Now there comes a little bit of a problem -~ & very minor one, I
don't know whether Squh-*-l is plus one or minus one, It can be either., 3o

the best way to write it is

- U ¢ |
" b %Ek" %'k(yZle-Hg = 'li + 2 éhoz‘“! (ukt)

Because now if 8{2‘2 4 is equal to plus one, then I'm going to gst l—/u,
for the probability that:, Ek. is one, If Shy& R+ is minus one, then I
am going to get /.L_ exactly, so this works very nicely. So now the transition

probability is just

Sy T L =2 J
?(5.\7)2;[[; Z %gmw aps "

of a very well developed theory -- the theory of Markov chéins.

. A !

Now that I have the probability of a transition from a state 5 to'a state ."fp
——n £
[

72 I'm really in a position to get somewhere. Because now I can make use g

n

Now remember what the initial distribution is. It's 2 positive

numbers which add up to one. I can think of the initial distribution as a
n
vector with 2, components. In a similar way, I can think of the transition
== . n n ,
probability P( S l’)7 as a matrix of order 7, X4 . To see what the
. ) —

distribution after one step is we just mulliply the vecter™ e (O) (that is,
the initial distribution) by the matrix. To cee what héppens after two sﬁéps

we multiply 2gain by the same matrix, which I will ¢all P. Consequently, to

see what happens after t steps, we simply need to raise the matrix to the power t:

3(t) = P3(o) W

NSl dumaaianis

DT

Tm———

et it 280




w37

So, if I accept this theory, then all I have to do 38 find ?Dt’ and apply it
to the initlal disteibusion. Thaa gives me the distribuilon st time t. In-
particular, what I want to show is that no maiier where I start at ths
.beginnlno «- that is, no matter whai §><O> I chocse -~ if % begomes large
enough then ths componenis of the vector §>Gﬁ) approazh the same values.
So if T am allowed %o replace my model by a Markov chain, then everything
will depend c the proeperties of the matrix P. I hope that with a certain
amount of clevernsss I will be able to decipher these properties. |

This method of approach is now known in the trade-gs the Master
equation approach. I will tell you why it is called that in a moment. If you

aimply write what happens in the transitien from time 4 %o time t plus 1lg
- —
t+1) = PP()
P ( | Pol (16)

then this is known as the "Master equation." This term was proposed by Uhlenbteck
many years ago and it was thought initiaily that the "Master" referred to him.
But the "™Master" in this terminology refers to this equation which gives you

all the information ycu need. For instance, in the equation we had before, where

I considered the number of black balls minus ths number of white balls, the infor-

mation was only partial.. Even though I knew how the excess of black balls waé
going to behave, I didn't reallyiknow what the probability was that é black ball
sits in place 17 after a time t. But if I am so incredibly insistent on having
such information, I can decipher it from this Masher equatiuvn becauss it gives me
precisely, at <ach time; the probability of any given situation. That’s why itts
tﬁlled.the Maszter equation,

Now the ordirary procedure in physics is to s¢imply assume the Master

equation. You say that betwsen every pair of states I hsve & pessible transition.
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Somehow I discover the transition probability, and then from there on I Just
study this equation. It is quite interssting pedagogically -- and I will show it

to you, although I will have to skip many details -~ that I can derive such an

equation for a gas. And then, from this equation, which is linear, derive the

non-linear equation of Boltzmann. So it will be an interesting example where a

non-linear equation is a consequence of a linear one -- and that is an interesting
Phenomenon which ought to be looked at a little bit. -

But the one remaining problem now facing many people»-- and a great deal
of investigation is being done on it -~ is whether or not this approach can be

justified. On our example we can test whether it is justifiable or not. Notice

what I have done.- I get only the transition probability for one step in time. I

But in

RIBIITY

SR n e
ARG

then use the resulting matrix to propagate the distribution forever.

reality, what I should do is solve the Liouville equation (equation L1) and then

do the averaging at the end. In both cases, I am averaging over the positions of

Rreree X VEENE SNRTICLLTNY P

[SAYS 114 LEPT peRmre o

the set S. Only in one case I do the averaging and then the propagation, and in
the .other thg propagation and then the averaging. In fact, for t:hose of you who
are familiar with the terminology, the first procedure which goes with the Master
equation is called repeatsd averaging. Wheréas, what really makes sense, is to
solve the Liouvillé equation for time t and then perform the averag:ing° Now it's
not at all clear that these things are interchaﬁgeable, that these procedures are
equivalent. Because notice what one really does. One can put it picturesquely,

although not huite correctlys; as follows. The one relation between SD <%é\)

~and ?(0) Wwe can symbolize by

o(+) = {Lo(t-1)) = () plt-1) = <L>§(O ()

You get the propagation by repeated averaging. The other corresponding to

o(t+1) = IF olo)) = <}f°>9(@j ()

e R e e
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would be the modified Gibbs approach, to solve the liouville pquation'if you can
(you almost never can) and then averags.

People usually manage to give at least a justificatien, but not quite
a proof, that the results are essentially the same for the dynamical systeé. It's
a very profound fact, because it makes life so much simpler. Because you don't
have to solve Liouville's equation, which is tantamount to solving the equations
of motion. So if you could once and for all prove that it doesn't matter if
you'd average the {E+h' ﬁower of the operator of if you average the operator and
raise it to the ‘EJHD power, then you'd be in very good shap54 As I say, in

most of the present day applications of probability, statistical mechanics, and

e
ATy

kinetic theory everyone always makes this assumption anyway. He takes what happens
during a very short time, averages the transition operator over that short time,

and uses this average operator as the one which propégates. That's done not

X worwnd W AT B
SOTHPLIIT oANPPYR eI 40vs
. ok el W o

+ e

only in classical statistical mechanics, but in quantum statistical mechanics as

. rwew

well. For instance, in the supposed derivation of the transport equation, first
done. by Pauli and Fierz. You always say, well there are some random phases; and

. after a short time you average over them. Then you go for a little time and you
again average over them. You constantly keep averaging, whereas in reality you -
ought to wait until the end of the calculation.

Now in the next lecture I will show you first of all how one can write
exéctly the solution for both of these approaches. Then we will see how ths two
things differ, and try to talk ourselves out of this difference. Then I will show

_you, with some detail, how a corresponding Master equation can be written for an
ideal gas with binary collisions. The Master equation will be a linear equation

from which all general conciusions can be derived: +the H-theorem and various

! ey eI
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other ﬁhingso I will show you how it is related to the non-linear Boltzmann

equation which was discussed with you by Professor Dresden. And then with this

background we can go on and look at scme other stochastié models which, although

different, are not unrelated. For instance, in the theory of Brownian motion

a very similar treatment can be done, The operators are more complicated and the

¢

Master equation becomes a diffusion equation. But, still, fundamentally the same

ideas persist.

Toowes  p gy o—m.
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THIRD LECTURE

To remind you where we were, I tried to discuss this problem from what
one might say is a purely probabilist;c point of view., For I simply said to
myself that my system can be in any state described by a vector ;z whose
components are either plus ones or mingfhones. And in each elementary step 1
can perform a transition from a state 8 to a state i s and I would like
to calculate the probability of such a transition. In fact, I have already

calculated it. Now I might as well write out the equation completely and simply

e (ftH) = ;Q@IQP(SW/ ()

This, as a matter of fact; is exactly the matrix equation (L6} written out

& wwnite AT RN
-
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in its full glory. In this connection it is called the Master equation. In

the mathematical literature it is referred to as the Chapman-Kolmogoroff equation.

- .
N

But of course its just the perfectly obvious consequence of our assumptions.
I am first going to provide myself with a convenient basis in my phase
space. Remember that my phase space is a very simple set whose elements are

vectors with components that are plus one or minus one. Consider the following

functionss

» . . C o . Ry .< l < . .. '
~',02k3(7k77¢ )7?117242m’ -’7t77. Z\ k<L emd
How many such quantities do I have? It's perfectly obvious that I have n
/ . n .
single _,7Zs . I have ('L) ’Vzh I?I; . k <L etc. So there are
"

1+n+(g>+(2)+'”" +(S) =%

of these things. I claim that they form a complete set. First of all, what

" exactly

does ”z| mean? ')Zl ought to be looked at as a function defined on my space




42~

of all possible sequences of ones and minus ones. It means to always take the

first component. That's the function. And %{?l always msang to take the
product of the h ‘m, component and the ﬂ,‘w\, component. So we have here Z

functions defined on the set of all possible sequences of plus ones and minus

ones of length n. ‘
' —
Now I claim that every function of the vector 7Z
?(7230) —- can be writlen in terms of these functions., In fact,

?(72 )— n ZE“?&+ZCR17&79, +Cmn77 ? (49)

In fact,

~ ard in particular

This is similar to expanding a function into & series of harmonics.

you can easily find the coefficients by Fourier's formula, if you wish. For

instance, {s
b 700

This formula, and in fact the validity of the expansion, follows from ﬁhe fact

L
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that my functions are orthogonal. The reason I have a—lﬁ in formula (49) simply
goes back to the condition that the sum of all the 9 values must be one. Except
for this constant all the terms sum to zero. So the constant must be such that
when it is multiplied by 2, it will give you one, and then, of course, itts
. I/zn .

And now the question is, what happens if I operaie with the matrix on
each individual term of the expansion? Let's take a typical term, a very simple

one -~ let's take 72 7Z . It's a vector of zﬂ components, Now let's

apply the matrix 'P to 1t and see what happens. The result is

”Z”Z% Z’S% '”"[ an&%ﬁ”?!zﬂ] o
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where we have made use of equation {43'). What does it mean to sum over g ?

It means summing over all 8‘ ’ 82 o 0 oes gn » But now look. What you

are sufnming is a product of independent functiqns. Hence, in summing, you can
simply sum things separately and then multiply to get the answer. It's again
like integrating a function of n variables which happens to be a product of
functions of individual variables. You know very well that such a thing 1s just
a product of integrals, Now the summation over g an& S is evidéntly special.

But what is the summation of one of the other factors? When Sk is + 1 you get

] -—2#
2 ?lu- |

and when Sh is ~ 1 you get ) 2/“
| —
2 OZRH

So, if you add them together, you ge’c one, What, however, about the factor that

o st

Conne st

Tt S VRIS e LT
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R S,

has the S f ? There are only two values for 8’ , plus one and minus one, so

(1-21)7,

So finally when you perform the whole sum, believe it or not, you're going to

P{”Z”Z? ‘*%‘W“Z e

Now all this is actually something which one ought to go through by

it's going to be

oneself, It's extremely simple, and in fact the symbolism makes it loock muéﬁ
deeper than it reaily is, Yet, if you did not have the symbolism, it would take

me three blackboards to write it all out. It is something you can, with the

greatest of ease, check for yourself. When the operator P is applied to any of




Ll
the terms in the expansion (49) the following two things happen: It multiplies
them by (I-—Z}A), that means it decreases their length in that proportion., And
then it shifts the indices by one. This is in fact a descripticn of the operator

P. You saw this happen in the example we went through, and it is easy to show

that it is generally so. Now it is very interesting to see what happens if you

4 .
. .apply the operator twice, It means multiplying by (’—;Zfl) and shifting the
| . : o AE
indices by two. If I apply it t times, then I am simply going to have l~29M
and the indices will be shifted by t. There is the usual understanding, thet

we mentioned before, that if by any chance some number becomes bigger than n;

Pt

pox

then you simply reduce it modulo n to get back within the range. Now we can

immediately write the solution of the Master equaticn. Everything was constructed

Moo My KL g

P

so that no trouble could possibly arise and the solution is

| 2t << '
9(7) 2—2‘? + (-2 fZC‘JZJ(FZ/‘*) > Cfe[?wt?é%”

k<L
nt.

~ --+<l'~2/~0 CIYI |+t 2,+’t.“‘.7Z"";t

(refer to equation 49).

W
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(53)

Now let!'s take a look at it. This is a very interesting result,
because it agrees completely with our intuition, Notice that all the terms
except‘the first one have an exponential  tacked to them. So all of them vanish
exponentially, as t goes Lo infinity. And in the limit, you get the distribu-

" tion which is the uniform distribution., This is actually a general feature

o
zn.
of all such equations where the matrix P is a stochastic matrix (there are

exceptions, but they are minor exceptions) -~ If a matrix has all its elements

non-negative, and if the sum cf the elements in each row is one, such a matrix

is called a stochastic matrix, Barring certain exceptions which I am not going to
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go into, a high power of such an operator destroys eve;ything except one funda-
mental eigenvector. All other eigenvectors are annihilated as you easily can
see from (53). You have here a very good example of the disappearance of infor-
mation. My initial distribution ?(’TZ‘; 0) could have been concentrated on one
point -~ I could have said it was exactly equal to one at one specific vector;
and zero otherwise. So I would know precisely the state of the system at time
‘gzero, But at the end, all the states becoms equally probable. Then I know as i

little as possible about the system. I started from complete knowladge and

et bt e

ended up with complete ignorance. {This is not unlike the behavior of students,

except that their initial state is somewhat different.)

~LORARY

However, all this was based on definitely treating the whole thing by

5

probability methods. Because I simply assumed that I could replace my model

- M s PR
CONMT AT LNYRBAT
i o *

by a stochastic model. I said to myself, I don't care what the detailed

mechanism is. I will replace my mqgil by a model in which I have at each time
—

interval a transition from a state ES to a state 72 s with the probability

S T VN

B EONE

glven by a qomplicated formula. And the only place I used the dynamics of the

model was to guess, or to derive if you wish, the formula for the tfansition

probability. I emphasize this, because I am going to follow the same procedure %
in deriving the Boltzmann equation. I am going to do exactly the same thing.

. * On this model we can gc farther, however. Because we can ask ourselves,
can we really justify this probability approach? To answer this question, I

/_4:mu,st go Eack to the fundamental problem, whether <Lt> is the same as
<3~>§£ . In general;, this is an extremely complicated question. There is

now some hope, because there are some partial results. Both in this country and

A AR S, L . e ezl o e e Dt S o ok Wi

in Russia there are many people who have tried to approach this particular
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problem for actual dynamical systems. But the difficulty is that you can never

solve the analog of equation (41) -~ that 1s, the Liouville equatlon which gives
you the evolutioq of the distribution in phase space. It involves all the compli-
cations of the equétions of motion of a compiicated dynamical system. OSince it
is impossible to solve i% rigorously, it seems very difficult at first to see

how one. could possibly justify the Boltzmann procedure- Here, however, every-

thing is extremely easy. Because the Liouville equation can be solved exactly

and I can perform the averaging at the end.
And now let us see what happens. I will still start with exactly

ary

the same initial distribution, but now I will use equation (Ll) and write out

—
the exact formula for ?(’Z,'(Z) - Here you will discover

?(éﬁt) = ont Z\CPOZP..{E? EP'H p-&t—l
(5h) 7

* % PJZ,,J,{ T (& '€P*f-')(~q' )t 3

—Now.of course, the coefficients which are attached to these terms do not

b
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decrease exponentially. They are sither plus one or minus one, because remem-

ber that each EEP is either plus one or minus one. But that's not surprising
after all, because I have not yet performed the average over the positions of

the set S. What I have written so far simply represents L:? s the operator raised

to the power t. So I must now perform the average over the positions of the

set S:

{PO)) = 3 Zcpﬂzwt@?epﬂ- )
%CPWM st <( Pﬁ , /(eqf 8%-4»* L (59

And now you discover a very interesting thing ~- that the first two terms are

just the same as before. Because <QE¥>- . E;?+t-l>> is just an average of a

R N T P T T
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product. Since I have assume.d‘ that the 89 were chosen independently (remember

I flipped a coln to determine at each point P) Consequer'tlj,

& bt Bt ) = <€P>“"<€P+t~> (1- Q/*) (56)

So the first two terms are exactly what I had before. The trouble begins with
the next term. In the next term, notice that you have (E ‘e @ 4 )

and (Eq_‘ . q_,‘-é_,} . If these two groups were entirely separate, if they

did not have any e in common, we could ag&in~'say that the avgrage of the ot
product is the product of -th_e averages and you would get what you shoulds.(l-z/u) .

Unfortunately, however, these groups will not be non-overlapping for all of the

terms. Let me define (at ‘\q- q-—-?P > 't .
A(qur')t) = Q.(‘(J"Q-) “{_‘ C«!—"T’\é‘&) | (57)

Now if you calculate this ai'erage, you get the following:

A4 st)
ot er ooty ~ (oo™

Whai'; this means is that if p and q are close together the decay factor is

-~
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(l—ZP)z(?-q') which does not decay. It stays the same as p goes to infinity.
To add insult to injury, the very last term, C n’77 77 won't decay at all.
Nothirg will happen to it.
Now what is the troubls, and how do we deal With it? Ons should try
to solve Liouville's equa‘ciori, and one should average. This is definitely carrezst -
it is certainly the way one sh;:mld do the problem. Bul; lo and behold;, you do
not gst the same result as with the more convenient Boltzmann approach. So
this is the real difficuliy ~- and it occurs aliso in the actual physical cases

What you reslly want is to use the Boltzmann app.roach which you know how to

handle and apply. But all yc;u really have is Liouville's equation with the
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possibility of some averaging. And here you are certainly not led to quite
the same result. Fortunately, it is not very serious in this case.

You can talk your way oubt of it as follows (there are several ways of
talking oneself out of it, but we will only look at one of them). Suppose that
we start from a syzrmetric_distribution; this means that the function e(ﬁ s O)-is
a symetric function in the arguments 77,5' . °ﬂ72\ » In other words, there is no
distinction between the points., You don't know which is which. If P(’T} 0)
is to be a symmetric distribution, then all the CK/S are the same, all the

—~ / R
“kt ) are the same, etc. Now even if you start with a symmeiric di.stribution.,

~as you should. then as the thing evolves even that is destroyed. This is be- . §§
cause som? of the coefficients will be multiplied by [{-X },L )2{: and some will %%;
be multiplied by ( [ —2/\; )P"Q— . Hence, you might say that, in time, the i gg
original indistinguishability of sites gets destroyed. In the language of gases; f: f
if you wish: At time zero you may not be able to tell which particle is which E’:. !
but by the time they collide a few times it is possible to re-estgblish thelir ; i

identity. That's not a very pleasant perspective. Consequently, what I should
really do is not only to follow the motion in time and then perform an average
over the positions of the set S. But in addition to that, I should perform s
symmetrization on all the variables 7!&. .

' This 1s not a logical proof which is independent of how persuasive

I am. What I'm saying right now is really a matter of belief; because I have

no logical coumpulsien for it. But you can see that since it is really impossible
to follow each particle sepsrately. and know where it is all the time, and wha%

it's color is, that this iﬁdistinguishabi‘lity should be méi.ntained all the time.

So now if you also symmetrize -~ that is, if you average over all possible
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arrangements of the /)Z, ves .3’7“ -- then you will discover the following 'inf
)

teresting things. First of all, the two terms we like are not affected. They

¢
'%T+'0—2P)C'Z;Z& (59)

(since all the Ch’s are the same, I can take Cj = Cb\ outside the sum). Now

are. just

I want to show you what happens to the terms with which we had difficulty. They

become Al -
<:m ZE: (b—ka) Py g1 €)

1£<PL9Lt , .
(2) Tlepeqgt e fgrt (60)
Now we like the terms for which A@,q ,{) is equal to '2,{ + The terms

vwhich we don't like are the ones for which A(P,q.j'l‘.) is less than 7»'& .

— e~
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The number of such terms is only of order n. Bu% the denominator is of order

i,

'VL?' . Cbnsequently, the proportion of objectionable terms is very small --
(remember that n has to go to infinity).
| Now the same thing happens for every term. In the next one s wWe'lre 3
going to have (g) in the denominator, while the number of undesirab}es is |
only going to be of order nl . .Consequently you can say to yourself, 1f you
are a physicist: all right; I am simply going to neglect the ones I don't like
becat;se there are so few of them in comparison to the others. However, nothing
can be done to the very last ‘.term in (55), because it simply does not change at
all. No matter what you do with this model, the last term simply insists on
staying. No symmetrization will help you -~ nothing will help you except to
. simply forbid terms like this. You can think of it as follows: If C‘ 2T

were sizable then my initial distribution would have a lot of this extraordi- %

rarily high harmonic component. It would bs an extremely wiggly thing. If
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you think of an ordinary Fourier series, where for instance a coefficient of a
very high harmonic, say 10,000, is sizable then that means that you have compo-
nents in the curve of frequency 10,000. It is terribly wiggly, so that you have
to #now the curve with great precision over very small time intervais. ?Eat's
the Fourier's series case. In this case, I must simply assume that P(ﬂ ’ O)
is a relatively smooth function; that is, I cannot allow my initial distribu-
tion tb be too fine-grained. In particular, I would not be allowed to start with
all the balls black. That's too sharp, and the CfZ'-"‘n, coefficient is simply
one, In fact, all of the coefficlents are one.

S0, I must first of all, assume that ?(77, 0) is smooth so that I
can neglect the last coefficient and others like it. Secondly, I must symmetrize.
Even then I still have a problem. \Because there are a lot of terms 'in ocquation -
(55), and even though in each individual term I am throwing away only a small
proportion of the members, it could be that the cumulative error I am going to
" make is going to hurt me. Actually, I'm not even sure on this model whether I
can show phis or note In the physical literature,’where one trie; to imitate
this for the real Liouville equation for a gas, all that is done, and not even
that quite precisely, is to show that in the few early terms the error is of
small order. Whether or not they will accumulate is difficult to say.

On the other hand, you can say to yoursélf that I'm not going to be so
ambitious as to justify the full Master equation. Rather, I'm going to stick
to physical statements about single particles, pairé of particles, or triples
of particles., Don't forget that the Master equation gives you a description

of the whole statistics of all the sites of particles, If I am only going to

ask questicns which will never involve correlations or joint distributions of

o ne
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more than three particles, then, of course, I will never go beyond the t;riple
product of the 7ZIS « The neglect of the terms which don't decay will then be
of course perfectly justified.

Consequently, this already sheds some light on how far we should
trust the Master equation. We certainly ought not to trust it when it comes to
conclusions involving numbers of particles comparable to the total number. But

presumably you may as well accept everything else. Sc we may replace our deter-

ministic model -- you might call it a deterministic model with final averaging--

byé stochastic one. -

v
iy b

There are still various inconveniences involved. We may have to deal ,

with infinite matrices, for instance. Because really, if you want to be & 'é
'mathematician, you would have to perform the iimit N—> o< . But then you g
have an infinite matrix and the purely mathematical nuisances become_very‘ cumber- g
some to deal with. So close your eyes to it a little bit, and simply kser n %

fixed. But consider t small compared to n -- for instance, you allow t to go as
far as the square root of n. I will postpone further discussion of these points :
until I come to the Boltzmann equation where the same difficulty arises.

This model has been uéei‘ul to us. On it you have seen in excruciating
detail essentially all the difficulties, all the problems and all the approaches
that one uses in the kinetic theory of non-equilibrium phenomena. It perhaps :
looked a little more formidable than it really was, because the formulas were so
long. I will now see what can be done by honestly assuming from the very

beginning what yéu might call a stochastic model. Let me first say a few intro-

ductory words. In c,lassicai physics -- (that's discounting quantum mechanics i

where there are various added features) -- the use of probability is twofcld.
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Thers are some theories which, from the very beginning, cry out for a prab-.
ability model. Without ever saying why or without bothering to justify it, one
simply makes an assumption that the process under consideration is what we will
call a random process. One then proceeds with an analysis of that. Examples
of such problems would be Brownian motion, nolse in electrical circuits, and
similar problems. In all of these you are willing to accept a stochastic model
from the very beginning. ;
On the other hand, there is a much larger and slder body of physical '
theory -~ revolving, roughly speaking, around kinetic theory and statistical.

mechanics -- where the use of probability theory'has to be justified. In fact

the old masters of the game, primarily Boltzmann, felt very uncomfortable about
using ﬁfobability. Even now, the majority of physicists, when faced with matters x;}
involving gases or liquids, are very reluctant to use it. They will tell you EE
that there must be some way in which they caﬁ treat it purely dynamically.

In the example which I discussed at such great length I have tried
to show you at least that it's possible to justify a probability model. Except
that even when this is done, there still remains this necessity of averaging.

In every probabilistic model in Physics and in all other sciences there must be

PRSI Y: HS WP A

some lack of specification over which you can average. In the éxample I consi-
'dered it was the set S. That's the whole problem as to how probability can be
introduced in kinetic theories of mechanics. It's not completely solved yet;
it's in a state of flux. But what I would like to show you is that at least as
far as the theory of the?ideal gas is concerned, the most elementary portion of

Boltzmann's work can be put into a probabilistic scheme quite consistently. In

Just the same way we wrote out the Master equation for our model, we can also &




P

~53-
write a Master equation for an ideal gas. We can then study it as a mathematical

entity and see whether conclusions we derive from it do or do not agree with

the standard conclusions of other theories. This point of view leads to a

variety of problems both mathematical and physical. Some of the mathematical
problems, remarkébly enough, have not been properly settled. Some of them are

of a very curious nature which I will discuss with you, where progress really

would be of considerable and fundasmental interest, I think,
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FOURTH LECTURE

Let me go back for a moment to the old derivation of Boltzmann's

equation, which Max Dresden probably gave you. I wculd like to go over it be-

cause I will need a certain ¢ritique of it. Boltzmann started with the

spatially homogeneous momatomic gas. So in a large volume \/ we have

gas particles , and let us assume for the sake of definiteness that the particles
are rigid spheres. Their diameters are all equal to, say, 8 ° They. can only
suffer binary cocllisions and that's the only way to exchange enei'gy. That is the
model, Boltzmann then derived his famous integro - differential equation. The
probability {although he always called it the number of particles) of finding a
particle in dF VU at time t will be denoted by f(\’)ﬁi) dF dv. .

let's say that there is no external field of fofce except at the boundary of V .
Then the Boltzmann equation reads

) z N PV N 3\ 7
F gt s\ \di[§5-55] @) ]
2 ' ‘ :

And now I will explain what it means. You assume that a particle with velocity

(61)

N > — IS
\ (within A,V ) and a particle with velocity (0 (within A«w ) collide at

N
the point " . At collision, the center line of the particles is in the direc-

- N Y
tion [ (within A { ) which is a unit vector. - DF_ ( v, v , t) is the
probability density that the first particle is at -F with velocity T,_’:

C(Romt)
at time %. 3 (! 5 W, T refers in the same way to the second
. ‘ ¢ — —
particle. The wiggles mean that you substitute for V and (X the velocities
after the collision. They are of course completely determined by the momentum
. KN
and energy conservation laws. The integral over ciﬁ, is a surface integral over

S\ =

. — \
the unit sphere. The factor ' w - V}.L comes simply becausz we use

elastic spheres, as Max Dresden has probably told you. If you have particles
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repelling each other according to some force law, then this thing becomes some
function of the l(‘ﬁ V), and [(\A) -v 2. ' . The term 'VY T is

called the streaming term. The term on the right hand side is called the

collision term.

Now I would like to make some preliminary remarks. The equation we

have written is the full Boltzmann equation -- the Boltzmann equation in phase

space. Boltzmann actually derived this equation in two steps. "He first derived

what you might call the equation in velocity space alone. That is, assuming

that the distribution in space is uniform. If this is so, then the gradient in

N — 3
(61) with respect to ¥ is going to be zero. So the term \ 'V-T%'g will §$
- & 8
not be there, and I becomes simply a parameter. You can just cross it out, ig
’ —> i
and get then an equation involving only. V and t: g f
s 1
9§ 2 £,
- !
&
This is the Boltzmann equation in velocity spacs, which is valid only § i

for ‘spatially homogeneous systems. That means that the probabili{;y of finding
a particle anywhere in the volume V is the same. This, of course, is a very
uninteresting case from the point of view of hydrodynamics. In the case of |
hydrodynamics the primary purpose is %o really show how the mass of the gas
.méves. But 1t was from this equation that Boltzmann derlved the H-theorem.

That covers the approach to thermal equilibrium, if the gas is already in spatial.

equilibriun,
It's a very simple but very interesting derivation which I will repeat

in order to show you the analogy with what I havé done for the simple modei.

Now what does ‘%f; represént? According to Boltzmamn it is the total rate

of change of the number of particles in a little volume of phase space. Now

SO et et SR
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this change is dus to two causes. One cause is streaming, and one cause is

collision. Consequently, the total is the sum of the two. Now as you know véry
well, there are a lot of operations.by vhich to combine them. You could multi-
gly, divide, take logarithms or something else; why is 1t then that one takes.
the sum of the streaming and the collision terms? It's entirely unclear to me,
and upon closer questioning of my physicist friends, it is also unclear to them.
One simply assumes it. Actually you can easlly see, if you think for a moment,
that it cannot be true. Beéause streaming and collision cannot be really
separated. After all, what are collisions in a mechanistic model? You hé%e'cer-
tain short range forces, and when two particles come close £ogether a violent
event takes place. That's a collision. But streaming is also a motion under
the influence of the same forces, only in the range where the forces are somevhat
less sharp, less powerful., Why'you should ssparate them into these two phenomena
vhich are clearly related to each other and make a sum is really not clear at
all. In .fact, there are other indications, mostly through work which to me is
completely dark. The only man who understands it is Uhlenbeck, and in fact he
even wrote out in detail the theory by Bogoliuboff, who derived a Boltzmann equa~-
tion which has certain coupling ferms between streaming and collisioﬁ. This was
done in some very formal way which as I said, I do not pretend to understand.
Hence I do not intend to impose my ignorance on yous But it means that you
should not get exactly a sum, but an extra term as well., If you follow the
derivation that Max Dresden gave, it will somewhat change the equations of hydro-
dynamies. Probably, for very small flows and very small gradients this coupling

term will be small and hence nothing will be changed. The really interesting

problem, at least to me, is that I am unable to find a probabilistic model
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which will lead to the full Boltuzmann 'equation, I will show you how one can
very easily be led to the equation in velocity space, however.
And now I will betray a secret of why one can do this. Once ws have
spatial homogeneity, then we have a lack of specification and position. And

consequently we have wide freedom to average over all possible positions. If

3

s
1
[

you don't have spatial homogeneity, then the problem becomes over~-determined.,
There's absolutely no room, or at least I can't find any room, to introduce a

stochastic element. I don't know what's random anymore, and so I cammot find

L

.a stochastic model which will lsad to the full Boltzmann equation. That's

RS SR

. actually one of the problems that I think is very interesting, but which '§ )
nobody takes very seriously because people want to draw conclusions from equa- e g
tions before they understand them. In my opinion it is an importént problsm Gfg
to really understand in what sense (61) is a probabilistic equation. _ %53

In the case of Brownlian motion, which I will speak about briefly some- §§ é

time tomorrow, the collision operator is much simplier. It becomes the diffusion '

operator. It's perfectly understandable how the streaming is introduced; anq
\

that, of course, you might say can be used as an analogy. Since it's OK in

B P R e

Brownian motion, it must be all right for the similar equation here with a more
'complicated coilision operator., But really the problem is now to cleanly derive ’
equation (61) from a well defined stochastic model. I think it would be of some i
importance t§ do 50, but since I don't know how to do it; I'm going to devote
mys2lf Yo the spatially homogeneous case.
I will show you how from a very simple stochastic model; which was
already treated by Boltzmann, equation (62) can be derived. The most interésting

thing is that the fundamental squation we are going to write -~ the Master equa-

tion -~ will be linear. Yet we can get the non-linear equation (62} from it
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In fact, as you will see, the non-linearity is a fake in a certain sense. The

equation only looks non-linear and one often wonders whether there are not meny

other non-linear equations which in the same sense are fakes.

Now I would like to set up for you the purely statistical approach

to this problem of a spatially homogeneous gas not in thermal equilibrium.
~ N —_—

I have n particles, and let their velocities be V‘ ’ \/2_ y *cr ey \{ﬂl

Because the energy is exchanged only through elastic collisions, the kinetic

energy stays fixed all the time -- since energy is conserved in collisions.

And so we can say that n
. -2

E = Z Véf (63)

J=1

. 2 ' .
where I am going to assume that [= =1 G~ . Now actually, this is

already a bit of an assumption. It means that we assmne; roughly speaking,

that the energy per particle is fixed. It is important to notice that 1if you lock

upon each velocity as having three components, then {63) is the equation «f a

3N - dimensional sphere. Not being clairvoyant, I will draw it as a circle of
radius VE s Ve

R

F(Su.re Z

A point on this sphere defines completely the state of my system, becauss the

state now is defined by giving only the velocities.

Now we must analyze what can happen to this point on the sphers.

Most of the time nothing happens to it; but every once in & while a collision
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between two particles occurs which will change the state. Let me combine all

the velocities into a great big vff;c:or, actually & 3N~ dimensional vector,

— V|
. - Vn —
Now most of the time, '2 simply goes into R , which means that nothing

—
happens. But sometimes? will go into Q , let's say, as a result of 2 colli~-

sion between two partlcles. And of course they can collide in many different §
ways, 80 actually this sz covers a multitude of sins. The transformatlon \
R"" R can be qulte a complicated thing.

~ Let us now try to calculate the probability of the transition FR"?’EE
I take a differential time element Ci%: , a very short'time, and will calculate
the probability that the (Hh and 37‘/\ particles ( é‘< 3’ ) will collide during
this time. And moreover, that they r 311 collide in such a way that their line

RN P
of centers will be in a direction Q, lying in the solid angle¢{11 . This is

a ‘standard calculation of Boltzmann, and although I have not seen the notes of
Max Dresden's lectures, he undoubtedly drew you a collision cylinder. It's
almost impossible to give lectures on Boltzmann's equation without drawing a

collision eylinder., I will not bore you with the details again, since all we

kL s SR Sl 2T el

~need to do is to find the volume of the collision cylinder divided by the total
volume er . It is.

Y, dids - 2 1) MWL iy

You might notice that l(\/ﬁ-—v Ll - (V,X L')' ﬂ, is either zero or
simply 2/(V--\/~)-/Z { . It corresponds to the fact that if the velocities

happen to p01nt in the wrong way no collision will take place, Max Dresden

may have written this as ©OS (3 . It might be worthwhile to remind you
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that Boltzmann did not interpret this as a probability. He simply claimed that

after multiplying by N,: and N% this was the actual number of collisions taking

place. But in reality it is a probability, because what do you do? You say that

for the collision to occur the particle has to be in its collision cylindsr.
And since I assume that the spatial distribution is uniform then the ratio of

the volume of the collision cylinder to the total volume of the gas is just the

collision probability.
Notice that I have done exactly what I did on the other model, I

assumed that a transition can take place, and I calculated the probability of

this elementary event. Notice that I have already performed an averaging -=

in calculating the probability (64). Now I want to find the probability that

no collision occurs during the time c{i‘,' First of all let me integrate over

3

ou, to get the probability that a collision will occur between the L\[Lo and the I
X\Lﬂ, particles regardless of where the line of center points is. Then if ;%’s f
A

Lo

I sum this over all the pairs of particles I get the probability that a collision

will occur between some pair of particlest

alt = ; S udﬂdf (e

' £< $vx
Where I have called all this grea'b big sum of integrals . And hence l-a,&i'

is the probability that no collision will occur.

Moreover, the pro'oébilit.y that something happens is of the order of
magnitude d,t » That means that a collision is indeed a rare event. Stochastic
processes in which you have the situation that something happens with probabil-
ity proportional to cdx(:' are referred to as Poisson - like. The simplest such
process ‘is the Poisson stochastic process which you meet for instance in

radioactive disintegration. Here the probability is C‘-ﬁ that a particle

will be emitted and is { - CL&Qi: %hat nothing happens.
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Now let me write out a little bit more precisely what are my transi-

tions, and then you will see the complete analogy with the previous model.
-

I can say that I have the following situation: In time dt either R goes

-—
into K (into itself, no transition) with probability [- A dE  , or

—> . .
Q goes to some other state. We must now write out what happens in such a

If the i and J particles collide then the transition is

-

V)

transition.

R s |ve@-0)BE] =B

t {
What I have written in the (.‘ILR and the 3“'&. places are simply the velocities

(66)

after the collision. None of the other particles are affected. How do we find

the velocities after collision? We simply solve the equations of conservation

of momentum and conservation of energy, remembering that they are colliding in
N ‘

the direction L « The relation (66) I will write

._\/ — =
JK = /—\‘%(Q)R - (67)
Where Aia"(ﬂ,) is simply the transition operator., It expresses what I am -
to do to‘R in order to get the transition to Q‘/ . R
Ar interesting and very simple observation is that this A,_é < Q)
is a rotation. It is a rotation of z great; big sphere ~~ that is all it is.

Actually, that's very easy to prove because the sum of squares (63) is the same

before and after collision. I should have said that I have another conservation

law here, namely that the totzl momentum is conserved. So really it is not a
3n ~ dimensioral sphere but rather a@n~5) -dimensional sphere. Thils is a
little bit irksome, because you have walls of the container and collisions with

the walls do not conserve momentwn, as you véry well know. Otherwise there would

2
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be no pressure on the walls., But that is a very minor point, and to avoid

trouble all you have to do is a littie work. Whenever you come to the wall you

simply artifically re-introduce the pafti.cle back in the interior with the same

velocity. If you wanted to put in the wall effect it would be simply too much

writing. And besides, I am going to very soon consider with you a simplified

model in which I'm going to violate conservation of momentum. Not because I

don't like it, but because mathematically it's a complication and contributes
' -
comparatively little to the understanding of the general picture. So A; é( QJ )

is a rotation of the (3:1 —3) -dimensional sphere.

And now you can see what an individual gas does. It starts from some

SR

;

point on the sphere and occasionally a violent rotation will take place and it .&},‘5 é
jumps to another point. But most of the time nothing will happen. Then after ? 2!
a long time it is again going to jump. Then again for a long time nothing will :5:’ i
\ happen. You can look upon this particular scheme of evolution of a perfect gas ::: 3:

as a random walk on a (3:1 -3 ) ~dimensional sphere., The random }lalk is des-
cribed‘ precisely by the probabilities I have calculated which tell me what the
probability is of an elementary step.

| Now what is the problem? It is the following: I am given. (P(F\?: O)
the initial distribution of points (systems). For instancs, if I know rather
praécisely the velocity then I can hawe a very sharp probability deusity around
some point of the sphere. The question is, of course, how to find the distribu-
tion Cg(ﬁ) "ﬁ') at time t. You can see that the analogy with the pre-
vious medel is almost complete. A1l I have to do is to simply write the analog
of what I called the Master equation, which is nothing but the equation of propa-

gation of probability. You remember, though, that my time variable was discrest,
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50 that I was led to a difference equation. But now I have a continuous time

variable so I am going to have a differential equation of the first order in
time. This is namely the following
T Y
—a Q 't = . ,_\""‘ AN -
ot — 3
€ c€4én
And this is the Master equation.

(68)

It's a very interesting equation. I especially appeal to the mathe-
maticians in the crowd because it is an equation in which the operator acts on
the independent variable inside the function. It's a rather strange looking
equation and there are meny very interesting properties, as youw will see. But
aiready you can see one thing intuitively. If I start with an arbiﬁrary distri-
bution subject to some smoothness conditions (that is necessary) then due to this
random jiggling of the sphere I‘am going to see it spread out. In the limit;
as time goes to infinity, the limiting distribution ought to be uniform over
the sphere. 1 will\anticipate myself a little bit and tell you that this is,
in fact, the ergodic thecrem specialized to this particular model., To show that
it will eventually become uniformly smeared q&}, you have to prove something
gbout thess very special rotations ,Z\;i ( Q,) « They are actua;ly
six dimensional rotaticns because sach coilision only involves two particless
What you have tc show is that they generate essentially the whole rotation
group of the (3;1«5} -dimensicnzl sphere. To be technically quite correct,
they generate a transitive sub-group of the rctation group: Which means that
youtre able to get essentially from every point on the sphere to svery other point

on the sphers, or arbitrarily clese to every other point on the sphere, by a

combinaticn of such rotations. That's a very well known condition in the theory
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)f Markov chains. A Markov chain is called ergodic if you can go from every

state to every other state. Here we must be able to go from one point on

she sphers to any other point on the sphere performing, however, only these

strange little rotations. That can be demonstrated, and I will speak about

it a little bit later.
At the moment I want to call your attention to the following remarkable y

facts, Jjust to show you .what wonders can happen. Our Master equation (68) is
a perfectly linear equation. There is nothing non-linear about it. Moreover;

this linear equation embodies all the assumptions that Boltzmann ever used.

USSP

o
These assumptions sit, of course, only in the formula for ¢¥' (’Q, ) .

On the other hand, Boltzmann came up with this equation (62). A non-linear ¢ g
equation! And the problem which tben arises is how are they related? What é% g
is the relation between CP(Q: -L) and S'(VA‘, ‘,t) ? And what is the relation - }% i
between the linear Master equation in many variables and the non-linear | %g g 3
Boltzmann equation in very few variables? | ‘ §§ § ;
E :
;

In order to answer this question, I will have to simplify the model

"

somewhat to produce a similar situation where I can prove everything rigorously.

Unfortunately, not everything I am going to say for the simplified model I

N e Bt e R 3o & b,

can prove for the real one. There are mathematical difficulties. But nobody
doubts that with greater ingemuity than I have been able to shew up to today 1t

could probably be carried ouvt. I will try to maintain most of the essential

features, if not all the essential features, of this problem. But at the same
time I will reducs the problem to one I can really analyze. It's a time
honcred procedure. If you can't solve the problem that you set cut to solve,
then try to simplify it -~ but without throwing away the baby with the basket.

That is the only conditiont you must not over-simplify it.

o . S L e bk sk
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My simplified problem is the fbllowing. The first simplification is

that rather than three-dimensional veloclities I will have one-dimensj.onal
velocities. That's a rather unimportant simplification. I will call the
: ‘ ’
velocity of the Lf%, particle }ié « And I will take for conservation of
energy the condition: '
?_ .
(8 2 _ —
X, + X, * + Xn n (69)
) —
So now the state of my system is described by a point 'R'-'-' i?ﬂ g7t an}

lying on the n~dimensional sphere (69). The second simplification is that

ny transitions are of the form _ ‘ — :
. . )'(', ‘ g
-F-z :R-V )'(kcosa-&)('ss'mQ ;:
o . . 5 o
—> -X;Sm & +—x5cos@ (70) by o
. ! h& r
Xn : N
’ = o i
which I will also write in the form R’ = A ( 9) Ij‘ . Elf .
. ‘:::.
Now you see that I have changed the physical collision. Instead & j
. &

of a complicated six dimensional rotation my collision now produces a very

simple two dimensional rotation. What I have written is that if particles 1

and J collide then the resulting velocities will be what you get by rotating
. bR A

through an angle theta. The angle theta plays the role of Q, » And it is here

that I violate the conservation of mementum. The energy is still conserved,

but the momentum is noty, except on the average. That is simply because this

is essentially a one dimensional model; and one dimension is too poverty stricken

for two conservation laws to hold at the same time.

And now I will make a real simplification, which makes this gas almost

. — —
a Maxwell gas. I will say that the probability of the transition E?~—e> le is
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only a functicn of the angle theta, namelyst

Rob g R— R g (@)C[Qc{‘(: ()
where §(9> - O . On occasion we may also assume that 3(6) g(@)

That's the usual assumption -~ which is known in pliysics under the fantastic
name of the principle of microscopic reversibility -- but for most purposes
it is not needéd, at least not for the mathematical development.

Now I am going to write down the Master equation, which assumes an

extraordinarily simple form: v

22 15" \a@ie[nR, 4- (3

oL N L
I<udypén

The n in the denominator comes from the assumed probability (71). Of course,

(72)

that's a parameter, you might say; but it is very important to include it here.
" Because I have to maintain the analogy with equation (6L) which has the

volume V in the denominator. Now the volume, of course, is propqrtional to
the number of particles -~ it is simply the number of particles times what's
‘called the specific volume. $o I always have in the denominator soﬁething

proportional to the number of particles.

I can't give you anything that collides this way. I am simply
imitating by mathematizs the more complicated situation we described earlier.
This artificial gas which I have constructed-Professor Unlenbeck once referrsd
to in a lecture as a "caricature of s gas." This it is; but a caricature
implies resemblance or else it would noi be a éood caricature. I am going to

discuss it with you because one can really understand much better what is going

on when some of the mathsmatical di fficult:es are dispensed with. Now before
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I proceed, remember that the whole thing takes place on the sphere -~ XL =M.
My first goal is to show how out of this Master equation I can get a non-
linear equationj and then also to indicate what are the mathematical diffi-

culties in treating the similar problem for the real case.
First of all I must define what f ( ,t) is. Recall that in the

Boltzmannian language g()()‘t)d. )( is the probability that a particle has

velocity X within the differential volume A}( at time t. But when I say
a particle that means I'm not allowed tec distinguish particles. I'm not saying

particle number 17, because it must be the same for all particles. Conse-
quently, in order to place myself in an advantageous and perfectly realistic
position, I will have to assume that at least at time + = O the

. ) e :
particles are indist;lnguishable. And that means that @ (Q s O) is
symmetric in the X's . Itis easy to show, and you will certainly believe

(9T IWETTLSE [

»e
<
Bt

me, that if it is symmetric at time zero, it will remain so for all time. So

' {
it will follow also that ¢ R-,f) is symmetric in the XS for all t. Now I

am going to define the contracted distributions or contracted densities. The ;

Ay
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first contraction is

)= | eRo)dor

.
Xtk Xy ==X
let me explain what this means. I fix the velocity X of the first particle,

I (73)

e
and I integrate qD(RJ‘é) over what's left, the remaining sphere. CLCY{
. —
is the surface element on 'this(h- l)-—dimensional sphere; so that @(@,f)i@f

‘Ls Just the probability of finding the other velocities in 010'[ whan the

velocity of the first particle is X o S0 if I integrate over all these other
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velocities I simply get the probability density that X‘= X Now you can

define the second contraction

(n)
5, Ouyyrt) = S ?(R,)da G

5( o +X,,, th-X- 'a' : e
which is simply a joint probability density. Roughly speaking, 1t is the

probability that one particle has velocity x and another particle has velocity

y at time t.

A1l Boltzmann was interested in was «E‘ ()()‘6) » 80 he only tried

to get an equation for it. How am I going to get such an equation? All I have

to do 1s to integrate the Master equation ( 72) over all the variables but
one. I will fix X' to be x and integrate over the complimentary sphere.

o ey L% AgRnl
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The integration is entirely elementary and is really hardly worth bothering with.

You obtain the following equations

ey

6 648 . nl et brssibl—xindrucsgt)-
%t =2 0(3 Ae%(e) ‘}z(xc s sindy—x sin +5c§é,+)-iég3,£) (79)

.pn xt \.TT

I could go on, of course, and derive an equation for the joint density

'g (X)‘é '{Z) I merely have to integrate the Master equation over all the variables
()

but two. If I do this, I find that the equation for ( X 3\35’(Z> involves
the contracted density 8 (xg‘jsi ,-&) . NowI would like to call your
gttention to the following interesting feature which is the plague of the statis-
tical mechanics of non-equilibrium phenomena. That iss The recursion goes the
wrong way. Usually the recursion is from something complicated to something
simpler. But here, to calculate :g‘ you need %2.. s if you'Want .82 you .
nsed 83 3 1f you want %3 you need 84» s and so forth. Instead of biting
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it's own tail, so to speak, and closing, it moves in the wreng direéticn. In
turbulence, when you calculate simple correlations, double correlations, etc.
you find the same phenomenon -~ the double correlation involves the triple

correlation; the triple involves the quadruple. And then people simply out of

sheer desperation say let the quadruple be zero. Because they finally get some-

what impatient with the whole thing -- it's a never ending affair. But

mathematics is one science where you are not allowed to become impatient; and

you at least have to find out what's going on.
First of all let me notice the following. Suppose I let n go to

infinity. Then I can erase the factor n , which simply becomes one. The gg §
integration over y is perhaps a 1ittle bit ticklish because the limits can Agg J
: ot 9

be anything. But let us be optimistic and suppose they become — ©O and + o2 . o g
Then equation (75) will become: E i
% lx,t O} ey 5@_ﬁ>,§ ,§?¥
at o0 _,n- - | "y

And that looks extraordinarily like the Boltzmann equation. Except to get the
/
Boltzmann equation out of this, you have to replace {gzrby'a product of Si S .

C
If you now make this assumption that 31(x,&5,t) is for some inexplicable

R
reason given by

S.oyt) = §,0xt) - §.Ggst) (77)

then you can substitute this in the integral and there is your non-linear
equation. And that's exactly the Boltzmann equation for this model. If you

want the real Boltzmann eqﬁation, the honest-to-goodness one, then you can

obtzin it in the same way by integrating my old Master equation (68). Instead




if these simple two-dimensional rotations you have the real rotations and that

.8 all,

Now the question is, are we justified in making this assumption (77).

jere I would like to call your attention to one very important fact. My Master

:quation from which everything has to be derived is not only a linear equation

>ut it is also first order in time. It can be symbolically writien in the

following form:

¢ ‘ (78)

It is perfectly well known how to write a formal solution for such an equétion.
It is dimply written as )
N 1. (—s ) , ‘ ,
CP(R:O =€ YR,0 (79)
with the usual understanding that you simply expand the exponential in a power

series and interpret the powers of thé operators in the usual way. Now t.uis has

N
the following immediate consequences That once you have decided on @[ R 3 0)

then everything is completely and uniquely determined. Consequently you are

not allowed to assume anything at time ¢. So you cannot make (77) an assump-

tion. But you are allowed to assume it at time'f = O Dbecause presumably the

initial situation is up to you. So suppose I happen to be so clever that I have

R ey
started with a distribution 49(R30) which has the property (77) at time zero.

Then the question is, will this property maintain itself? And that is a crucial
question, Unless the operator {1 is such that it will maintain the "factorize

ability" of the distribution, there is no possibility of getting the Boltzmann

equation.
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This question is answered in a theorem which is known by a very high

sounding name, namely the "theorem of the propagation of chaos.” And I will now

state this theorem but will not prove it. First, I will call a distribution

chaotic -~ actually I prefer to say it has the Boltzmann property -- if the

following holds for the contracted densities:

()
o S((xn'-")Xk:O) Wﬁ"""’“ % Cxﬂ’o) (80)

h— o (N7

For those with a mathematicai conscience, I will have to define what I mean by

a 1imit of functions. I will not go into that in any detail; the easiest way to

deal with it is to say that convergence is understood in the weak sense.

Now I will also say that the sequence of density functions has the
Boltzmann property, or the property of chacs, if (80) holds for every k. Of
course, the first question whiéh arises is, are there such distributions?

The answer is yes, there are. In fact I will tell you how to construct a big

class of them. Theﬁ the theorem is: chaos persists forever.‘ This means simply
that you can replace O by t in relation (éO) and still have it right. If
you take care to establish the property at time 'ﬁ =0 ', then it will maintain
itself forever. And that, remarkably enough, is difficult to prove in the actual
physical case, In our case, for the caricature of a gas, it isn't difficult to
prove bﬁt is tedious. The theorem is undoubtedly correct in general and nobody
doubts it. However, I would like to warn you about one thing. When someone

says that chaos propagates you might say, well, certainly. After all, if you
start with something which is chaotlc and all thay{ happens is that some collisions

take place which, if anythlng, shake the whole thing up some more, then why

shouldn't 1t propagate? Bubt that is simply a verbal argument; and one is verbally

L83 Bosrper fig
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misled. Chaos doss not mean lack of order; it is a very specific property of
the initial aistribution and really means asymptotic independence -~ bscause
the content of (80) is simply that for very large n the velocitles of the

particles are essentially independent. And then the fact that this particular

operator Ll is such that it perserves this property is, of course, an extra-
ordiﬁarily fortunate thing. One ought to be grapeful for it, but cne still ought
‘to be surprised that it. is so.

If you believe this theorem that chaos persists for all time, then of
course it becomes reasonably easy to simply go with n to infinity and end up
with the Boltzmann equation for all times. (We work again with weak convergence.)
Now this is interesting. At first I actually thought that it had a greater
significance than it has unfortunately proven to have. You see, the non-
linearity of this equation is due simply to a very special choice of the initial
condition. It is not something inherent in the problem. The fundamental préblem
is linear, but with a tremendous number of variables. The reason why we get a
non-linear equation here is not because there is something non-linear in the
mechanism. Rather, it is bscause we insist on starting from the initizl distri-
bution which has a4 very special ;tructure (and only because we want'to recon-
struct Boltzmann's theory).

You might say that this immediately glves me a way of solving the non-
linear Boltzmann equation. Because I gertainly know what the solution of the
Master eéuaticn is, at least formslly. Then all I have to do is to be sure I.
prepare myself a proper initiai distribution and then integrate the formal solu-

tion (79). That is correctj that is one way to get a solution of this thing.

However, you don't gain very much by it because it is almost as difficult to
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xecute it as to solve the Boltzmann equation directly, Except, of course, that
‘or this caricature of a gas thé equation was so constructed that you can solve
.t‘expiicitly if you want to. I am not going to go into the details because
he calculétions are somewhét laborious. But I want to underline the fact,
thich really is pedagogically %nd mathematically most interesting, that.we haye
iere a new origin of non-linearity. A man-made non-linearity! You didn't have
;0 have it at all: It's the price you pay for having a contracted equation,

Incidentally, it goes to show how careful one must be iqune wants
;0 close such chains of equations (75). Because what one usually tries to do,
then one gets tired, is to say, all right, I will assume that the fourth one is
:xpressible in terms of the secgnd cne, But then you had better prove that if
rou assume this in. time z"" O then it is.alwayé so; that is, it propagates.
'his is a point ;hiqh is often overlooked. People make assumptions for the sake
f getting an answer. But the really hard point is to prove that the equations
;nake sense,

On the other hand, all the general conclusions one wants to draw
about the approach to equilibrium can be gotten from the Master equation, You
jon't have to go over to the Boltzmann equation. In particular I will show you
1 proof of the H- theorem using the Master equation. " It's a very special H-
theorem, because it holds only for distributions which initially had the chaotic
sroperty. 43 a matter of fact, for mathematicians, the proof is immediate.
fou must simply notice that the operator _J/:L. is self-adjoint and negative
Jefinite, That is all. Now le£ me prove it for you. (This proof goes in

general; it goes also for the other Master equation (68), the realistic one.)

.y &
1;

iR

-t

IR

I
AR N

i 4 .'t‘::';,.

Mo Vool BT WLl

o

T R

TR

LR R e et s

LR ST

"i
§



~7h- |
First, I will assume that all my functions are, tc use the mathematical language,

Sf@dﬁﬂ °

This already excludes initial distributions which are too detailed. For

square integrablet

example, the delta function is not square integrable. I need scme spread, some
slight amount of fuzziness, so I put my initial distribution in LL « The

inner product is then simpiy defined as the integral over the surface of the

n-dimensional sphere:?

((QJ'L/)> = @(R)W(R)dc“ | | | (82)

Su
Now let me calculate (__Q_C? 37{)) and prove that _(L is self-adjoint,

that is (_Q_C?,IF -(CP,_Q_'L‘)) + For this purpose I will need tc assume that
3(6) = g(-— e) which, you remember, is called microscopic reversibility.

Then we get T

Q¥ )- -—-86}0“ e gi(e)ice(ﬁ\%(e)’k’) R }&GH‘)(R)

-—

"}'TZ deg(e)i cﬂo“WCWP A%@)Tl) g““‘ WR)‘Q(R)?

1$L gagn =T
Now I'm going to change variableso A ’5(9) R I'm going to call R o Then

Q A..(@)Q AwC @) R’ . No change in dG" is needed becauss I'm simply

IR IASTIROTE- R

making a Euclidian change of variable - ~-A;5 ( Q} is a rigid rotation which
preserves the element of inteération. So, making these changes, we simply coms

out withs

(ao)s 7 2, Siég@ﬁg%w&a FOR)e®) Sw(ﬁ)@@ﬂo;}
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(2., 1,,)-_28,193@){& {\P(A (e)—fz’)<p(€’)—w(ﬁ’)<p(d’ﬂ 2@;,;21\;)

5 S ' (83)

So the operator L s self-adjoint. In the more realistic case (see equa-
tion (68)) the proof goes through in the same way. In this case the A (f, )

are involutions (they are their own inverses) and that makes the proof even

simpler. rs? ;

Now why is _Q negative definite? You will see why in a moment. E}i 3:

ey o

First of all, to prove this property, all I have to0 do is show that 4 ";Q "
? 4 |

(a9.6) -+ (4o T, (s el R)e(d)- 7R)

Sn “3 Tr ?' H

is never positive. This requires a slight trick, but very slight. I am going

to replace @1(7—2-‘) by = [QO (R) 1‘( A(J (e)ﬁ)] « Now I claim I haven't changed
any'thing, because the integral of CQ(A B)TE‘) is just the same as the integral
of CP (ﬁ) o It is simply the same change of variables that we made before ’

S i

Just a rigid rotation. But now notice that in having done this; I have a negativs

square, — [:CPCA,J(G ) @(_‘ J for my integrand. Of course, I have to multiply

by 8(9) s but this is non-negative. Ccnsequently, T can conclude that

(—ch) @) : (8L)

If you really watch it carefully, you will notice that I didn't need hers the

Principle of microscopic reversibility. I only needed it to prove that the .

operator was self-adjolnt.,
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Now this immediately implies the H-theorem. Take the Master equa-

N
tion (78), multiply by q?( 7‘) , and integrate over the sphere. Then you get

b | @®do- (ag0) <

And that proves 1t, It tells you that there is a quantity, H if you wish, vwhose

-

time evolution is one-directional.

By a somewhat more complicated argument one can show that not only
(85) holds but more generally

4 [Fite <o, <

i é g@ Bty AR do” <

If C?’ has the prOperty of chaos the latter relation is intuitively equivalent

4

to the usual H-theorem (2). ‘Unfortunately, I am unable to establish tre

equivalence rigorously.
We now return to the operator _(l. which we have shown is self-

adjoint and also negative definite. As everybody knows the thing of interest

is its spectrum. Now the spectrum is real, since the operator is éelf—adjoint;

and, because the operator is negative definite, it must 1lie to the left of zero.

Now zero is surely a member of the spectrum, because you can very easily see that

q? =C , & constant,; is an eigenfurchtior belonging to the eigenvalue zero.

One can make some other statements about this spectrum, but nobody knows it

completely., In particular it's not known -- although one can almost bet one's

last doilar on 1t -~ that as n goes to infinity the spectrum dces not close up

on zero- If it doesn't, if it is really cut off, then by simply looking at the
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operator solution you can say much more immediately. Because then it immediately
follows that this solution (79) will decay exponentially to a constant. The
constant comes from the fact that it is the eigenfunction with eigenvalue zero.,
.That's the equilibrium state. The next eigenvalue, the one closest to zero,
gives you the speed of the approach to equilibrium,

Unfortunately, neither I nor anybody else has been able to prove that
zero is not an accumulation point of th; spectrum. We are able to prove it
very indirectly if you start with a factorized distribution, i.e., your initial
distribution is chaotic. But that may be due to the fact that a factorized
distribution is automatically orthogonal to all the modes with eigenvalues lying
- in the vicinity of zero, It is simply not known whether there are such modes
or not. In any case, for this special choice of the initial distribution, we
can show rigorousiy that the decay is exponential. To what? To a consiant,
which of course means the uniform distribution on the sphere,

Now the question is, what is the one-dimensional contraction of the
uniform distribution, the equilibrium distribution. If you calculate it ~-

and it's an o0ld calculation already made by Maxwell -- you get

é;(h) [~ {5; ) hé§3> ) |
X) = -
) Sj;(l'f ':('()7*’:3 dx (86)

The calculation is entirely trivial; you only have to know a little bit about
the geometry of the sphere, And now, as n goes to infinity, look what happens

to it:
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which is just the Maxwell distribution. This is probably by far the most
satisfying derivation of the Maxwell distribution. You simplylask.for the one-
dimensional contraction of the uniform distribution on the sphere. The two- -
dimé;§§onal contract%?n, needless to say, will simply involve the product of
Eé? /él and 65725’&5

be to mske a few general remarks about what kind of distributions are chaotic,

A1l that will remain to do in the next lecture will

and how to construct them,

Now I would like to make a few final comments, and answer some of

your questions. I have tried to build up, in a perfectly consistent way, the

early stages of kinetic theory on a simple stochastic model, This proved to

be interesting because it betrayed the nature of the non-linearity in the

Boltzmann equation. It also made this equation philosophically rather peculiar.

Because if you believe in it you must ask yourself why nature prepares for you

et ESILATS - MR

(TR L
(it R4
Hanme g5,

at time 2zero such a strange factorized distribution. Because otherwise you
can't get Boltzmann's equation, You must somehow reconcile yourself that for &
some reason the éystems with which you deal are already so prepared as to have

this property. There is a current theory, which nobody can prove, because

KR e P e

nobody can even properly state'it, that most distributions are alfeady

factorized ~- at least most symmetric distributions. This would mean that

it's really very difficult to heve a distribution on the n-dimensional

sphere which is symmetric in all the variables and which is not at least approxi-
mately factarized. That of course would answer it, if it were so. But you must
say what you mean by "most" of them, and I don't know the answer. There are

statements made in the literature that somehow any distribution decays very

rapidly into a factorized one. From there on, of course, it would go by the

N B
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Boltzmann equation. But that is wrong- It was proved by Dr, R. Brout, one of
my young colleagues at Cornell in physics, that if you stert with a non-factorized
di;tribution you'll never aecay into the factorized kind. At least the .time
it'takes you is of the same order of magnitude as the time to reach equilibrium.
You will not produce chaos out of order unless you wait long enough. You have

to wait very long. But if you have chaos in the beginning, it will stay with

you.
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FIFTH LECTURE
It may be useful to say a few words, although it has no. direct rele-

vance to the sequel, why all the interest in foundations has arisen. It comes
not only from the desire for a more thorough understanding of what is going on.
There is also the purely practical desire to see how Boltzmann's theory can be
extended. The Boltzmann equation is based on the assumption of .a dilute gas.
The assumption of dilution comes from assuming only binary collisions. Even
in this model I needed the assumption from the very beginning that only pairs

of particles can collide and never that three or more of them can come together.

Some of the consequences of Boltzmann's and Maxwell's theory were somewhat hard

to take. One of them was the indspendence of viscosify and pressure.

Pore Car?, ST 3

It is probably dear to the heart of some of you, because you have

-y
ER3

SHES B

to ‘deal with that case, that viscosity is highly dependent on pressure. But

T2
U

it was an exact conclusion which can be derived for, say, a Maxwell gas thati

» (4 X 214
¥
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they are indepencent. This is something which is mathematically proved, a
conclusion of a certain assumed model. But it i;-perfectly wéli_khéwn that there
is some dspendence of viséosity on density (and hence pressure) in gases.
It would be interesting in principle to know how to calculafe i&. "The model
would have %o be changed, and this correction must clearly come from higher
order collisions.

Sc hera's the problem, how to extend the theory to take iﬁtoAéccount
higher order collisiona. This nohbcdy really knows yet hoﬁ to do. If I were to
try to do what I did here, I would have to kncw how to calculate the probability

of a triple collision. Aﬂd, of course, I can't do it withbut going seriously

into the physical situation and examining what happens in a three body problem.
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lowever, serious attempts are made to.derive from Iiouville's equation by an
tppropriate method of averaging, the ne;t approximatiod to the Boltzmann equatiocn.
'he whole situation is extremely dark. Tﬁere are schemes which are more or less
ippealing, more or less convincing. But still only a'beginning haé been made

.n that direction. In particular, what seems to be reasonably well established
s that you will have to go out of the realm of Markov processes. All we have
looked at still have a perfectly good, straight-forward Markovian.behavior.

3ut as soon as you begin to introduce ihe higher order collisions the equations
411l not be any more of such simple form, ?hat however is a vast and obscure
subject. .

Now I'd like to take up se&eral related points because although they
are perhaps of.no great imﬁortance they illustrate certain things. -They illus-
trate & technique which might be useful in other connections. The first point I
would 1ike to say a few words about is whether there are anf chaotic distributions.
I mean, it's all good and well to say that chaos propagates and so forth, but
you may be actually dealing wi£h an empty situation. There might not be any.

So the very first thing I would iike to demonstrate to you is that there actually
are distributions which have this property. Here is a trivial one; The uniform
distribution on the surface of the sphefe. I élread& told you what the first
contraction is; it is given by equation (86). ~But that is not ihtepesting.

You would expect the final equilibrium to have'molecular chaos because that's
really the state where everything is as mixed up as possible; So it's inter-

esting to exhibit other functions which have this behavior. As a matter of

fact the easiest and the simplest guess happens to be the fight one, Namely,
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you take an arbitrary function, say C () (when I say arbitrary I don't

really mean it; you will see what conditions to put on) and define .

N

n

T € (%)

@ (R) =+
S"D"C()(k)o(o-
Sn

Kow I am going to demonstrate that this indeed does have the property of chaos.

(88)

J

Tou can say there is almost nothing to prove, because you really already have

a product of the right form. But this is slightly misleading, because don't

forget that there is the condition
a2 7 ' 2 L
+ o e Y — .- (89)
>(|1' )(z )<f} r“ '

!
which states that the energy is conserved. This condition ties the X S to-

gether and déstroys the independence. So in order to prove that chios is to

be propagated, I must calculate the contractions of c?h. and show that the

contractions do indeed satisfy condition (80) in the limit as n goes to
infinity. The reason why I want to do that is because the method which one
uses is commenly in use in other. problems of statistical mechanics. It is
something which leads to the. method of steepest descent, é_vefy ;u;ét, simple
trick which is useful to know. |
First of all, I would like to determine the asymptotic behavior for
large n of the .zrnominator. Once I have that it will be very easy to answer

the whole thing. Now you define the following functions
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ECF>_= ]IC(X’QBJOV ‘ '(90)

K] ks
XJ’“"“‘XH: rz
{

and try to calculate essentially the Laplace transform of this functions
) ‘ bl g 2 .
f 0t
-sr* ~SCX| Ky )

e F(r)dr= \dxp-\dx,e CoeYCl%) oy

0 i -0 -Lo

You see that it's almost a Laplace transform; you could change the variable and

actually make it a Laplace transform of a slightly mors complicated function.

In fact it is just:

. —Sp F;\(vf;;)
"‘ioe ﬁdl? '(92)

Now I can very easily calculate this -~ and it ought to remind you of your
_(x*+$z)

days in advanced calculus when you calculated the integral of e

by exactly the same argument. It gives:

00 ~ n
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Now you have the Laplace transform of some function, and conssquently can use
the inversion formula. You have all learned it sometime in your career == I

will assume that you know it -~ the complex inversion formula. We will make a

very nice, neat application of it. The complex inversion formula is one of the

most beautiful and most useless things in mathematics, except for just such
purposes. The inversion is

1+Loo
[« <]

n .
BUR) L\ 20 (o™ | dz
; r = e e Cl)dx (5k)

F—450
In case the proof escapes you at the moment, you can look it up in any standard

text on Laplace transform. Now you look at it and say, well I'm not really

interested in this function as such. ‘I am only interested in its value o2
1
the sphere Y' =Yl . That means I want ? 'l".o be n. Sonow I qbtain the
formulat [ B
rmula {4 deo
o0 n :
-EX g L
-Jn Z |
E\({;{)z A e \e c(dx dz (95)
Ta . - |

%~ A'.Q»O. _ :
And it is from this formula -- useless as it usually is -~ that I caﬁ détermine
the asymptotic behavior by the method of steepest descent. In fact, the
method of steepest descent is always naturally invoked when you. have a function
raised to a very high power which you integrate. Now how do I determine the |

saddle point? I must write thé integrand in the form of an exponentials
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en{zde%ﬁ; '-ZX"C(x)oQX —g

and differentiate the exponent with respect to 2z. I will engage here in

justifying the method of steepest descent. In this case, it's quite easy
although somewhat lengthy. Let me just write down the determining equation

It is just the derivative set equal to zero:

for the saddle point.
o e~ .
A —Zloxz % :%
X'€ ck)dx 5 ¥
e | - 6 & 3
- = - (96) & ¢
e C(x) dX .
iﬁo is the saddle point. And now you must assume, because I unfortunately 2

cannot prove it, at least in general, that there is a real solution. If there

is one, then it's quite easy to prove that it must be unique. I will not worry

about that. You can check it for yourself for a lot of functions. | ¢

Now what we are going to do is to move the line of ipfegrétion'so

as ta pass it through the saddle point. That means.we put % =Zn

£

Then we change variables and set §f=5zo+~L,iF:; o After we do this,: we

immediately get
N

e
}

nZ. (-2X let-Vn
e (80X " x)dx|dE

{:;\6/,7): il‘ e (97
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Now what you do is to expand in a power series in %

! 1 ’ . ‘ 2 2
eCé.(/_X‘ )//F\—:] + L60-x") 2l é)z(/‘x ) PN (8)
Yh I n .
EoX

This still has to be multiplied by CCX) e and integrated,

but we can do it term by term. From the first term you simply get some number

A = Se C(x) dx " (o9)

The next integratlon, using the second term, vanishes because of (96) But
1 .
the next one doesn't vanish anymore, It is going to be é where
2
2 0( 100)
B =\€ " CX4X ‘

—00
The remaining terms will not contribute anything in the limit as n goes to
infinity. We w:.li_t not bother with them. So the integration over ‘X just
gives me A - .....é._ B « This %hing must now be raised to the nth pover:

(—éz > N n. Bgz
h

This must then be integrated over é But the integral of this is easy so

the asymptotic behavior I am after is simplys:-
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A x (101)

Looking back at equations (88) and (90) you see that I have only discovered
the asymptotic behavior of the denominator. Except for a constant, it behaves
like the nth povwer of something. Now ybu can get everything else by means of

a simple trick. You can make almost exactly the same argument to find the asymp-

totic behavior of

%x(x.)%(x,_)@h(ﬁ Yo
S

n
where 3()() and ‘&(X} are two arbitrary functions. If I take ﬁ()(z) to
be one and 36<‘) to be S()(*X,) then this will give me the .one-dimnsiona'l )
contraction, except that I must divide by the deﬁ&ninator of (.88) wﬁich I now
know, I can also choose my arbitrary functions so as to get me the second
contracted dens:‘lty gfn)(xj ‘a) . This is a trick which is very often used.
To integrate over all the variables except )(‘ and 'Xl =- which I have to do
to get %z(X3 L(‘S) -- may be inconvenient. It's too shg;-p when' you fix )(|‘—‘)(
and X;_:é s 80 you simply multiply by arbitrary functions and then intégrat.e.
From the result -you can gather what the answer is ;'md the Icalculations are

much easier.

Now you perform exactly the same calculation; thé‘.only modification

is going to be that these functions I/Q()(J and g()() come in. You can

m-.y.swqi;g~m;:
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repeat the argument without me, because 1t is Just the sameé, And believe it

or not, what you are going to come out with is the following:

1\ byl @~ A) (5™ gy
] T '
o ) o Bt o0 7A
,io)(l -Zs ' ~Zs >
| \gie c(x)oéx. %(a)e %C%)cég e Xc(xblx

So this gives me the asympﬁotic behavior. Now all you have to notice is that

you are through. Because putting 11_ equal to one and making 2% the delta

function, and dividing by the denominator (101) you get

T

% o
e C(x)
=0 , (102)

8_.2°XC(><) dx

ey =

-
That's the one-dimensional contraction. Now you can make fi. and i%/ delta

functions -- that means you integrate over all variables but two -~ and you

find that the two-dimensional contraction is simply the producﬁ:
;% o | ) SRR
C'(x) C” (oot) o . (103)

The three-dimensional contraction, and the other higher order contractions,
can be found in the same way. They are just given by (80), so my distribution

(88) does indeed have the Boltzmann property.

Y !!fﬁ!?!@?f‘"m;
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Now it's an interesting thing that, as you see, the contraction of

such a distribution is not simply C()()/ g 66( C{X . But clearly

it couldn't be this because I could take CC)() to be a function which goes

to infinity fast enough that the integral doesn't converge. But, after all, the

contraction must be a density function; and that means a function whose integral

happens to be one. So something must save it. And it is very interesting
- '
that the thing which saves it is & . Z° is derived by solving

the equation (96). This equation has a very vivid physical significance, as

you can now see, In fact it means that the contracted distribution must be

<

$81 Hurver Bt MM&;W

such that the variance is equal to the average energy per particle.

.The second point which I wish to discuss is much more interesting.

- We . already saw that if I start with chaos I can replace, for the purpose of

B £ B i L

my study, the Master equation by the non-linear Boltzmann equation. We

L&

R

claimed, and demonstrated to our satisfaction, thai this was due to starting

with a very special initial distribution, namely the chaotic one. But there

are many other starting distributions. There is one very interesting one

which I will now briefly discuss with you. I will start at time zero with a

distribution

R,0) = cix) R
ST | o)
Cix)dar ’
Sn

Let us see what it means. This distribution depends only on one variable --

as far as all the other variables are concerned it's a constant. It's a

e oy s
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wrfectly good function. It is positive or non-negative if I have chosen 1t

;0 be 803 and certainly its integral is one. Physically it means, roughly

ipeaking, that all the particles but the first one are already in thermal

:quilibrium. You simply take one particle out of equilibrium. Let's say

rou shoot an extremely fast particle in, while the rest of the enssmble, the

cest of the gas, is in equilibrium.

It's now a very easy calculation to find the contractions of this

You simply need the surface area of the (h~1) -dimensional

distribution.
sphere of radius ,J n-x* . Let me just tell you what the contractions -
are, because yoﬁ can sse it very easily. The contractions are: ﬁ é
~ | . § u
n-3 » X/, 0 3
W C(x)(l-'>-<-'—§T e ” e
X. ! : M i:
'g (X,, T - ~J oa( ) e | ; ]
gcr A 2 GRS
W ) X SCC* e dx ]
-0 Z:g.
h-3 A
Q) (1-2%)"> o R4
gn‘ (X:LsO) = - N = & | (206)
% n-3 AY:247"

)(z_ 2 .
|O=5)7 o e
- 0o . ' ‘- -1 . .

AFor the other particles, the contractions are the same as this one for X?,

It's already the Maxwell distribution you see. When I say that one particle

is out of equilibrium, that's not quite true. Remember that the function CP(?)

refers to a whole swarm of possible systems. On the energy surface $Xk~
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each point corresponds to a system. And <¥7( ) actually measures the pro-~
bability of picking, or choosing, a particular one of these systems. The way'
to think about it is that I have a lot of boxes, each filled with zas, end all
in equilibrium. In each of these boxes you put in one particle, a stranger.
This is always the difficulty in statistical mechanics. After all, you are
always interested in what happens to one particular gas, but you agree to consi-~
der ensembles instead. So the density Q?(¢2> really refers to many systems
-- it is a distribution over the ensemble. In loose language, what we have ln
this extréme case is simply a gas in equilibrium into which a particle is’
shot which has not quite the proper average velocity. But I cannot speak of one
particle not having the right average velocity and so you simply think in
terms of an ensemble.

Now we want to see how equilibrium gets itself established. You
can still say that the Master equation is valid. The only difference between
this situation and the bther one is that they have different initial conditions.
On the other hand, the whole interest will cleariy center aboﬁt thé.contraction

of the first particle. Because essentially nothing happens to all the others.

Now what is then the equation which governs the evolution of the first contracted

distribution? That's also a Boltzmann' equation -- at least it is known as
a Boltzmann equation ~- but this time it is 1inear. You can easily derive it
by again integrating the Master eguation (72). There 1s no dlfflculty at all.

I will drop the subscript one and take the limit Y}—%> oo . It then reads:

(\ ( (—Xbm@+3cose) (?.
(9)<€Q(CMG+L{ méé) o (‘(X.ﬁ\a ;de(loﬂ

S
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That's the equation, the linear Boltzmann equation. You see that it looks

very much like the other one, in a way. But now you see you have an entirsly -

different situation. Because now you watch particle number one. And while

its own distribution of velocity changes it has no effect on the medium. In

fact the distribution of velocities of all the particles in the medium remains

Maxwellian regardless of the collisions. That means there is no effect on

the medium. After all, there is only one particle which is out of step and
h—{ already nicely in equilibrium. In this whole mess, having one out of

step doesn't make any difference. Whereas in the case where you started with

¥
-5

a chaotic distribution, each time‘you perform a collision you also change the i ‘g
distribution of the medium. S :a:
‘Now this linear Boltzmann equation belongs to a very revered class f §

of equatioﬂs. For instance you encounter such equations in diffusion problems. ? (;
Also in Brownian motion, except there the operator is much simpler due to the 3§
"

e

fact that the Brownian particle is usually very heavy. Hence when 1t suffers
a collision with the light particles of a gas thé.Qelocity doés notnchange
very radically. But here the wvelocity in a collision changes from x to

Xec osO+ BS\ w8 whén it collides with a particle of velocity' y» Look
at the tremendous change in velocity for some angles of collision! This is
what you might call a violent change. But if our particle wefe very heavy

and the particle with which it collides very light, then of course the iaws

of conservation of momentum and energy in a collision will produce an operator
in which the changes in velocity will be small. It's perfectly clear that if
a heavy sluggish thing is'occasionally being pricked by a iittle one, i£ will

not change its velocity very much. In the 1limit, as the ratio of the masses

- ey ande ot g B o s dde < s
ARSI E T




goes to infinity, such an operator becomes the second derivative plus certain

first derivative terms which are related to friction. This cf course then leads

to a diffusion equation. A diffusion equation is always a limiting case of

a Boltzmann equation for a linear situation, when the ratio of the masses be~

comes infinite. It is not really a new, separate equation.

.S0 the linear Boltzmann equation is gnother one included in this
pattern, the pattern of development from the Master equation. Finally, in
the literature on the Boltzmann equation, a third Bolizmann equation enters.

It's known as the linearized Boltzmann equation -~ not linear but linearized.

2y y

It comes from the non-linear equation I spoke about yesterday by means of a

deﬁce which I will show you. As a matter of facf, I am going to show you also

a very interesting error that is being made by everybody. This linearized

-oge

equation can be introduced entirely outside the context of the Master equation

by simply looking at the Boltzmann equationt

%)
wils

2_{‘_ = J.Bc 49 5(9) g O‘ Cos6 *as‘“éa{’)ge’\s‘-“‘é +HC°S Q’{’) —§(x,0 ﬂ(jﬁé) ‘ (108)
- )

ot
-0 -1

Now we make the usual argument that physicists are so fond of, We know from

ol
the H-theorem that -:‘-J\(XJ-&) approaches; as time goes to inf;n;ty, the

Maxwell-Boltzmann distribution,, Now 1if you aré near equilibrium, if -yoﬁ_ are

very near it, you can write -S()(J{) as - followss

§08) = 500 [1+pt)]
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Where -&O()() is the Maxwell-Boltzmann distribution and F(xjf) is a

correction which ought to be small compared to one. This is then put in the

non-linear Boltzmann equation (lOB)hand second order terms are neglected. .

So a linear squation results for ]’CXJ{Z)‘ This linearized equation looks

as follows:

é_-,. - \$ (3) g < 3@ 'F(Xmse +&s'm9) f)ﬁ-}i(-)(s'iw@ v 50!)59,%) - (109)

- < -

' )
We have with abandon and pleasure thrown away all the second order terms
and now have a linear equation which we can handle.
At last, we are in the realm of linear operators and can speak about
eigenfunctions and eigenvalues! In fact, my example was so nicely designed

‘that the eigenfunctions come out to be Hermite functions. While one can cal-

culate them, one can easily see it before hand, by "pure thought,“ that it

will be sc. Looking at the Master equation, you see that the eigenfunctions
there are_spherical harmonics on the n-dimensional sphere. We are'dealing

with the contraction, and the contraction of a spherical harmonic is a
Gegenbauer polynomial. In the limit‘ n—> o0 the»Gegepbauef'fupctions

when properly normalized are known to go into Hermite fungtions. This ;pplica—
tion of "pure thought! is quite impressive, but really very simple.

Now the interesting thing about the linearized Boltzmann equations

ot

> |
°r. - ‘AlF | (110)°

wad
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is this opsrator I call ./“u « It determines the decay in time. You might
say the last stages of decay, because you are near equilibrium and you are a
tired old man. That's the behavior being described here. Now one can calcu-
late the spectrum for this operator and it turns out to be a very simple one.‘
It's a discrete spectrum, but one which approaches a finite limit. That's
an interesting point, The finite limit simply happens to bes:
i '
- %(e) de (111)
-

The eigenvalﬁes congregate or accumulate at this value, the total cross-
section,'if you like. Zern belongs to the spectrum, which you can immediately
guess from physical grounds. There are actually two eigenfunctions in this case.
Zero 1is a degenerate eigenvalue. It's a lovely observation, which I think
is due to Uhlenbeck, that the degree of degeneracy of the zero eigenvalue is
always edual to the number of conservation 1aws. It is very trivial to prove
once one'notices ite In this case, two things afe conservedx’ The ﬁumber of
particles and the energy. And consequently the eigenvalue zero for this equa-
tion will be of double degeneracy. For the real case, for the Maxwell gas, thers
is five-fold degeneracy. Because there we have exactly five cpnservation lawss
particles, energy, and the three components of momentum. )For ,;t.h:e_-.linear
Boltzmann equation (107) zero is also an eigem.ralue° It has to be,lbecéuse that
corresponds t¢ the final equilibrium distribution. But it is a simple eigen-
value because only the number of particles is conserved. The energy is not
conserved, at least in single collisions. The total eﬂergf is conéervea, all

right, at least on the average. But that doesn't matter because you're watching

only this one particle.

e eaw fame s gamwy ¢
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Anyway, in this linearized case, zero is doubly degenerate. And this

will give you two decay modes. Now the following question arises. After all,

vwe know that somehow in the general non-linear case you get a decay toward
equilibrium. So what is the relation between the decay in the final stages and
the decay of the system far from equilibrium? You might think, because lineari-
zation is an approximate procedure, that the relaxation times will only be

— approximations. The interesting thing is that this is not sé, at least for the

' first few relaxation times. This is quite easy to see on this example, although

I don't quite know how to prove it in general. Suppose the eigenvalues of the

linearized operator _/\_\ are/Lll, /11) vwiee  (zero I exclude). Then
from the solution of equation (110) we see that %(Xﬂé) is a linear com-

bination of exponentials with the eigenvalues in the exponents:

1

S(t) - Qoo+ 80l
” Sfoe

The first term corresponds to equilibrium. Then there is the slowest decaying
term, that's Q’ (X)e /"('-6 » And so it goes on, with the faster decaying
terms coming later in the series.

The solution of the non-linear equation (108) is also a combination
of exponentials. But alas, more exponents will enter: in fact, all thé linear
combinations of the ,’dk with non-negative integral coefficients. That's
¢asy to see formally, as I will show you in the next lecture. In our parti-

cular case it can be rigorously justified because you can calculate every-

thing explicitely.

e ~.‘$h;—
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Now notice what this means. The lowest decay mode, namely the one

described by /Li‘ s is the same. But
with /ll + It may, instead, be the

the next slowest may not be the ome

one vwith a time constant ;%/i, .

Now this has an interesting implication. It makes no sense to use the full

solution of the linearized equation as-an approximation to the solution of the

non-linear one. Only the first two terms -- the equilibrium one and the slowest

decaying mode -~ are for sure the same. Beyond that point there may be linear

combinations which contribute more than ths terms you keep. The non-linearity

begins to set in after ;Zfl, « It is inconsistent to keep any J/ik. beyond

This is a mistake made very often, even by very good people.

this point.

T = e s gy p
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SIXTH LECTURE
I start again with the non-linear Boltzmann equation (108)‘. To
solve this equation we will use a scheme which Hilbert used on the full equa-

tion., The idea is simply to write formally

§(><,fc)=§o(x3{l+6p,(><>f>+€zﬁ(>(,é)+----} e
| - X/Z

‘S is simply the equilibrium distribution = . E is an
0 ~2T

artificial parameter. Now you feed this expansion into both sides of the

equation and compare coefficients of like powers. When you do that you are

going to obtain a hierarchy of equations. For the first one you get

‘/\‘T) o (11)

~h~-—‘ -

%

I will also write out the next one:

‘3:, = Ap+ [ p%] o -

where I have used what I call the Boltzmann bracket. It is defined by

0k

d

J:CP 1}’] § L) Aj\%(e)cw [CQ (xcosd +«3 0 0) W XS“‘Q ‘%@59) (115)
T c@(xhv(o)]




-99-
From here on, all the equations are of a very similar nature. For example,

38 _.__/\_T?J “+ lmear Comm [j;;\e'{‘;OVJ O-? &D—Fljj EP\ 3 ?L:]J EPz_g’sz< (116)

ck

Now you must put some initial conditions. The simplest is that the initial

‘distribution g( Ky O) is given, We will write this in the form

k(x,0) (x) EL[ + ﬁ(x)g (117)

which is simply a definition of a()() . Following Hilbert, we are going to

put & equal to one. So we can state our initial conditions as:

Plx,0) = R(x),
F(K,0) =0, k>2

(118)

Now what I said about these time constants will emerge perfectly

obviously. I can solve equation {114) operationally speaking:

_ t. gt
_?\(X;E) NS & ()= Zﬁ’:#h CPK(K\) L ()
* . .

The @h (X) are eigenfunctions of my operator .../\;. H

elgenvalues, In my case, of course; the spectrum is discrete.

if you solve the equation for ’E"O(J'E,) The first equation was homogeneous,

but this one is not. You see also that the inhomogernecus term is [”P( . ?C]
L

SRS

s and the /L(IL are the

Now what happens

ey
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And this involves essentially the squaré of J(X {) . When you square it out

what time constant will occur? Clearly all the ones of the form /lle + /l ﬂ
will be there. Then, when you solve equation (115) for ()( f} » what are
yc;u going to find? That @(X,'&) involves /{ik + /i_;_ + /,(M .

To solve for % you must calculatg 'Pl()(,-é) s 'P ()( -{;) ’
%()()TI-‘)...,. That will now involve /’lh R /’(Ii -(-/Llﬁ s /Q _,/UQ_‘_/U”‘ AP
And so it goes on. Every Pﬁ’ will have, for time constants, the /I
then sums of two /U ’5 s sums of three, etc.

Now the method says that after you have found all the ?{f to put
You put € in to begin with only to know which

-,.-.
R g
ieb-l

then in and set € =] .

coefficients to compare, Eventually, & is not there. The method is supposed ' éﬁ'
to yield a solution, which formally it does., If the series (112) makes any 3?
That is clear. &

sense and you feed it back in, then formally it is a solution.

But if the method makes any sense it must lead to a series which is in soms

woii Alvizny

I

sense convergent. Then, of course, the conclusion I mentioned is certainly -

so -- you will involve all the linear combinations of the /U S. It can be
verified in the case of my simple model that the series does indeed make serlse.;

A point I would like to make is that this method, ﬁhich seems SO

strange, is really a perturbation method. It's very easy to decipher what the

background of it is, from the Master equation. The Master equation really

betrays what the meaning of the method is. Since we are dealing with the

Boltzmann equation we already, implicitly, have assumed chaos at time zero.
That means that for Lhe Master equation my initial distribution must be

factorizable, or approximately factorizable and each factor must contract

to %(Xj O) . Very roughly, without going into detail, I can write
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Now the %o (KRS , when multiplied out, becoms very simple, Because you get

simply

I\ (X 4K X ) AR
— e Vi 2 - ——

T NEE N

n
Z (121)

which is a constant. So it can be incorporated back in the probortiopality

factor. So we then get

G R.0) o 1+ TR ZRERK) ¥ e
: g, L -

€

" Now what must I do? I must act with the operator e vhere _(L is
the master operator. Then I must contract. When I do this the first term,
the constant, simply remains'. The next term, ?K«(Xé) s éivéé'ekactly
,V‘(‘X’.t) - From the next one you get exactly ?z.( )(J‘é) s etece It's
simply a matter of direct verification. So really, the method of Hilbert is

a contraction of this very simple expansion. The merit here is that you

don't have to talk about an artificial & -- you simply have to make the

e Gt P Tl A AR
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expansion (120) and operate upon it. And, as you see, the Master equation

together with the chaos property gives you a certain understanding of the Hilbert

procedure, This in turn tells you all about the time constants of the soluticne.
This is about all I'm going to say about the Boltzmann equation and

related problems. You have seen that there was much more analysis than prob-

ability theory. The probability theory ended long ago when we wrote out the
Master equation. The rest was purely a verification that one gets the results
one would expect either from intuition or from prior knowledge of elementary
kinetic theory. A4s a matter of fact, this is true of most probability theories
on this level. The probability disappears after the first stage, and from

there on some kind of analysis begins.

(Thie concludes the discussion of kinetic theory. In the
following material Professor Kac discusses stochastic modelg.)

We will consider a very simple stochastic model, a random walk.
‘Unfortunatelf, this model is little known, It has very inferesting featurss
and leads not to a diffusion equation Sut to a hyperbolic one. The model
first appeared in the literature in a paper by Sidney Goldstein, known to you
mostly because of his work in fluid dynamics. The model ﬁad’first been pro-
poséd by G. I. Taylor'-~ I think in an abortije, or at least not very success-

ful, attempt to treat turbulent diffusion. But the model itself proved to be

very'interesting.

The problem is the following: Suppose you have a lattice of bointso

I mean discrete, equidistant points as in Figure 1.

AX
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T 1]

|
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| |
F!'gure 1.
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Now I start a particle from the oriéln X==0 and the particle always moves with
speed V . It can move either in the positive direction or in the nega-
tive direction. I flip a coin, let's say, to determine which. Each step is
of duration At  and covers a distance AX . So we have AX =VA‘£‘. .
AEach time you arrive at a lattice point there is a probability of reversal
of dirsction. I assume that O..A'& " 35 to be this probabilitjr. Then,
of course, | —Q.AE  1s the probability that the direction of motion will |

be maintained.

So actually what happens is that for a time you move in the direc-
tion you have chosen. And then, all of a sudden, you flip over. For a tims g%
you move in the new directi_on, until again disaster overtakes you.

And so you will oscillate. " As is usual in such pfobléins, what .1s wanted is

Mew Pun, B

the probability that after a certain time ¢ the particle is at a certain

“interval.

S5F Bsrar g2
e B2,

My notation will be.‘ a little strange for a discrete quel_, but it
will be convenient for me later. Let X now stand only for absci;ssas of
discrete polnts, the ;attice points. And let me call the displacement after
N steps Sﬂ . This is the diéplacement if I start from the origin. It is J
the displacement after timé nA’{: . Now I will take a fﬁnc’cion (P(X) , an
*arbitrary" function. And I will ask for .the average <CP()(+SYO > .

This will really give me all I want -- for example, Cpé(] ‘could be the <‘:harac-
terist;'.c function of an interval. In‘that. case this average will simply be
the probabllity of finding the particle in that interval after n steps if iv
started at the point 7( ﬁut instead of taking such a spec:{al function I will

take a more general one. It's really no harder.
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Now let me analyze the problem a little bit. I introduce the follow-

ing random variable: y
[ with ?robab\((ho | —a A&
< = {':I with Probal:;““(d oAt (1)

_and I considgr a sequence of such indepen&ent random variables EE|5E§ZJ"--3EEh_‘.
Fach.of them has this strange distribution (1) and they are all independent.

In other words, I have a coin, an extremely blased coin and the<ffﬁs are new

the result of n independent tosses. Now I can very easily write out the dis-

placement. If I start in the positive direction from the origin then it will
e 4

S,= VA{.(HE#E,EL ~-+€;€z“~'€n-.> o (2)

Hare Eizft B2 2o

Indeed, the first step will certainly take me a distance \//Sfé in the

positive direction. Now I must toss my coin and find what will happen to

i d diovinr 57

the velocity. It will change from \/ into & V- i.e., it will be meintained
or else it will reverse according to the outcome of the toss. So in the next

step I will move an additional distance E%Vj&é « And so it'gbés on, and you

see how (2) comes about. If I had started in the regative direction then the

displacement would have been
/ - -\ o .
Sﬂ .‘:'"VA&("‘*‘ a~+g’62+"'+£‘€L""€h->':—8n ’ (3)

I could combine the formulas together by saying that initially I have chosen

my direction at random. But let me not even do that. Instead let me considsx

the two functions
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‘() = Lo (x+Sa)) W
Fr() = <P (X=Sn)) ()

And now, as is usually done, I am going to write a recursion formula

foz:'these things. First of all, let me write

ﬁ*(x)=<<?E +VAL +VALE, (€4 T8+ "*Qgé"&“‘Db (e

You notice I have factocred out 61 « Now the averaging is really just a welghted
sum over all possible sequences of E/S- fl‘he welghts are dictated by the pro-
bability distribution. But' I can perférm the averaging in two different steps.
I can first perform the average on E_, s and then on ail the re}uaining 6’5 .
So let me first of all average on E, + This variable can assumé the value —|

with probability CLA{' ; and it can assume the value 4+ | with probability

iif Bivnar 5 Se Pa2 @u .
wal Sedear 35 &"’1-*&”&%?&5;

‘!-'aA‘(: So I can simply write

B =ast < @K rust -vit(i+are, 5+~~~)] >
(-0 k) LQ[x+vat +vat (14 €8 e )] >

But now look at this, The averages have exactly the same form as before ~

(7}

‘except that X is replaced by X—-\-\[At and n is replaced by Y] ~| . This

gives me the formula

Fr(x)=aat o (X+vAé\ (1-bt)F" (y+vAt> (8)

1~
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In exactly the same way I can obtain another relation using Fh . It is

] ' - )
t; (x)-—-aAf 6\'4 (X"VAE) ""("&M:) Fh—l (XWVAJC) (9)

So now I have a system of recursion relationms.
Now the standard time-honored way is to pass from these difference

equations to a differential equation in the 1limit A{Z'—)O « I will assumse

that all the mathematical difficulties in passing to the 1limit can be over-

come. They're usually quite a nuisance. This is only an introduction so I

will assume that all the formal steps are justified. In order to pass from

the discrete to the continuous, notice first of all that n measures time.

Actually, n 1s the number of steps and n[\f is the time. The limit I have

td.perform is A‘E§ O » but Y\A’& must be kept equal to my time. 4. Now

let me re-write relation (8):

EROO-F Y () B (evst)-F T

AN - AE
,aF (X+VA1€)+ a F (X*Vﬁﬁ) (o)
And now I can pass to the limit to get .
+ +
(11)

ot 3x

There 1s no n anymore, because I went %o the limit. From the other relati.on,

(9), I get in a similar way -

F - F . aFt g
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There is an analogy between these two equations and the linear

Boltzmann equation. I will not develop this analogy, but you can yourself

pick out streaming terms, and terms representing collision with the medium.

Really, these equations and the Boltzmann's equations express conssrvation

laws. You simply write, in a clever way, that the particles don't get lost.

* Now the amazing thing is that these two linear equations of first

" order can be combined into a hyperbolic equation. For this purpose I will

introduce two new functions:

—+ | - _ t_p-
“L(FtF) ad §= £ (FRF)
Z i
(13) ¥
w4
Now, add up equations (11) -and (12). Then you are going to get, in this ﬁg
néﬁ‘notatioh, | . %?
5F _ %6 :
ot oX - | W)

Now subtract (12) from (11) to get

=y ar 3 F — 20 GI a5
Bt d X S '
Now the problem is to eliminate (J . To do this, differentiate (1) with

respect to t and (15) with respect to X . Everything then becomes obvious,

and I obtain

F a F_2a DF

,.
vor TV ok Vot e




-108-
This is a very well-known equation, namely the telegrapher's equation. We
now need to show what the initial conditlons are. Remember that F ¥ came from
Fﬂ+ . This, in turn, comes from (4). Now CSV\ is the displacement after a
time V\All.' 3 and we want this time to be zero. So that, in the limit, EA+[X)

simply becomes CP(X) . The same is true of Ea()() , 50 we get

F(XJ O) = CP(X) (a7

Now what about the derivative with respect to time? This can be deciphered

from the first order equations. But it's a little bit cumbersome to see it,

so I will simply state what it is. We will later get this result from a some-

what different point of view. For the moment, I will ask you to believe me tha®

(2F) -9 -
ot Jt=5 (28)
So now we have our initial conditions. '

It is actvally an accident, in a way, that we came out with a diffor-
ential equation. MNevertheless, we will take adxfaﬁtage of this'acci&.ént and
discuss a few points. First of all, there is one limiting case jw'hich is ex~
tremely easy. That's when d=0 . Then, of course, the probability of
reversing direction is gero. If you start moving in one direction, you never
stop. What would F(X ,'(;) be? Thére are no reversals of direction and no
random variables. So from (L) you see that E\+(K) = C@(X-%"hVA{:)
and from (5) that Fn‘(x) = CP(X—V\VA{) . 80 1t follows that

Fi, ) = RGHvE) + Px-vi)
| <

And that, of course, is a well-known classical case of the vibrating string.

(19)
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That's all very fine, but not very interesting. You can get some-
thing better if you let L7709 and V- o0 in such a way that 2@/\[

remains constant, say l/j) . This can always be done, and I am allowed to

choose D anyway I want to. This limlting case of equation (16) then becomes

the diffusion equation:
1 dF _ JF
D ot IX* (20)
Why I must let CL and V go to infinity is easy to see. Because everybody .
knows that diffusion, or Brownian rﬁotion, can be locked on as a random walk.,
But in the standard model the probability of a move to the right or to the left
is one-half. ‘Now you see the probabilities in our model are either extremely
small or extremely large. The only way they can be brought to ,whére they wiil
be one-half and one-half is to let (1 approach infinity as A‘\l; goes to zero,
If {_ does not go to infinity, there will always be a drift. You know, also,
from the random walk model that the velocity of a partlcle is mflmte in the
limit. So we have to let \ also go to 1nf1nit/.
Before I proceed, let me tell you that this method of deriving the
. telegrapher!s equation gives you what is now popularly known as a Monte Carlo
way of solving it. What you 'are golng to do is to go to your computer. You

are going to store random numbers in the computer, or else you generate them

as you need them. You start a lot of particles walking from X, let's Say half

of them in one direction and half in the other. At every time step you "flip
a coin," using the random numberso The "coin" 1s weighted so the probability

is J.A'& that a par‘blcle will reverse direction and l dﬂé that its

direction will stay the same. At each time + you look to see where all the
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particles are. And you calculate the value of the finction <€> for each
particle, add them up, and divide by the number of parti'cles° Then that's the
approximate solution at time t of the telegrapher's equation.

This is a completely ridiculous scheme. Because in order to have
good accuracy A'é had better be small. I don't know how small, but certainly
you ought to discretize reasonably well. Bu‘t;, that means the probability of
reversing directions 1s very close to zsro. It is a very unlikely event. This
is the type of sifuation which‘is very difficult to handle by any kind of Monte
Carlo technique. Because with such a small probability you would have to havé
an enormous number of particles. You ﬁould need a really ridiculous number.

Otherwise s the fluctuation will be enormous.
Consequently, we'll have to be clever. What I want to do is to

completely cut across the firat phase of deriving the difference equation.

-I will treat the whole thing as a process with continuous time. The discreti-

widd dbirdar H7

zation will be avoided. In so doing, I will first of all discover a véry neat
vay of writing a solution of this telegrapherts 'e‘éuation. Aléo, it.‘will' be
extremely suggestive as to how to plerce out in different di;'ec’gions, mathema-
tical and physical. I will assume then, that I have a coz;rbinuous motion of

my particle. During each tlme interval d‘t there is a spontansous probability
of changing direction ddj,' « The probability of not cha‘ngi‘ng- direction is

then I-—a,di' . Now this is reminiscent of Mr. Pois;on, Who’m'I mentioned ;earliero,
I will now define the Poisé'on process for you., I cannc;f, of coufse., go into
_ some of.-the more delicate, purely mathematical.difficul.ties. These involve

some measure-theoretical p.oints. I will have to stick throﬁghout these .lectures.

to a more intuitive presentstion.
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Ve suppose that, N(‘f:) is a random variable (technically, a measursble
function) for each given time t. It isn't a well-defined number -- it is some-

thing which has a distribution. Moreover, N(t) can assume ouly integral
valuest O, 1, 2, etc. The probability that N(t) is equal to '&, at time t

is given by the famous Poisson formulas k

Frob § N(E) = ki S (%? ‘ o

That's one condition. A second, extremely important condition is that if you

take a finite number of time points arranged in increasing orders
d 0 . . ] ’ .
<t Lt Ly, -

then the i'ncrements :

N('éz)"N(ét) 3 N('{:e,)“N('éZ)) o ”" ") N(‘EV\\)‘NG'WI) (23)

are independent. Then N({-‘) is a Poisson process.
Think of N(ﬁ) as representing the number of radiocactive particles

emitted up to time t. Then N(fz)“ N <.él> represents the nﬁmber of
radioactive particles emitted in the time interval (—é| ,)-f_,_\ . Now look at
another time interval, say(‘é5 ,fq‘)which does not overlap the first one.
The number of particles emitted during this interval is clearly independent
of the number emitted in the other one. That is extremely'intui‘bivé o k

Now if you assume -- and this is one of the stands»d derivations in

all elementary textbocks -- that you have an event with probability a,d;é':’

of happening in f-}-d‘é and / -w of not happening, then the number of

events which occur up to time t is the Poisson process. This, in fact, can
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be made the basic definition. In particular, the number of collisions my

particle undergoes up to time t is just a Poisson process. You will recall

that every time I suffer a collision I reverse the velocitys So what 1s the

plot of my velocity? The velocity can only be either \J or-Y . If I start

in the positive direction, then for some time my velocity will be just \/.

Then I suffer a collision, and it changes to —-\/ . It remains the same until

I suffer another collision, and so forth. So my graph will look something

like the one in Figure 2.
Vv

—~ Fgure %.

Now the question is how to relate the velocity to the Polsson process.

That's perfectly obvious. Because the number of collisions up to time +

is Jjust N (‘é) » and the velocity changes sign at each collision, So .one way

of writing it is:

N(E .
.VG:) = Ve (=) | - - (20)

This simply says that aftér an even number of collisions I have my old velocity.

After an odd number I have just the negative of it. The displacement )( C‘é)

is simply: +

, £ ‘ ’ _
X@)= \v(r)dr =\ (e | e

o ' o
This is the continuous aralogue of my Sh .

.-;‘g 43 ) y -:;
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The analogy with the discrete case is suggestive. I would expect-

that the solution of the telegrapher's equation (16) with the conditions (17}

and (18) is simply

t k
Flt) = % (XWS(—I)N(T)&C) +3 L (- (~!-)N (Tc)i)
1) = z<@ > 1<4)(' T (26)
Q ' o

This is certainly what the whole thing suggests. Because what have I done?
I have merely replaced a discrete random walk by a continuous one. And (26)
1s just what I found for the discrete case written out for this one. It is
easy to prove that it is so, It can be done directly. I will sketch the proof
later on, but it is not the proof which ié s0 intéresting. What is interesting
is this very elegant way of writing the solution of telegrapher's eqﬁation
in terms of the Poisson process.

First, I would like to call to your attention that in this form it
is entirely feasible to use the Monte Carlo method; You have, no more, any
difficulty with small probabilities. In the othéf, discrete, vé}siéh I was
plagued with them from the very beginning. All you need here is a machine or
source of radioactive material which will produce a Poisson brocess. Then you
simply take a hundred samples; say, of the Poisson process. For each one you
calculate the integral (25) and then simply perform the averaging, Thus you
can have the same problem formulated in two different wayss‘one of ﬁhi;ﬁ is

useful and the other not.

The second observation is really extremely amusing and shows that if

one hits upon the right formulation one always gets more than one has bargained

for. Our solution; in the form (26)s is extremely reminiscent of the solution
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of the equaticn of the vibrating string. Remember that for the vibrating

string I had simply —2-:'— [@(}(wé) + CF (Y - V‘é )] and there was no average.

Now these two differ in only one respect. Time t is replaced by this "ran-

N (¢
domized time" §(~]) (L)(L@ . And then, because you don't know what 1t

o
is going to be exactly, you must average.

This amusing observation persists for all equations of this form in

any number of dimensions. Take for instance the case of propagation of

radio waves?
;_L~ Eiifi -+ égf&~ gifi = ZXF:
V= ot Vh ot . . (27)
And again suppose you want to solve the problem with the initial conditions:
F(%Ys0) = @(X,4)
F:
(32_; = (:)

ot )€:== 0 ,
Now the rulg, for all dimensions, is the following. - Forget about the bother-

(28)

some terms -~ take just the wave equation. Write down any solution you know,
Solutions are very well known in all dimensions. Then, wherever you see time,

replace it by this randomized version and average. - This gives you'the desired

solution.

This seems surprising, but it really should not be. Some of the

things-#hich seem strange purely from the point of view of differential .equa~
tions become obvious from ancther interpretation. For examplé, consider the
theory of a cable where the equation (16) is applicable. If you put a charge

in one place and let go then after a time you will have delta functions ét two

points with a certain continuous distribution in between. The delta functions,

il Binromr e Mo Her Do R
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which attenuate exponentially, simply correspond fo particles which have not
yet suffered a collision. And, of course, the continuous part simply corres-
pends to the particles which have suffered a lot of collisions and became

completely mixed up. Our solution (26) appears very natural in this setting.

381 Bareor B8, Mor Yo, 85 25me
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SEVENTH LECTURE

I will now sketch a proof -- one which does not really satisfy me
entirely. It's a rather ugly thing; because one has to compute too much.
One feels that cne shouldn't have to compute anything at all. Such a state-
ment ought to be provable by f"pure thought." I would also like to call your
~attention to the fact that we have not accomplished very much, except to find
an interesting way of writing the solution., We will later see a similar
- treatment for certain parabolic equations ~~ with the differénce that in that‘
case one can actually use the new probabilistic form to draw significant
analytical conclusions.

:The calculations which we are_going to perform will not be wholly
wasted, bécause we will neéd to do similar things later on. I ﬁill-only prove
the statement (26) for functions Cp which are reasonably "decent." In

particular, I will assume that my function can be writien as a Fourder integral:

céX
Pl = - \e Bt

00

(295

Now if you substitute this in the statement we are trying to prove you gets

F(x,t)= 5:'%- K @(é)e Qos(ﬁvs -—t)N(‘J,’/:\)\) PR (30)

-—oa
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Now you look at this cosine and expand it in a power serless

§ RGN
CZV)<( !) A@)\Jp(év (g(\()ﬁ( )>.+.... .

These avsrages, as you very well know, are called moments -- they are the moments
In this case, only the even moments enter.

of this strange "randomized" time.
This

However, let me just show you first how one calculates the first moment.

can actually be done immediately because you can interchange the averaging and

integration: .
t

-t
: fJ( ) : N(‘ )
< 1) ﬁclf = \<ED >‘i e

(o}

(This can be easily justified. The averaging is also an integration, an inte~

gration over the space of all functions PJC£) .« So it is merely a question of
interchanging the order of integration.) Now the path is clear, because I
know what the distribution of N({‘) is. It is given by (21). Then, from the

definition of &n average -~ or mathematical expectation; if you wish -- we

find thats

/- N('C)\ (“ -CL’Z:' (d@‘) - = _'_:.
Rl (33)

This is an easy series, lsp't it? If I pull é? out then what I have
left is just the series for & - So the whole busirass is just & z .

And so we can find the first moment:
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_ia@ : )
(,4_’(?’ (3h)

.,u.(é) = ¢ (r> aw>

It is only a little bit more complicated to calculate the second
moment. It's a very common trick, which is used over and over again, to write
the square of an integral as a double integral by introducing two variables.

Let me do that:

T N(Z“) $ ‘f/t/c( N(z) N(’l”) |
(Y6 dr))- QS&" D deds)

The expression on the right is an integral over a square. Since it 5:8 complete-

oo

N

o
5

£
s

ly symmetrical in the two variables "EI and ’tz s I can integrate over only

a3F

‘half the square and multiply by two.

N(z) : (c)+N(z)
21 }(v )N(fdfa“lz* =21\ <(~*\S\’ (7L>¢£M"*

oL Stist 0K L (i

There is a reason Why I put 'Z,I rather than simply 2¢ I am anticipating the
results for the higher moments. And now you perform a very simple trick. You
merely write N (’Z"Z): N( ’Z‘;)-&-[E\(()a)uN (’Z‘;)j . There's a pg?lnt in writing it

this way, because I have separated N ( @;) into a sum of two things which ars
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independent. In the case of the higher moments you do the same thing, only

there will be more terms in the decomposition. Making now this substitution

we have!
2N(E)+N(T)-NE)
2: Sg S >0L(" 4t, (36)
O\@lé%l\éf ’

Now this becomes greatly simplified,' because 7__N({‘;) , whatever else it is,

is an even number. Therefore,

N +N(B)-N(TG) N(T) -N(Ty)
<(-'), | | >= <(*'I) | > o

which, from the meaning of the average, is nothing more than:

Tk alB-T) alm T —2a(r -1 |
Z@-\)ea(L [n)] o g (1) (38)
k=0 ST

k/

Consequently, the second moment finally becomes:

4 (4 o
t 2 AN s
| NZ) | -2a(0- %)
)= (\ci) de)p=2\dt\dtie

A ) o
8 -
Now this last is just the integral of a convoiution. Why does the
convolution come in? Precisely because of the decomposition we made of N(/ﬁ';)

into two independent parts. It shouldn't take much imagination to see that this

will also happen when you go to the higher moments. Indeed, this happens in

all stochastic processes with independent increments. You always have such

$3 B B
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convolutions coming in. The natural thing to do, then, is to take the Laplace
transfbﬁm. Things will be much simpler, because the Laplace transform of a
convolution is the product of transforms. Now I can write (39) in the form of

a dcuble convolution by introducing Q?e Heaviside function:

A(é) f + <o

‘l{-‘ t >o
It becomes justs .
e o/
24T,
-2 \A(t-1) \A@-G)e e =k

© ‘ o

(ko)

Then we get the Laplace transform immediately:

_.S'é
o /Uz()a(’ - L B

2] S S Staa o @

The general formula turns out to be different for n even and odd.

Tt's a nice exercise for you to verify that:

60 ‘ I ’ ,\(_ﬁ n odd

st S G
EE /ééﬂjgéyci;ﬁ = ' . o (43)
al | |

W ' h oY h ev
=T (S+2a) /a5 7Y e
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Now the moments are rather messy, because they are inverse Laplace transforms

\
of these things. That suggests that rather than to work with Fé( "{;} itself,
So let us calculate this Laplace

we may better work with its Laplace transforme.
transform. ' oc
v / 1N
st (a6 "%"( S0
- € _ - ld g
€ F(XJ-é)CM’ C2TSs 3 ( | n:Zo‘ S(S‘hlﬂb .A'v (L)

° — oo
We have here made use of formula (30) and the moments we have calculated. The
serles can be. summed. It's a ver;v well-kriown one; You then get an ,ext.remely %g;
simple formula: g :ﬁ-
' co 'zf‘,'g* :
» | / 1 ' --, : %
st Al U T
e -F(X ‘%)A{ =ams e i+ (bs) &
. S T 8(3'*."2.60 X
S

0 o

And now it is easy to see, at least formally, what transbires. The

- Laplace transform of the telegrapher's equation is

2 : : o
\IJ. 5- _ S(S*‘ZCL.)S _ S+24 F()( 0) =0 e
Ax> 3 va | S/ -
This form of the equation, as a matter of fact, is often used in soli'riné the
telegrapher's equation. But now you. can directly verify that 86( SS) s the
Laplace transform of my function FG({(_), satisfies this one. You simply

substitute it in. It follows then that my function F()(sf) satisfies the

telegrapher's equation.
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This is not really a very nice proof. It is very irelegant -- al-
though perhaps one should never speak of elegance among people who ars engaged
at least part of their time in applied work. The lack of elegance here is that
in simply verifying this formula you are essentially solving the eguation.

It's sort of cheap to simply verify something by brute force. It would be much
nicer if one could see it directly. But I don't want you to take me seriously.

I don't.want to stop doing things because they don't adhere to certain princi-
ples of elegance. Boltzmann used to say, when he was criticized phat his work
vwas inelegant, that elegance should be left to shoemakers and tailors. Perhaps
this is really true. But this proof is a little bit aesthetically dissatisfying,
I would say.

This same proof éoes also for a higher number of dimensions. Again
it's simply a matter of writing the Laplace transform and verifying the same
formula. There are certain disappointments in comnection with this. Because
really one learns comparatively little. At least I haven't learned anything
really startling by doing it this way. The sitﬁ;tion changes-radicaily if you -
go to other differential equations, those of parabolic and é;liptic type.

When you study them from the polnt of view of stochastic problems from which
'they arose, then a considerabls amount of new knowledge and a new approach
results,

let me first give you one more example of thg great a&vantaga which
can accrue if cne looks at the same thing from a different polnt of view. I
will consider a very classical problem: The asymptotic behavior of eigen-

values of the Laplacian. You have some region.JrL. with a boundary r1 .

.

These are in the plane, let us say. Everything is assumed to be suitably smooth

-
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so that classical analysis is applicable. The problem we are considering can

then be stated:

r‘]

Lav+du=0 \n
A | (47)

U =0 on !—1 (L8)

You will recognize this as the vibrating membrane problem. I now consider the
eigenvalues in their increasing order: )\I )>\ 29 .>\3_7.... « And I denote by
A ( )\\ the number of eigenvalues less than ).. In the plane as }\ goes to

infinity,

_ l :
AN ~ |0 ) (19)
pily
The symbol LITZ ! means the area of the region; In three dimensions it be-
comes the volume and the lambda gets raised to the power 2/3, The curious
thing is that the c0nst§nt depends only on the area, not on the shépe at all.
There is a very heroic story connécted with it. Let_me tell you the
story. This theorem, in three-dimensional spaée, was conjectured. for the first
time by the great H. A. Lorentz in 1908. This was during a meething in'
Goettingen devoted to the new quantum thecry -- it wasn't gquantum mechanics
yet. There was, by that time, a new theory of specific heats which Debye pro-

posed. It extended the older theory of Einstein and was one of the first

great triumphs of the new quantum theory. By playing around with Debye's theory
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ou can deduce some properties of the heat content. Now it's perfectly natural

hat the heat content should be proportional to the volume. And certainly it
annot depend on the shape. So there vas the conjecture., Three yearcs later,

n 1911, the late Herman Weyl proved this. In so doing he made a tremendously

nteresting contribution to this branch of mathematics. It is in this conpec-

don that he first introduced the famous variational characterization of the

:1genvalues, the so-called minimax characterization. From there on the method

ias applied very successfully to different problems in many different ways.

1Jeyl's original proof was not difficult, but ﬁot entirely "understandable.”

{lthough you understand the steps you still don't quite know what makes it tick.
I will now give you a proof which has the advantage that one under-

stands very well how it works. In fact, it makes the theorem appear ralétively

superficial. The way it is stated now it has a certain appearance of depth.
But we willtlook at it from a somewhat different point of view -~ the point
of view connected with probability and diffgsion. What I'm goiqg to give you
will not be a complete proof, because there are Several delicﬁte péints which

have to be justified. This can be done and it has been done.
We will lock at this theorem in a diffsrent way, in what I think is

the proper way. We regard the equation (47) as arising not from the vibrating

membrane or anything of that sort, but from the diffusion equation:?

2P LA | -
5t = 7 AF 0)

You know perfectly well how this goes. I will, of course, reqguire that

h]

P(Xg‘;ffé) = 0 U rl (51)
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and, in additicn, I want to make the following assumptiion: , i

~

| Plx 3(597153 — 8(%-%0)6@-@) as 'é —> 0 (52)

So, if you look on P(Xyﬂ,"é) as being the concentration of some diffusing

stuff, it's initially all concentrated at (X') ‘do) .
If you take the equation (50) subject to the initial condition (52)

and the boundary condition (51), then it is well known from entirely classical

stuff how to write at least a formal solution. You simpiy make a separation

of variables and find that you can write

/ : & ""7\3f '
Pl [%y,6)= e Talea)alng)
por AR AR
l 3 ’

The ?j’ (X,‘\‘D are the normalized eigenfunctions of the operator -i-A 3 the & !
>\_3‘, are the eigenvalues, the same ones as before. This is one of the most i
standard results in classical mathematical physic;s. ' |

Novw let us try to interpret this P(Xe )Ljo X’H 7{:) « The condition
(51) means that l_l is an absorbing barrier -- any of this diffusing stuff

%Yyt ),

the concentration, 1s going to approach zero as you appreach the boundary.

M Yt e e aplgd 1m
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vwhich reaches it is eaten up. So it's perfectly normal that P(X,)%c

Initially all the mass is at the point (Xoi‘Lj") s but as time goes on it
diffuses out and gets absorbed.
Now suppose that t is very small, Place yourself in the position

of the diffusing stuff -~ you are there together with all the other particles

that are going to diffuse. Now you are going to move for a very short time.
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In such a short time you don't know what will happen on the boundary, becauss
you haven't had a chance to discover what horrible disasters are going to befall
you. The knowledge of your fate, that you are golng %o be eaten at the boundary,

has not yet reached you. The smaller t is, the less knowledge of this you

possess. Consequently, for small t, a good approximation ought to be given
by the solution of the same diffusion equation without regard to the boundary.
Of course, it's an intuitive principle, this principle of not feeling the

boundary. But it leads me to think that early in the game the solution will

be that of the unrestricted diffusion problem:

N N i

_ Lo J+ G-y ] %

| I | 1‘!}{

— € e | | 1) #

Zﬂ.é : . ':::

which is perfectly well known. %

' If we are so courageous to think that this is a good apnroximation
for small t, then perhaps it also holds when X X and \6... ‘ I. It then .
becomes '/Q,ﬂvt . But then that gets us, using (53),
=3 ( ) L s t=o 9
: . o) .é.

Now integrate both sides of this asymptotic equality over the region. ﬁsing
the fact that the eigenfunctions were normalized -- the integral of ? ()/ )

is one -- you get:

< - AF ~ l_Q;, | | (%6)
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" And now we are almost through. All we have to do is know a little bit of
mathematics. Because I can write the sum as a Stieltjes integral, a very

convenient way of writing it:

it ~X
St =\etdaw

0.
—L— can also be written as a similar integral, so you get from (56):

t
Y ¥ W .._7\'6
e JdAQ) ~ J:(_z:..l— e 4 (58)
21

0 , 0 .
which is true as t goes to zero. Now you know about this function A(A\

o
that it is non-decreasing. After all, the bigger )\ is, the more ;\} S
you include. Now there is a theorem that says that from such an asymptotic
equality, for t going to zero, there résults another asymptotic equality

for ;\ going to infinity:

AO\) n «.]..L‘(_.Z‘_.L)\ as >\,___9..:c<.3 | (59)
| 21

This thsorem is known as the.Hardy-Iittlewood-Karamata Tauberian. thecrem.
It produces the result (59) we were after. | o

Now this proof has one tremendous advantage. (Actually, it isn't
a procf yet because we have done a certain amount of skullduggery.) It is

intuitively completely appéaling. Moreover, it is unforgettable. The basic

.principle, this not feeling the boundary for a short time, is only visible

"

waps aErem -
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if you look upon the problem from the point of view of the diffusion equation.
From the wave equation viewpoint there is no such simple interpretation. This
principle of not feeling the boundary has by now been exploited many more times
in similar connections. Even here it can tell you something more., It tells
you that it doesn't matter what boundary condition you put on. The same
asymptotic behavior ought to be found for any homogeneous boundary conditvion.
That, of course, is pért of Weyl's theorem.

This is an example of the advantage accrued from lookiﬁg at a mathe-
matical equation in different physical contexts. If you look at it from one
point of view it_may be much more revealing than if you look at it from another.
This is why one should try to formulate even familiar things in as many
different ways as possible. You undoﬁbtedly will learn something in the pro-
cess. Just to finish up this story, let me show you that our principle not
only illuminates the result, it also suggests the detailed procof. I claim
that immediately I can have an inequality,

RCEATICE N
' 2t |
P(X°’5 "(v[ﬁ JC) M‘é (o)

From the physics of the problem this is a yelling triviality. Bgéause what

does it mean? It means that the concentration when there is an absorbiﬁg

barrier is less than when there is not.

Te find an inequality which goss the other way is only a little bit

more difficult. Let us draw around this point (‘ t‘ ancther curve,
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/ / r\
call it r’ « We make r‘ lie entirely within H

. /
Consider now the same problem with r' replaced by P » Tou put the absorbing

! )
barrier at P « I will denote the solution by P (X

Now I claim that P must be greater than or equal to P!

P{(X ) < P(Xn X,%Q (61)

Bscause, after all, the stuff is going to be eaten earlier. In the .f;i.rst
/

problem I still hévé the possibility of diffusing outside r " and then coming

back in without having been eaten. These possibilities are denied tome if I
have the boundary at P' . S0 [P is bigger than PI . What is the obvious
thing to do? To select the bou{xdary r’ l so that you can solve for Pl »
Either a circlé or a rectangle will do. So now you have inequalities going

both ways, irequalities which certainly hold for all )( andtd. So you can put

X=X, and’:S Y. to gt |

Pllylayst) < Z e (W i

This inequality is true for every point \)( DLA ) provided I surround it by a

certain square. Now think of the whole region as being coversd by little

squares. At the center of each such square you have the inequality. Then you

g e iR

e aew pEwes
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just integrate out. Of course, to finish this up, you have to know how the
left hand side bshaves as t goes to zero., But I know the solutlen explicitly
for a square, so it can be simply verified., 8o this is a very brief skaﬁch
c¢f essentially the full proof. |

I wish 4o make one observation. Since one tries to sell the methed,
one may as Well be honest. The reason the proof works so nicely and neatly
is becaﬁse you have all these inequalities which are-properties of parabolic
equaﬂions. One should distinguish between being able to see things clearly
and being able to prove them. If you wanied to do the same problem for the
biharmenic equgéiOn then you could still enunciate the principle of not fesling

the boundary. You could still get some answer, but you would not be quite

T o O

sure how to prove it. There are no corresponding inequalities for the binarmonic :
%45t)

remains always positive. The inequalities are quite obvious, and their proof

. . . i?{x
heat equation, for instance. In our diffusion problem |{ \ c)&,o

is intuitively quiie clear. .

N;w this is actually a very interestiné.question. What eénations
do and what equations don't have the properties that we need? If you have
an. elliptic operator.JA. of second order then for the correépondihg eqp;tion
é;;;i = JA_ FD . will have all the necessary ingqualiﬁies. For higher
order equations I don't think anybody really knows what to do in this parti-
cular way. ) | L

But anyway, here is an example of the very claséical theorem, done

in all the textbooks, which can be treated by a probability approach. Qur

problem vwas one in differential equations, a purely mathemétical problem,

But that it came from a physical situation is not something to bs sneezed at.
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Because the knowledge of where it comes from gives you a way of approaching
the problem. You also see that taking it és coming from one part of ghysics
may be more useful, more illuminating, than taking 1t as coming from another
part of physics. It's a real advantage, both to look at an equation from
different points of view and to be aware of the physical "“interpretation. That
is the reason why I believe that if any real breakthrough ever comes in non-
linear differential equations, it will come only when a certain amount of
physical knowledge will be amassed, so that some intultion will be developsd.

The rest of the time I will devote %o discussing problems arising
from the simple;t cases of Brownian motion. I was hoping, when I plannad the

lectures, to be able to do much more with Brownian motion. But it turns out

that one always is too optimistic as to how much time one has. . Conseguently,
I will have to confine myself to the so-called Brownian motion of a free parti-
cle. This is already familiar to you in the classicai theory of Einstein and
Smoluchowski. But I will look at it from a somewhat diffe:ent peint of view,
a point of view you might call integration in fﬁ#ction spaces;

ﬁow how does the original theory of Einstéin or.Smoluchowski approach
the simplest case of Brownian motioﬁ? let's take a straight line énd say to
ourselves that we have a Brownian particle starting at X}:)ﬁ o I assume from
the very beginning that, at best, I will be able to predict the probablllty
density P(X [X {A If I multiply by J\X then this is simply the probabli~
ity of finding a particle between X and ¥ +OU( at time t if I start from X o
And now one makes an assumption of the past being independent of the future.

Mathematically, it can be'formulated as followss

B g 3 £ A,
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P, L) = \4y Pl Iy L)Plylv ¢!

To see this, you notice that P(X lX 'é) is the probab“ 1ity of coming from X

toX in time t. But at any intermediate time, say 'f s I haye to be somewhere.

(63)

Istt's say that at time f‘ I have the position 3 + S0 I have made a transi-
tion from X tcS in the time '6 But then I must make a transition from
3 to X in the time ‘t‘ ‘é . What is the probability of this? Well, since
the past is independent of the future, the prébability is the product of two

probabilities. In fact it is just the integrand in equation (63)." But since

g e AT

% could be anywhere, since I don't knew what it is, I have to integrate over

all the possibilities.

This is a very famous equation, It is known under a different name, :

depending on whether you 2zre a mathematician or a physicist. In the mathemati-

cgl literature it became known as the Chapman-i(olmogoroff equation, although
I do not quite know why Chapman was attached to it. Among the physmists, it

is known as the Smoluchowski equation, because he considered it in great detail.

It is interesting to remark that a similar equation can also be _writ.ten in

quantum mechanics. Except that it is not anymore the probabillity density that i
is invelved. Instead it's a complex-valued function known as the. probablllty

amplitude. One of the reasons this is so is because in quantum mechanics you

cannot make the same argument, Ycu cannot say that if you are at one\ place at

{
time t and anothsr at time '(j then you must have been somewhere in the mean-

time., This is wrong for a very interesting reason. In guantum mechanics ons

must always look upon things operationally. I must be able to perform an
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experiment to find the intermediate position. But if I do that 1t will chane=
where I end up. Any experiment you can think of will disturb the particle in
some way.

Now if you don't make any further assumptions, there are slews of
solutions of' this equation (63). This is even true in the spatially homogensous
case. This is the case where F()(o IXJ‘E ) depends only on the difference
X—Xd s not on X and Xo separately. I can go further even than that.

I can consider the symmetric case where P()(D!)(,{:) depends only on the

absolute -vaiue \X“x°] :m

Plenld) - el

bt 2

The probabilities of going in one direction or the other are completely equal.
Even then there are a tremendous number of solutions of this equation. For

instance, a somewhat unusual solution, not perhaps known to you all, would be |
t l
1 y)
T £ +(X-%e)

If you substitute this into the equation you will verify that it is a solution.

(65)

And fhere are many, many others.
But 1f you assume, in addition to the symmetry, that the second moment

is finite, then there is only one solution. Or, rather, one form of a solution.
It is namely the Gaussian distribution: 5 |
l ' _ (_‘I(,"'Xo)

¢ e actt

(66)

;’)_'TF? | qd-
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(5'1' is the second moment, the mean square displacement:
oo

()(-Xo)m?()(~->(°3ﬂ>&>< <0° C(en

-0
It is really the finiteness of this moment that forces the soluticen (65).

You recognize 1t as the solution of the diffusion equation. I will show you

formally how equation (6l4) can be reduced back to the diffusion eguation when

the second moment (66) is finite.

T e
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EIGHTH LECTURE
In the symmetric, spatially homogensous case with a finite second

moment we have found that the only solution of equation (63) was:

l - (X“onb
Vamt

At least you believed me when I told you so. In rewriting it I have put
equal to one. This function is, of course, the well-known fundamental solu-

tion of
v‘!"‘ N sr——
2 : (69)

In writing the-fundamental equation (63) I used the assumption
about the‘past being independent of the future. This can be extended to answer
a more complicated question. You can ask, for instance, for thq probability
"; betwoan

of finding a particle between the limits (oz, ) (’; ) at time T
(O<q,’(2 ) at time 'éz s ¢« « oy and between(%r\,@ ) at time ‘éw .

This problem is 1mmed1ately soluble because the answer can simply be expressed

X-{;) . This is

again because of the assumption of the inaependence of the past and the future.

in terms of the elementa*y transitlon probability FDQX'

In fact, the probability is simply

6 A
o \PEE) P tet) P, X st o

TR - N
(We assume, of course that O<f,<fl<”'4fnJ
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In the integrand I have a product of probabilities: That I cuan always separate.
the probability into such a product is referred to as the Markovian property.
Inh our case, it's actually simpler than the Markovian property. It's-;imply
the independence of the increments during non-overlapping time intervals.

You might say that nothing new has been added. This probability ie
§imply expressible in terms of the basic transition probability. However, I
‘can now make this 2 beginning of a measure theory. Because I can take -the
following point of view. Ilet mé think of the path of the particle in spacs-

timet

X

v, vt

Indeed, let‘me think of all possible paths the particle can taks. $ome may
even be discontinuous. & priori, I don't know, So I will coﬁsider the set
of all possible functions X(é;) such that ¥X(0)=0 . Let's call this set
of functions, or paths; S. -

Now in this space S I want to introduce a notion of a measure. This
simply means that I want some analogue of volumes or areas. I have made a
beginning because I know already measures of certain sets. Iet me eXpléin

this more carefully using Figure 3.

X

anure 3.
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I have marked the points ‘f_,<é1< é'én, on the time axis. Above these
points I have marked the intervals (o{u {?‘) gty <&h . eﬁ) . These
are known as windows. Now you consider the set of all paths which pass through
these windows. This is of course a sub-set of the original set. To this sub-ssi
I will assign the measure given by formula (70). |

let me remind you of what one does in ordinary measure theory., In
the plane, for eiample, ore first takes certain elementary figures, say rec-
tangles, with sides parallel to the coordinate axes. One then assigns a measure
to these elementary sets, ordinary areas if you wish. Then from these sets you
can bulld up more complicated sets. For instance, you can build a circle from
an infinite number of such rectangles. Of non-overlapping rectangles, if I do
it carefully. Then I siﬁply add the axiom that the measure of any set which
consists of such disjoint sets becomes simply'the sum of the measures, In
this way I define the measure of sets which are more interesting than mere
rectangles.

HIn Figure 3 I can choose my windows inﬂmany, many differéﬁt WaYSe
Each choiaé defines for me a set of paths, namely the pathg phat pass through
~ the windows. These sets play the role of the rectangles. Tﬁey are the elemen-
tary sets. Thelr measure is given to me by the elementary theory of Brownian
motion -- in fact, by formula (70). Having this, why not imitate the measure
theory in the plane and ask ourselves for the measures of more intefesting

sets., For instance, the set of all those paths for which
+ :

x?‘@’) dt L . G
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Before we answer such specific questions we must ask ourselves some
other ones. Although this measure enjoys most of the properties of ordinary
measure, 1t also has some very interesting peculiarities. Suppose I take the
set of all continuous paths. Now I want to find the measure of this thing.
T am not going to go into all the details. It is a rather complicated affair.
The bare facts are that this set C, the set of all continucus paths, ié not
measurable. To be somewhat technical, the outer measure of C is one and the
inner measure is zero. To find the outer measure, you simply cover the set of
continuous functions by combinations of sets that are measurable and consider
the measure of this combination. Of course, you can do this in many ways so
you take the least upper bound of all the possible measures. You just get i o ‘
To find the inner measure you do the same thing with the complement of C and
subtract from one. It turns out to be zero.

This is very unpleasant. It's certainly a pathological.feature.
One knows intuitively that Brownian paths ought to be continuous. So what
one does is simply to addvone more set, namely the set C of continuous functions
and to say from the beginning that its measure 15 one. Then i havé to re-do
the whole thing and check that the measure I obtain is a reasonable measure. ;
That can be done. And in this way you obtain what is noﬁ known as the Wiener |

measurest, It was first introduced by Norbert Wiener in a somewhat different

* The Wiener measure was introduced around 1922. it appearad in a whole
series of papers in the MIT Journal of Mathematics and Physics. These papers
were not very undersiandable, so for a long time 1% was overlooked. These
were remarkable papers, because at the time he wrote them very few people in
America even knew the ordinary measure theory. So no one foresaw the interest
and importance of this. There is a rather good exposition in the book by Paley
and Wiener. You will find it in the chapter on random functions. Now, these
things are done much more absiractly. If you can swailow some of the abstrac- :
tions then you will find it done in great generality in the book by Doob on :
stochastic processes. All methods of introducing this measure are somewhat ;
pedagogically unsatisfying. To my mind the best is still the one which Faley :
and Wiener used. But it has also many severe disadvantages. Doob's is the
eaciest to formulate, but involves a lot of tedious details.,

It is regretable that in more modern literature (notably in Doob's book) the i
great ploneering work of Wiener is not quite given the recognition it deserves.




~139-

Way. It is a measure in the space of continuous functions built upon these
elsmentary sets, quasi-intervals as they are often called.

Once you have this measure many other very interesting quesfions
can be answered. You can now ask for the measure of the set of differentiable
functions. This set turns out to be measurable and the measure is zero.
That means, in a sense, that almost every Brownian path is non~differentizble.
This is a pleasing result because anybody who observes the Brownian motion’
under a microscope sees a very erratic moticn. In the mathematical idealization
this particular measure actually gives it to you. In fact, it proves much more.
It proves, for instance, that almost every path is of unbounded variation.
That is to say, almost every path has infinite length. This_is perhaps séme-
what less pleasing, but it is a rigorous conclusien from your measurs theory
and nothing can be done about it. As a matter of fact, it turns out -that
the set of functions satisfying (71) is measurable. Its measure can actually
bq calculated, You_get a complicated formula involving elliptic functions
which I will not trouble you with at the moment. | |

Now you might think that such a pathological creature as this Wierer
measure ought to be of coméaratively little use, Hence it will probably sur-
prise you that it has rather remarkable uses in the theory of differential
equations. It's a rather interesting route, this starting.frpm:q simple
stochastic process in physics, passing through a process of abstraction to
a measure theory, and then coming back to look at famiiiar classical differern-
tial equations from a strange point of view. To iliustrate it I am going to
consider with you a very basic problem. I will treat it more or less heuristi-

cally, because rigorous proofs can be found in the literature. We will

concentirate on the story behind the proof.

P Y

o et e i,
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I em going to take a function V&k) s a reasonable one, And I am

going to consider the following expressions

N (74 (%)B.OQ/C (72)

. o
. z' .
If \/CX) happens to be )( , then that's exactly the same thing as (71).

Such an expression is called a functional because the independent variable is

é function, the whole path‘Xéf>.. It is not a function of one variable or even
of a finite number of varlables. To find its value you must know the whole
continuous path’K(f)‘. Such things are familiar in the calculus of variations.
There you try to minimize or maximize not a function, but a functional.

- This functional (72) can assume different values.depending.on the
choice of the Brownian path. It depends on how’ your particle aecides to move.
As in every statistical theory, one is clearly interested in the disfribution
of these values, This distribution now is perfectly well ASfined. Itts

simply the measure of the set of those paths for which (72) is less than CXL .

I will call it qv(o(;é) :
.t

(ot ) = V(¥ @)dT ¢ . (73)
©
The Wiener measure I have called /X_ + It is the same, of coﬁrsé,'as>the
probability. The two words are synonymous. ' -
Now I can go a little farther. I can use.tools familiar to every-
one who works even in elementary statistics. Everybody knows that in order

to calculate a distribution function all you need are its moments. 'But rather

than to use the moments I will use what's called the moment generating function.
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For this purpese I will assume that \/é(> is positive. It's not necessary;

but we will avoid getting into any unnecessary details. Then the moment generde

(ke de

ting function is given bys

_u
Qe O(,/M (7h)

The integral is with respsct to the Wiener measure. Once you have a measure

defined then integration becomes defined also. In probablility theory we

E e.. w SC\I ()(("-‘)) dr E

The symbol E means the mathematical expectation. "I can also write it in the

abbreviate this:

(75)

form:
+ &

| '__ \/;(('r)\‘af’i: ~— UK
F e YN\ U o)

0

(76)

So you see that the moment generating function is simply the Laplace transform
of the probability distributlion.
Now the interesting thing is that a calculation of this functional |

; :
is related very closely -- 1 will tell you in a moment how it is related ==~

to solving the differential equatiion




“1h2-

~aQ - ?i@__._u\/()()Q ~
a-é' %axz : (71

In fact, if I know how to solve this eqt‘xati.on with appropriate conditions,
then I will know how to find (76). I will show this to you by a heuristic
argument, A rigorcus proof is not entirely easy. My origiral precof was very
lengthy with lots of nuisances. But at that time I didn't know any better;
By now there are a lot of rigorous proofs. Perhaps this 1s good. As a friend
of mine said: "by the time there are two independent proofs I bellieve the
theorem."

)Why are these things related? To bring this out, I will consider
not a simple Brownian motion, but a Brownian motlon w{th the following modifi-
cat;ion. As before, a particle starts from zero and begins fi;o move . .But then,
if the particle happens o be at X at time t, then it will have a probability
L(,V (X)d'f‘ 'of disappearing. A friend of mine once called it "random walk with
manholes.” There is the probability (,LV( X)df s if you are at ‘)(at time 4,
that you will absolutely fall into the manhole and never be seen, never be met
with again.

What is ;bhen the interpretation of (79)7 I claim that thie is the

probability of survival if you have chosen the path X(’L") . That “is' pérfectly

clear, because the probability of surviving for a time df is just

| , —UV () dt | |
l-uV)dt =~ e o o - (78)
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What happens to you in non-overlapping time intervals still is going to bs
independent. So the probability that you will survive for the fuJ.l' time
will be a product of such things. it will be a product of exponentialés, This
ﬁll produce me a sum in the exponent, in other words an integral. So I will

¢
_‘CLSV(X(’C’))C{’C’
€ o '

get simply
(793

for the probability of survival if you travel the path X(@‘) . This is the
probability that someone will shake your hand at time t, thgt you will be there.
Now the average of this or the expectation glves the over-all probability of
survival, regardless of what path you are taking. |

Now it is intuitively obvious, at least without "manholes ,.".that
Brownlan motion and‘diffusion, ordinary classical diffusion, are mathematicaélly
equivalent. R,emembér that the function (68) was also the fundamental solution
of the diffusion equation. Now how do you make t'his e.quiva'lencej physically
obvious? You assume that at time zero you start a lot of particles out at
X= Xo . Each of them will take a different path. Each will undergo
Brownian motion. Then, at the end of time t, you look at the interval (XJ X+(i){)

on the X axls. The number of particles there is roughly given by
2 C

__(X‘Xa) - A_ ,
- Ja— o 2% dx | o . (80)

where n is the number that originally started. So you see that diffusion

is the macroscopic manifestation of Brownian motion. If you look at a

Bipa i G RERERTET
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diffusing substance on a molecular scale then each partlcle performs a Brownian
motion. If you then collect them up at time t, their number in (X’ XJ¢ d}()
is{ very well approximated by the probability times n. In fact, the error will
' be on the order of 1/?{ « So if you have essentially infinitely many particles
to begin with there is almost no error at all. So diffusion is what you see
if you watch the Brownian motion not of one particle but of a liot of thefn.

Now how about this Brownian motion with manholes? What is the macro-
scoplc counterpart? It is evidently diffusion with a distribution of sinks.
The densifby of sinks, so to speak, is given by the function V(X) « The
Brownian motion with manholes, with this possibility of disappearance, is macro~
scopically equivalent to diffusion with sinks. And this is exactly what the
differential equation (77) describes.

Of course, we must have conditions on the solution of the differential

equation. Everything must start from X =0 when -t -Q . This means that

QX t) —> S (X)
as t —> ©

This is the only condition I have. Then Q( X 5‘&) is the concentration at
time t at X. But, since my initial concentration integrates to ons, Q’(}(J-{; )Cb{
is‘ fche .probability of not having disappeared and being found at. )( whichiiis

within dx + So if you want to know the probability that'you ars somewhere

at time t, that you have not disappeared, you simply integrate on Xo This gives

you the survival probability. So there is no particular sucpriss in the relation
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o?

4
—ulv(x e |
€ o : 5 = Q(X,{')C{X_ | | (82)
. -0 '
I do not want to create the impression that this is a proof. It
is merely an intuitive argument. I must show rigorously fohat my description
“of Brownian motion through this measure really does produce the result. But,
as I said, there are proofs available in the literature.
| One can extend this slightly. I will need a somewhat more refined
formula than (82). First of all, I don't have to start at X =0 . I would
. like to be able tc start from anywhere. To do that I will simply add X‘o
to X(’Z‘) . (I Wil always assume that X(O) is zero.) Q (Xj-ﬁ) s
’ which has a singularity at zero, is merely replaced by Q(}(o ‘X’-t) "that has

a singularity at Xo + Because now you want the condition:

Q(XJXaQ — 8<X"Xo} « o (83)
as t —> 0O N

So, starting the particle at )(o rather than at \zerc gives
(%)

= \a

— 00
Now what about the limits of the integral?- Why did I have — o0 to 402 %

S« §\/ (ke x@)de

1) K@

Because I did not ask where I end up. I only asked for the probability of

survival. But suppose I were to maske these limits from g to b How would I
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have to modify the left hand side? You see, I am asking not only for the
probability of survival, but for the probability of survival and of ending up

bgtweena.and b. It can be written

—u \l()(oat)((’c‘))céi“

b
Fle ;A< XFX(E)<b = g o ’l>0b<(85)
@

The meaning of this notation is that my integration will not be over all tha

paths, but only over paths ending up between{l and b

Let me now take . =X~ &  and b-.—_— X+ & - And let me divide
both sides of the equation by the integral -
)
L (u-Xo)
s Lt
| duw (86)
204
a

In a moment you will see why I divide by this integral. The result then is
Y+€

- S\/(X Fx@)de % o,

s¥-€< ><+><6e)<x+e

X+€ : =
( + ' (XO’ u)ﬂ_’ X‘\'C ."()(owu:'b

Azt \& 2 du /[/ e 2y

X-€

(.
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On the left hand side is a very understandable expressicn. The denominator

is simply the probability that Xo'?' X(’C“) lies between X-€ and ¥+ €

That comes from my original, simple theory. The numerater is an integral over

a certain set of paths. The set of paths that end up between the same limits
¥-€ 4, X+ € . So the left hand side is just the conditional expectation.

There is a symbol for this. It is written:

..(,(g\}()( +X("') (i’ﬁ"

E L | X—e% X +XE) <X+ € (88)
Now let epsilon go to zez"o:
. i )
..uSV(Y +X(7°) d% 2
Q Q(x“l X’{') (&9)

E<e XA EXG = S
YT

It requires a certain amount of talking to make it entirely rigorous, bub you

can see it intnitively. Finally, mul iplying out, I get 'ohe formula

- x--x
‘ _é" ..L(S\/(X-%— (’L‘-ﬁjﬂ'
Qet)zzze T HET T

Sy 5 e s 4

b

e s o A St < et o e
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Now you can say 1o me, vwhat have you galned? TYou havs }aken &
classical expression, the fundamental solution of & certain differsntial equa=-
tion, and 1aboriou§ly written it in the form of an average over a spacé of
functions. Where does this get you? To show you what has been gained I will
prove a theorem which is a very important. theorem in quantum mechanics. This
will be reminiscent of the proof I gave you in the last lecture. You will see
how this formulation a2lmost carries you to the answer.
equation. To prove it I will need to maks further‘assmnptions about the function
VCX) . S0 far it's completely general; let me assume that V()() is symme~
tric, that is, that \((X) =V (-' )() .« That's not very important. &ilso, |
that V(X) gées to OO as )(.;go,es to Co . That is ifnportan_t. Let me also

put (L equal to one, since it doesnf't really matter. Our gduation then readss

.@_9:’ | (‘1)
%7 ax V()@ S e

_Now you associate with this equation the corresponding eigenvalue problem.

This you get by separating variables in the usual way. It is

ZI‘jw NP = ~>\1)U | (92)

This is exactly Schroedinger's equation with the potential \/ [x‘)

~

I+ hdS been proved that the spectrum forms a discrete set. That is
wh‘,r we pub restrictions on V()r') If \!()() does not approach .infinity on both

sides then you mey have a continuous spectrum. All sorts of horrible things

can then happen. So we will stick to the discrete case,

e
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Now, "if you have the discrete eigenvalues 7\,51125 « <o s « and ths

e v omenen e 5,10 2

corresponding normalized eigenfunctions 1//‘ ,1{"2, tas e e then you can write %

‘a very simple expression. It is?

Q(Xolxa'g: Zéle*k}ty%(xo)%(x) - A (53)

This is, again, an entirely classical result. It is a solution of equation {91}

This equation is not the same as the time-dependent Schroedinger equation. The
time-dependent Schroedinger equation has an ( floating around. But if I do

a separation of variables I get just equation (92). So the time-independent:

Schroedinger equation (92) can be looked upon as arising from the purely para-
belic equation (91). And it is this time-independent equation Iwhich glves you

the eigenfunctions and eigenvalues. : ’ .
: b

Now I have an expression for Q(Xo\}(’f) , namely (90). If I put

X;'X'o s then I get: '

5\/(;( + X@/

~>£ | | B
% W = —tqe lx(é)w s

Now, to eliminate ?’03 ()() -- for the time being they are of.no interest to
me -- I will integrate out the whole thing on X Then, because the intégra‘i of

71[),2()() is one (because they are nomaliyacz) I flnally obtains
ST VA SV(x+w~ 0
el — x[ (&) 55)
— )(\Té =0
t

=

—

7

~— O
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And that's the basic formula. .
Now I'm almost through. At least the intuitive argument will get me
there almost immediately. To put in all the steps is nov entirelftrivial.

Wl;at you do 1s to again introduce the function
)
A(?x) = the nomber of /)\3.,5 < A

Then the sum can be written as an integral!

2\t d yY; o
2 € "< e dA O\) (96)
;X"'" o |

which is a very convenient way to write it. Now I already showed you in the
last lecture that to find the behavior of A()\) for large 7\ . I need
the behavior of the integral for small t. And that's where the great advanfage
of this point of view comes in. Because now the behavior for emall t is almost
ﬁmediately visible. Just think about it for a moment and you will see what
happens, This )((’(}' is a Brownian path. You recall that at time t =0 it
starts from X:@ . That's my assumption. Also, I am oniy coﬁsidering those
Brownian paths which at time t come back to zero. That's the meaning of the
conditional expectation. So at time zero it is zero and almost immediately after,
it again is zero. You will agree with me that it is very unlike.ly. that ' X(@')
will become very large in the meantime. In other words, és complicated as the
Brownian path i1s, a good first approximation would bé to simply replace it by
t;he chord connecting its end points. Because the function cannot deviate very
much from it. Granted that the curve is terribly wiggly, but I'm not approxima-:

ting a derivative -~ I am only approximating the function! What I have, of

e minznenaman v,




~151-
course, to prove is that the probability of a sizeable deviation in a short
time is very small. That is something which one has to do. But intuitively

you certainly believe it.

Then all I do, I simply cross this X(T’) out, That's my approxi-

mation. The right hand side of (95) then reads
©o

| —tV ) ~
A'XE < lX(é):OS (97)

— 0

2.mt

Now what about this conditional expectation? Now, you see, I am simply taking
the conditional expectation of a constant. I am integrating a constant over

a set of measure one. So it doesn't do anything, and so I have for small t

r ~¢4V(X)
OIZX e | (98)

/V‘Q_m‘.

— PO
I have still to assume, in addition to all the other assumptions, that this
integral makes sense. \/()() must grow sufficiently fast for the integral to
exist. For instance, \/ ()() = ,Q,og l)( l won't work.

Now let me perform a simple trick. Namely, I will notice that
o o

*‘-“-—l - — Q‘—{P%vi )
A 2 ¥ 7

- ©

=
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That is merely a complicated way of writing — ——r—me— . Then (98)

Yot
becomes -
©0 <

0 e,t(.?;f:fv(m» &?&

- 00 - D2

(100)

Now if you are quantum mechanics corx;sciou's -- or classical mechanics censcious --
you will recognize P/;J ’1“\/()() . Ievenusedp forp. It is simply the
Hamiltonian of a particle moving in the potential V()() « Of course, the
mass has been normalized to one.

Now.let me write this integral in a very illuminating form. Take

. the region
1.

_:.i_+\/(><) < >\ | , | (101)

That's some region in phase space. For instance, if I Were to deal with a
‘harmonic oscillator where V()() = X/Zl » then this would be a circle with
radius—‘/:_g}‘- . I will call the area of this regionB(A\ . This can be
calculated. '

Now I can write the double in‘tLegral (100) in a very nice way:

| f L+V()()> | ~tA
o ( c(@ x~{‘? e JLBG) 102

-po -0O 0o




And now you compare what I am interested in and what I end up with.

They are asymptotically equal as 1 goes to zeros

e dA N N T e_ O{‘BO\) (103)

Now I have to apply a Tauberian theorem just as befors. To be completely
rigorous one must make some further assumptions on V()() . But, anyway, the

argument makes it intuitively almost clear that

ABY Vo BOY as A= 0 o

In words, .the number of eigenvalues less than )\ is asﬁptotica].ly glven by
_the area in phase space where the Hemiltonian of a system is less than }\ .
Except that I must divide it by A1 . |

This result ‘is well known in quantum mechanics, It J.S alﬁayé used
in justifying that, in the limit of high quantum number, ClaSSiCdl meﬁhanics
and quantum mechanlcs coincide. In fact, this goes back much fuv't.her than
that. It goes back to the old quantum theory, long before Schroedinger's
equation. You see, in the usual classical mechanics all energies are allowed.
But Planck decided only to allow those energies for which the area fﬁ( /\.) is
a multiple of a certain fundamental unit. That's how he quantized.

Some of the formal steps which I gave here. are not at all trivial

to justify. They have been done in complete and excruciating detail oy .Dr.

D. Ray in his doctoral thesis. He went much farther and proved much mera.

A 1 e A 1o

B e e
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But the strength of the intuitive argument 1s amazing. It becomes immediately
quite clear what the approximation ought to be. It is otherwise so difficult,
because you don't know anything at all from relation (93). But when I write
Q(XJX"E) in the form ($0} the road is straight and you can see for miles
Geometrically what it amounts to is that in a short time the path of the
Brownian motion can be approximated by ’c.he_ straight line. And then, all you
need is that the asymptotic behavior for high eigenvalues is related to the
short time behavior of your path.

To finish up this particular story let me show you wherqe the diffi-~
culty comes in with the low eigenvalues. If you go back to formula (82) and

put in for Q (Xj‘f,) the expansion (93) in eigenfunciions you gets

[~

ZJG '%P(o 1PO()A-X (105)

—00

c e_:S:V (¢ (@)L

Now look at the series of exponentials on the right hand side. As t goes to

infinity the term that predominates is the first one. So you immediately getl

Sv(m-nd""

A= fo ML e
) €

that:

This formula has some interesting features. The first featurs is that in

order to find the lowest eigenvalue you have 4o let t approach infinity.

DDV S
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That means you have to make a long time observation of Brownlan paths. They
have time to become fully developed and do all the horrible things they can
do. But, at least theoretically, the expression (106) gives rise to a numeri-
cél method for finding the lowest eigenvalue. In fact; a sampling method that
would now be known by the name of Monte Carlo. In principle, what one ought
to do is to observe a large number of Brownign paths, calculate QKP—-SV(X(Q7>df‘
for each of these paths, take the average over all these paths, take ;he .
logarithm, and then divide by t. That would be the approiimation. Cf course,
you cannot observe a continuous Brownian path. But you know perfectly well
that Brownlan motion can be approximated by random walk; So you discretize the
Broﬁnian motion and state it in terms of a random walk. That actually was
done, in i9b9, for two- cases -- for the potential \/(X) = X’L‘ and for the poten-
tial V()( }:'X l . Both are extremely classical cases, The results initially
were very encouraging. If I remember correctly, we ran a hundred walks, each
wglk of duration about 50 or 60 steps. In any case it was not a very major
operation and the results for this were amazingly good; In fécf, 1t agreed on
the nose for soms strénge reason. The results ﬁere within 3 or L per cent
which 1s about the best accuracy one could expect without going.to'expensive‘
further labor. We tried the next summer and the summer after that to do a
similar thing for more dimensions and for certain singular poten#ials.‘ For
the hydrogen atom, where again the answer is known, we again hit it‘almost
on the nose. But it was purely a matter of luck. We used 300 walks and the
values we got from most of them were very small. Tﬁere vwere three enormous
Qnes, three out of 300! And the enormous ones gave the right answer. That's

clearly an accident. 8o, in this case, the method is already not very good.

For helium it was completely off.
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You might compare the formula (106) with the.more usual one:
[}

S[W/’“»V(X)Wz] dx
A= inf 2 (207)

V() dx

This fermula comes from the variational principle in quantum mechanics. It
serves as a basis for the Rayleigh-Ritz method. To get an approximétion to
}\, you simply take a trial function.'yu(3() and put it in. This variational
method, applied to helium, gave the first great triumph of quantum mechanics.
For hydrogen, everybody used Bohr's theory.

Another observation in this connection is that by a most elementary
trial function you can already compute a.good estimate, It takes no work
at all and you already get it within five per cent. Whereas with the Monte
Carlo we ccouldn't even get it within a thousand per cent. And phis was with
the help of computing machines: The whole thingiblew up cémpietely; That's
due to the unfortunate nature of the potentials. After all, it's a three-

body proﬁlem and the potentials become singular. The interesting thing is

that, qualitatively, you do get some kind of an over-all picture. If you look
at the random walk of the two eleotrons'araund the nucleus of & helium atom,
-you see that most of the time they are far apart and a certain part'of ﬁhe

time they are closs together. Genefal features of ﬁhe quantum mechanical
picture can be read off, and this the Monte Carlo confirmed. Mind you that it's
a three-dimensional walk! We could take oniy a very few wélks and even'that

vas a major undertaking. We knew from a statistical analysis of errors that

R B e N T Y PR TR
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'wa ghould have many more sémples4 But the random walk itechnique was sti11
good enough to give you the general fsaturss, but not good enough to give you

such a fine point as the lowest eigenvalue.

This departs a little from the thems of the first half of the lec-

; s

tures, because I'm not uslng stochastic pﬁenomena in ohysics per ss. Irstead,
I am using them as a way of looking at certain things which ére not stochastic
to begin with. Our equation (91) is a perfectly good equation. You don't
need aﬁy probability theory gt all to look upon it. Likewise, the tele-
grapher's eauation (16) can stand by itself. But the point is, that by this :
stochastic approach, you are led not only {0 a2 new kind of mathematics which :
could be reward snough in itself; you also gain a way of lcoking at things

vhich is quite powerful, which gives you all the results chezper and also gives

new results, I will wind up this series of lectures by showing you how this

can be applied to potential theory.

T B, Y3 N R
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NINTH LECTURE

This lecture I will devoite to giving you & lLittle bit of an idea
h‘ow the method of integration in fuanction spaces can be applied to thé classicadl
potential theory. We will start just as before. Only now I will move myself

in three-dimensional space. The reason why we go to three-dimensional space

i3 because in two dimensione there are some very special features. HNow let

me have a region ~Q and consider a three-dimensionzl Brownian motlom.

=

] —
I imagine that the particle starts from the origin ™ = (O . Now remember

what I did with X(f(}) s the Wiener process. I constructed certain basic

sets of paths and assigned probabilities to them. Here it's a very similar
o Y

thing that I do, in fact a pure analogy. X(’C‘) now becomes the vector {* (ﬁ‘)‘,

Again you take n time pointis ‘é‘<"éz<' ce (-ﬁh And now, instead of using

intervals, I will take n arbitrary open sets,ﬂ‘ y .Qz 't ,.ﬂ_h.' What is the

: o

provability, the measure, of those paths for which \'(ﬁ) €__Q‘ s

b -

\f‘(fz)é‘_Qz sy + o o 5 and -k('éh)€' Qh ? This again is golng to be a

multiple integral:
N
) A
GU’-:: Aﬁ e dh"; —P(Opié ‘)P("ﬁ'l": 3‘69_"' ‘D"?@-(‘%{éﬁ{hgfl@g}

"{z'l -Q-'L .Q.n /l) —
%Iere each integral stands for a triple integral. | Q rj‘é is now the

Gaussian distribution in ihreewdimensionss
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Now you have a complete analogy. We can bulld up & measure theory in the same

i

way as before, starting from these sets whose measure we know. As a matter of
facty, I may as well mentlon that this is not>really‘necessary. We don't have
to go through this process a second time. We can take the measurs already
introduced and simply bulld up vwhat's called product measure. Both ways get
you there, so take your cholce.

We now have a.measure and hence also the possibility of integratiocn
in the space of all continuous paths. In this case; ihe paths’eﬁanate from
the origin. With thsée toels we can bulld wp very neatly the potentiél theory
in three dimensions. The problem we are golng to considsr is the following:
Take a region Ll anda point E; + In Figure L the poini is drawn out-
side the region, but it can be anywhere.

-A

¢ % F:x'ﬁure 4?

Now consider 23 + r L,) . This 1s a Brownian motion path which starts
from Eg rather than from the origin., Thalt is the only difference. The
problem is to find out how much time is spent in the region mfz_ ¢

In order to get a nice symoolism going I will introduce -the following

functiog:
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Lo f X
This is what is known as the charaotarisfic function of the region ,,Q.. o Lot

me also consider the following functional:
o0

TG < \WEAE)de

This integral may be infinite, but let me first of all see what 1lis meaning
) S e ' L. .
is. Whenever (a + b C '?:) ls in the region, I am integrating simply one.
Otherwise I am integrating zerov. So it clearly represents the tetal time the
curve spends in the region ..Q « It depends, of course, upon which curve _
.‘s .
r( Z‘) the Brownian particle follows. .
bt
Now let me find the average of this quantity T.ﬂ, %3{' )
The averags means the integral with respect to the measure We introduced.
This is sometimes called the mathematical expectation and we have used the

symbol t for it.  What we want then is

E. \EL(*‘%«;?(’C')) 1E | \((Dg"r-}f'(@‘))d’i“ | | (112)

Now one does the usual itrick. One interchanges these two operations (remember

that this coperator E is also an integration, an integration in function

gpace) so you gett
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E{TJ@,?‘@)} - °§¢%E{V(§ +?(@))04T§ o .
0

Now this thing has a very vivid significance, because the function V is
A a
elther zero or one depending on whether g +r [@') is in _(2 or not,

A moment of thought will convince you that this just gives:

EER<§’ ?(r))} = oSoot"" [Rol;{'ﬁ-f‘?(z')e Q_?] G

. N N
But this probability, that - la-l- r‘(tt) (=4 !2 s I can immediatel_y decipher from

my basic assumption. It is the simplest case, where we have only one time

involved. This gives us:

| ~ “C?\_%Y/Qf |
E{LG RO < \de \dr e T
(210T) |

© {L
Now we interchangs the order of integration againt

- L N
| ‘."'?J)/z»u
(116)

Ei-‘l G, -,r(@,)g - 41?’ oo
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This last integral is well-known. You will find it in almost all texls on

Laplace transform. So I will just put it in and obtain the final answer.

. AN
E _Ez,(%s r (?7)) =

: 4 4L -
This is finite in three or more dimensions. And this is true even if %%
would happen to be inside the regicn. It would still be finite, as you can
see, by introducing polar coordinates. The integrand is essentially t/}~
and the surface element will be of order Y"z . So there is plenty to
spare to make it convergent.

Now what is ﬁhe conclusion? So far, it is that the average of
ﬂ_(gf(@)) is finite. But the quantity itself is non-negative. hnd if the
average of a non-negative quantity is finite then with probability one the
quantity itself must be finite. If it were infinite with a probability
bigger than zerc then of course the average would also have to be in in;te.
So you discover a very interesting, very simple factt Almost svery Brownian
motion curve spends a finite amount of time in & region of finite volﬁme.

(I use "almost every" in a technical sense - ;t means except for a set of
curves of miasure zero.) That is not so in the plane. For this reason the
plane has to be treated separately. If you were to go through ﬁhé.whoie

argument you would come out with
2.

-|F- |
A : - (118)

e P
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as the integrand in (116). The Z° in the denominator means that this is not
integrabie at infinity. You end up with an infinite integral. This dosén't
necessarily imply that almost every path spends en infinite time in the region.
If the integral of a function is infinite that doesn't mean that the funciion
is infinite. However, it can be shown by a somewhat more refined argument
that in two dimensions almost every curve indeed spends an infinite amount of
time in any region.

Thié distinctlon between the\plane and space 1s very interesting.
In fact, as you will see a little later, this is the beginning of a probabilis-
tic explanation of the great difference between the two-and three-dimensional
spaces in potential theory. Everybody knows there 1s a tremendous difference.
In one case the basic Green's function is ;4; aad in the other is ﬁ%arﬁ .
That causes the great differénce. From our point of view, you diséover that
the real difference is that in three dimensions almost every Brownian motion
curve spends a finlte amount of time in a given region. Whereas in two dimen-
sions there is not enough room. The poor curve wanders around énd'comes back
and bacic to the same region. In facht, one can refine the argument and prove
the followings Admost every curve in two-dimensional spacé:is éverywhere dense.
That means 1t comes arbitrerily close 4o every point. In three dimensions
aimost every curve is nowhere dense. Then you have the remarkasble theorem
that while every three-dimensional curve is nowhers dense the pégjections,
the plane projections, are almost everywhsre dense. Of cburse, one should not
take this literally. This is not a statement about curves but a statement

aboul the mesasures. It's not quite easy, actually, to imagine even cns such

curve. A curve which cccupies hardly any space; which is kind of sparse;
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but one whoss projections on aﬁy plane go arbitrarily near to every point in
that plahe. OCur particular argument shows that there are such curves.

Now this fact; this strangs difference betwsen two and threé dinsn-
sions, was already noticed in a much simpler slituation lengy long ago by
Polya. It was in 1923, I think, that Pclya considered the following problem:
Take a lattice, a séuare lattice, in the plane and consider a random walk,
an ordinary discrete random walk. From every point you go to one of its four
neighbors with probability one-fourth. Then, wherever you are; you go again
to one of the neighbors with probability one-fourth. And so you continue.
What 1s the probability that starting, say, from the origin you will eventually
pass through a given point in the lattice? And the answer, in the plane, is
one. That means that with probability one the curve will eventually pass
through any pre~assigned point.. You pick yourself a point and you are almost
sure to hit it. In space, however, that lsn't so. If you consider the corre-
sponding problem in space you have six possible ways to go, six neighbors, and
you make the probability one-sixth. If you now ask the saﬁe Question for this
cubic lattice, the answer is distinctly less than one. Thg provability that
you will eventually hit a chosen point is no longer one. Ig caﬁ actually be
calculated. The answer is expressible in terms of a certaln integral.

It 1s really quite interesting, this distinction betw@gp the plans
and gpaceé. In the plane the Brownlan motion path tends %o come arbitrafily
close to every point and in space it does not. That's a Qery important point
for people like Stan Natanson who don't know the city, and drives at random.
Because, assumlng that Dallas is a plane there 15 a chance of one that he

will eventually be at the Melrose Hotel if at each intersection he will flip
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a coin. It may be by way of Ithaca, of course, or Los Angeles. 4nd, in fact,
1f you would calculate the average number of steps he takes, it is infinite.
And indeed that was experimentally verified when he drove me to the Melrcse.

These resulis can be extended %o higher dimensions. The higher
the dimension, the less 1s the probability that it will hit a glven poiﬁto
For every compact creature; like a sphere the probability will always be one;
because then you really have no room. The only problem 1s for a non-compach
thing, whers you have definitely a possibility cof escepe. The phenomenon has
not been investigated with any care on surfaces other than the plane, but the
method would apply. As a metter of faet, in principle it is easy to tell you
what the answer is on any surface, although nobody hes ever proved this with
complete rigor. You take the heat conductlon equation on that‘surféce and find
its fundamental solution. Then you take the integral of this from zero to
infinity in time as in equation (116). If the integral is finite then you know
the probabllity 1s less than one. If the integral is infinite then you have
the same case as in the plane. It's purely a property of the kind‘éf singu-
larity the heat conduction solutlon has.

This actually is a very superficial theorem. It is extremely elegant
and very appealing but there is really no depth at all. There is no dynamical
céntent to 1t. It is essentially a theorem which combines dimensicnality
of the space you are considsring with some very, very rough idea of combacta
nsss. If the dimsnsion is high enough and if it isn't compact then you will
gave the possibility of escaping. Howsver, these fécts form a beginning of an

entirely new, pictorial way of looking at potential theory.

A G i~ AL
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To go to potential theory I must do something more refined than

simply calculating the average time (117). I must attempt to caleulate the

distribution of the times. This is really the crucial step. 4&nd this means

that we must caleulate all the moments, not simply the average (117). Now let

me just perform for you the calculation of the second moments

. - | .o . 'fk
E{m@r@)] 1= E{ [ Vawede| [
' o)

Our procedure will be almost identical in spir;p to the one we used with the
&3

telegraphscts equation. Let me again write the square of an integral as a

double integrals

2

[:T_n.(gg ?(@“)ﬂ =k

A
%\I %’”‘(@’) G’ (‘))AIZ’GW (119')

Now this integral is over a square, an infiniite square to bé sure. . Just as

before I can integrate over only half of the squere and then multiply by twos
cc

21 E d', fc’\!(tafrift)& u‘jw(c’)

(120}

o
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Now you interchange expectation and integration and write it sot

62 . ~
\ '-‘.-.%'\t/“'“‘"-ff\é |
2,0 \de, \d; B9V (G V(g ¥ @, ¢ e
0 ¢
- |
This is perfect;l_y justifiable. Now \! g"rt" Cf‘;) is either zero or one
depending on whether T+ 'r-‘\(ﬁ\) is in SL at ting /C,' or not. And the same

goes also for \/’({%«* '?([1)) « So the expectation of the product of these

a—s

two is. again included in formula (108), except that I start from % rather
than from zero. So I simply apply formula (108) with ,Q‘ and (7 L7 both

. equal to L .
v b

2.’ 0{@1 "M} ?(‘g\f) @D/Pfﬁ‘ﬁjrft/iﬁ 0{5, (122}
0 ¢ A&

You can see this easily. I must simply meke a transition from (.é, to gome
—
polnt ﬂ in _(2, and then from ihat point I must again make a transition

: e ,
‘o a point YTL in {1 . Now you can see that 1t would be much more conven~

lent to take the integration over the spatial variables lastly:

o 7o
} {
T AN . N {j ’ /w\
2 Canae i’u‘a.gdff P, )Pt 5 e)
"EL'-‘Q' 0O 0
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The integrations over tims are again related to convolution. That is simply
the Markovian property making an appearance, together with the temporal homow
geneity. Temporal homogeneity means that everything depends on the difference
of btimes., You see Z\,: ~'Z7 rather than ’(:‘2 ’ @'/ separately. Now you

can easily see what happens with the time integrals. Because suppose I

~S7; :
insert £ ¢
&
(o]
,.S’C'; / ‘___) /‘) . LY P
dze CM:; /P(‘j (ﬂ,‘@?)f (z r’ly%z’fcf C(12k)
o )

With this factor there, (124) is simply the Laplace transform of the convolu-
tion. Of cowrge, I don't really have the factor ’cheré, But this méans I
simply pub S-::.c) . How the .Laplace transform of a convolution is simply

the product of lLaplace transforms. But these Laplace transforms are known

for S =0© (refer back to formulas (116) and (117)). It immsdiately follows

from this argument that

N L e
- -t l-i _&—_M Cg.r: A—C 12
E [T;L(‘a';r(f“))} = 5}{:’ ['ﬁ-—-%‘ !-\:}.ﬁ‘ | : (. 5)

-..(\.-'n‘

This is the second moment. Now it's perfectly clsar how the moments will
come out In general. You can use exactly the same argument, the only difference
is that a little more writing will be required. You have the following gen-

eral formula for the kth moment /(ﬁk H

e e
A
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(126)

Now everybody who has ever dealt with integral equations will
recognize that in (126) we have something which looks very much like an
iterated kernel. It is like ralsing a matrix to a powsr. To see this simply

write the integrand of (126) in the form:

aGt)o (@ m)af ) e, R) e

Now I will have to assume a little bit of knowledge of integral equations.
If you have this knowledge, then it is very natural to associate with this

problem the following integral equation:

| | V4= = v = 128
2 \?-‘61@(9)&?* AP(EF) ,Fea oo

I want to call your attention to the fact that this is a three-dimensional
integral equation. The integral is not taken over the surface of §2 o It

is taken over the volume. It is an horestnuo=?00d1°sa three~dimensional inteo

gral equation. Now this kernel i/ ]r' which may look singuler
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to you, is not really very bad. In fact, the integral:s

o{,f{;}" \ V (129)

is finite. It is what is known &s a completely continuous kernel., 8o all
the theory of integral equations is applicable -~ in particular, the whole
theory of Hilbert and Sc}nuidt'. You can then show that the lntegral squation
(128) has eigenvalues. In fact, the elgenvaluss are all positive. It also
has a complete set of normalized eigenfunctions.

In terms of vhe eigenfunctions and elgenvalues of the integral equa-
tion one can very easily express the moments. That is realiy the only thing
you have to know from bhe theory of integral equations. The only difficulty
is that the squation (128) holds only if -‘}fe ._(L Now tr"ve' only variable
which may refer to a point outside __(2__ is So %‘ has to be treated

a little bit separately. You gef ths J’:’ormula

Pe_ | w0 (905
R/ Can Z%} (g)’}i(?k{f Q__\,Q_b (130)
g a (?""a\ S

This is very straight-forward. It is a formula for the iterated kernel thab

you'll find in any text book on integral equations. It is completely analogous
to expressing the kth power of a matrix in terms of the sigenvalues and elgen~
vectors of the origlnal mastrix. Now you might jump at me and ask why I don't

vse the integral equation to replace
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by 2{“)\& <§3 (La) . I can do this provided 1 is in the region (2_ .
—

But if t4 is outside then I cannot. So, since I don't know whers %% is

I must lsave it in this form. Now we will calculate the moment generating

functlons

(132)

e..u.z;@g, F(z))

It 1s easy to see how to do iv. You simply expand in a power series.in L{,
~ You need a little bit of a discussion of convergence and you finally get the

followings

g: ~-—--——P (133)
| L/__/""’)éu Zlﬂ\\) (6~ ‘ai

/Az‘ 0

T B ‘
SR ) < \ouizL \4@)4p

Let me éall your attention to the following features On the riéhﬁ'hand sids
there is a perfectly classical expression. And on the left hand side we have

an average, an integral, over a function space. We.will play ths game of
aeciphering the properties of the classical expressicn by looking at the average

over the function space.

R Tt
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Notice that the right hand side, the whole thing, satisfies Lapléce’s
equation for 2? outside the veglon. That is perfectly obvicus. (131) is a
éum of potentials of epeiial mass distributions. The mass distributions are
given by C??j ( ?) . Of course, you have an infinite series. DBubt it is
easy to show that the series converges uniformly im every finlte region.

Now let me sse what happens as (L —* o< . This will be very inter-

: EENPEN

esting. To see what happens, just look at E%XP‘vtiY;:(i% 3 Y'(Y”)) . Now as
U goes to infinity this can go to two limits. It goes tou zero ifat;<g§§§§>>>(3,
And it goes to one Af 7;'(€§3 ;f - O . These are the only possibilities
because the time ME;_(Ega'?r) is certainl; non«negat%yeo Now let's try
to undarsténd what it means. Don't forget that QE;<%§5§§,) depends upon the
path ?%(f“> . If this path penstrates the region then you get the iimlb
zero, DBecause then the particle Spends a finite time in the region. For
every path which does not penstrate the région the Jimit is one. That is the
1imit of the fumction, but I still have to take the expectation. That is, I
étill have to integrate over all the paths. For ¥hose of you Qho sﬁudiad |
measure theory in your youbth, this is one;of the few places one needs to usé
the more refined properties of measure, namely the complete additiiiﬁy proper-
ty. Because now you need the theorem that the limit of the integral is the
integral of the limit. In this case it is very easy because you are dealing
with a set of decreasing functions, as u gees to-infinityo_ So domiﬁated
convergénce is operable. So in the limit the left hand side of (133) is simply
the integral of a function which is zere for those paths which pepetrate ths

region and 1s one for those paths which do not. But what ié thé integral of




=l73e

a function which is one on come set and gzsro outside thai set? That is Just

the probability attached to that set. So in the 1imit we gets

O _uT (@ (’““) ‘ L
QAM\ }; (69 ) (‘oly Tﬂalk‘%ﬁﬁ ‘(Z'),;:::.O}

Uh oo

(134)

. N |
=i= b > op Y (;CQ)&éh J’T
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Now it's actually more convenlent to write this Jin the form

0
|

rt;,...k.u - va\/;'V\J v o s ’{(-‘_‘_, 5 '-L @(?)d(;;
B‘OEEE( 4, T >0 i ] ”\8‘ .C()gkp}é.gp.m ‘i .-«T .
=1 F-4
% e -z

This says the same thing but it's much nicer. This gives the probability that

you will penetrate the region in the form of a limit as 8 goes to infinity
of g series. So far, this is true for uverylgg , on the boundary, 1nside.or
out.

I want to call your attention to one thing inmediately. The llmit
(135) is elsc a harmonic function. To prove that I must appeal t¢ & very well-
known theorem of Harnack. It states that the linit of & bounded dacréaaing
sequence of harmonic functions is harmonic. This is certalnly the case ws have.

You can see this most easily from the left-hand side of (134). 8o if you

believe this thscrem, which you can find in any standard Lexitbeok on potential
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theory, then (135) is alsc a harmonic functlon. I am going to call it (b d .
>
And I know it satisfies AU =0 when (é ¢ ﬂ .
Not only is U (g} a harmonic function, it is nothing but the
capacitory potential. That, by definition, is the harmonic function which
vanishes at infinity and which assumes the boundary value one on the boundary

of the reglon _O_ . Incidentally, we produce as a by-product the formulas

o0

oV L | ¢
\G 2 |

UGy = b
%) u’i\oa 'ZLL“f}\a i ‘_S_;,w

”25”

for the capacitory povential. It is a remarkable thing that desplte the ad-

L ny

vanced age of potential theory no one had ever discovered this formula. It
comes, you see, very naturally out of this argument, which I have originally
made around 1949. The key to the answer is not hard to find. You might say,
that if (L goes to infinity, and I have Vu in (136}, then why bobther with
it? Simply cross sway the limit and put zero for I/ (L < Unfortunstely,
then, the series makes no sense whatsoever. It diverges. That "‘vras the reason
why the approach based on the integral equation (128} was ~originally abarn~
doned. PBecause 1t led directly ito the divergent series:.

= L (

(137}
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This was perhaps fortunate for the history of science, beczuse it forced a
different approzch. The double layer idea was introduced which led %o a
very nice development of certain mathematical techniques and ideas. Bup (136)
is a formula of a type that Karl Neumann;and others, tried to arrive st :Ln.~
1870 but couldn't succeed. It simply introduces whal we call in mathematics
a summability method. The serious trouble with (137) is divergence. In
(136) Wwe have done a little repair work and then it mékes perfect sense.

Let!s have a look at wﬁat happens if Eg is ingids the region.
The integral equation then becomes operative and (135) can be simplified.

The whole thing simplifies dramatically and becomes:

N SN ey o B\
ool ) 5 AR L

1.

It's very easy to tell what this is. If you start inside the region you've
got to spend some positive time there. So the probability on the left hand
side is simply one. The Browmlan path, being continuous, can't simply Jump
out of the region. Notice how easy it was to see that (1.38) converged to
one. Lt is almost trivial. You just use the fact that fhe particle can't
jump\odt from inslde the reglon.

Now what is really interesting is what happens on the boundary.
Suppose that-gg is on the voundary. Then you can't say anymore that the pro-
bability is one that you spsnd sometdme within the region -flw « In fact,

there are points, called irregular points, for which this is not true. The

boundary has to be very, very sharp at suvch pointgs
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An eiample was first given by lstesque in 1913, or so. It corresponds to a

fact which is well-knowm in electrostatics. If you have an extremely sharp
point on your conductor you cannot maintain a constant potential. The charge
leaks off, This lesk is simply interpretable. If ﬁou start the Brownian
motion at such a point it is possible with non-zero probability to go out without
ever coming into the region. Howsver, the limit (135} still exists, - It

exists for all values ofzgln- there is no problem at all there. But it need
not be equal to one. If a point is a regular point, if it is not a point where
the boundary is very éharp, then the limit cleariy is going to bé one again.
Intuitively it is perfectly obvious that if you have a round point then you
have a pretiy good chance of almost immediately entering.the:reéion. The

point has got to be extremsly sharp to prevent it.

Now let's take a look at this formula (136) and see what happens
vhen Eg goes to Infinity. It's perfectly clear that it goes to ;ero because
each term goes to zero. This can be made precise without ;ny trowwle. Now
what happens as gz approaches the boundary is a litile bit more compllicated.
it depends on what kind of point you have. If the point is an irregular

point then the potential will not approach one. But if you have & reasonable
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-

. § .
~ boundary then you can show that ‘,)(é3-> approaches one as %§ approaches

& boundary point. So, if you believe my intuitive argumsnt, you see that

RN ' : :
(*}C%é) is indeed what is called the capacltory potential. It is that
potential which is zero at infinity and which approaches one on the boundary

wherever it can. If there zre bad poinis, then of course it can't.

e
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TENTH LECTURE _
B Now I wouid like to make a few remarks about this method of looking
at things from a probabilistic point of view. If we look at the prcblém of
the capacitory potential classically then what one wants is the following.
One wants s harmonic function which vanishes at infinity and approaches one
on the boundary. Now you might take a very naive poinf of view. IV1ll try to
find a mass distribution .qg (2?; ) over the reglon .(). so that the

'correéponding-potential:

L (w@dp
U(%):i}? (.?.a__-gl o (139)

has the desired propertiés. Well, certalnly it's a potential all right. It's

R

a harmonic function. It is also zero at infinity. But what is the best way
to make it one on the boundary? Well, you say, I'11 try to make it one on
the boundar& by making it one insideé everywheré insids. In f&ct; you know
from slectrostatics that that's how it's golng to bhe. The'potential inside

is going to be uniform. This gives the integral equation:

. R R
- (W(?)d? = |
2T -{—h,_z}o‘l
¥~
Wy
This is what peopls did when they first tried to solve problems of this sort.

- , S '
“éég : o (ako)

They tried to solve this integral equation. Now how do we solve such an
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integral equation? One of the simplest ways Lis to suppose that the function
- - .
lP(?) can be expanded in the eigenfunctions CJD?) of the integral

equation (120). Lo and behold, you get

1//(53) Zc/\ Q(r)o{r Ly(?) (1)

Ny
This 1s simply the expression I would get formally if I put //ij equal to

" gero in (138). Then, if I substitute this in to find the potential; 1t comes

out

o Sk \o@r L ““?_Ef_}éﬂ
U(‘é) “Z /\3', f?@’ Al \? %\ C ()

L

Again, this compares with my formula (136) if I put 5/14_ equal to zeroc.
Now, why is this bad? This is, to be sure, the most natural way o
solve the problem. But it is bad because the series (1L2) makes no sense.
That is already obvious on physical grounds. Because you know that there is
no mass distribution insids ~§2~ which will give such a potential. All
the chﬁrge is concentrated on the boundary. So you could not expect (142) to
glve you anything sensible. ©Bincs everybody knew that there was no nass distri-
bution ineglde which would give a reasonabls resull this approach was abandoned.
The interesting thing is.that the simpla change made in (136) makes
poesible a perfectly sensible interpretation. And, moreover, this interpre-

tation lg sc closely relsited to the probabllity viewpoint, Now I might add,
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- 4n this connection, the following observationt Une can very easily prove

that the seriles

e s LA L9)a9
) oy \GEHP 53¢ \%6 ST s
= 5 a1 9
for a finite . , is the potential of a mass distribution. It can be
written
RNAGLS
a_—,n—: "% 3 (:U-l?)')
|8-4
Su

Moreover, ,l;/( $ ) s, ‘the mass density, is non-negative. For every finite L
you get a perfectly good mass distribution., But as (L goss to infinity
what happens to this function is that it gets szﬁéller and smalle’r ev.e'ryWhere
inside. 4The mass gets more and more concentrated near the bcundax_‘y. S0 the
process ([ -%r o 1is a sweepling-out process. The mass geté swept out from
the inside and in the limit you collect it all on the boundary.

Now let's take another look at relation (136). From it one can very
easily see what the capaclty is. There are very many definitions .oi’ capacltys

but one of them iss

L@ ~ @”] ; l%\“-‘? 0 ()
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This says that at infinity'tha capacitory potential behaves 1like 3 cerﬁain
constant divided by the distance of the polnt from the .origlu. The constant
is known as the cabacityn Now we can find this constant very easilyo' Cr
c;urse, there is a matter of interchanging various limiting processes. Bub

....5
this can bs easily justified. Now for large ér (136) becumess

e s
0(3) N UL"(‘M:; -'J: Y 21’“%‘ - (bB)

8

But now all the terms in the series are positive so you ought to be able to
let (A go to infinity inside the sum. Then you get the following formula

for the capacitys

- g»)dfj
C 25&“2 ' ' (146)

This gives you an expression for the capacilty in terms of the eigenvalues'and
elgenfunctions of the integral equation (128). 1t is equivalent_to the formula
cbtained from & variatlonal principle.

I would like to make one final observati§n in this connection.
Throughout the whole theory here; we worked strictiy wlth the volume integral
equation (128)“ The surface, as such, never enterzd the considsration.A Yrom

!

the purely mathematical polnt of view this was a great conveniences. Surface
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considerations are always very tedious. You might wonder if we really got
something for nothing. Well, we didn't, really. ‘And again, this éoiﬁﬁ of
view makes it very clear. To see it, suppose I scoop a hole out of hfl. .

/
Let me call the reglon I have left _(1u .

/

—
ufZ. e Eé

hele —~ @
A

Now, if I start a Brownian particle from the peint &g then what is the

. probability that it .will spend a positive time in J:Z: ? VWhy, it's clearly the
same as the probability it will spend a positive time in ,Ci «. Because when

it enters _fZ! it automatically enters S , also. On the other hand, the
eigenfunctions and the eigenvalues for _(}_/ will be vastly different.

But, pevertheless, the strange combination (135} must be the same. S0 you see
that you can cut out an arbitrary chunk and'stillfget the same’ansWs¥o From
this it is obvious that we are really dealing with a surface phenomenon,

because you can bgdly butcher up the volume ,J/Z. and it makes no difference.
For a reasonable region, one can say it as follows: The probability of spending
positive time in the région wfl, is the sams as the probability of crossing

the boundary. But if you try %o bulld the theory from this #iewpoint, tﬁat of
crossing the boundary, then you're in trouble. Things would become very tedious
and messy. S0 you simply say that this is the éame as spending positive ftime

in the interior. And then one is led té all these formulas in terms of volume

integrals. It's much nicer.
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Now what about two dimensions? There is no complication in going
to higher dimensions. And that is, éfter all, only an.academic exsrcise. .
But in i;,wo dimensions all these fundamental difficultiss we mentioned coms in.
A-lmost every Brownian path spends an infinite amount of time in any region ,.(L .
‘50 one cannot c.irry through the same theory. It hag io be modified. 'The
modifications lead to more involved computations ﬁhich 1 will spare.you. I
will just give you the resultsg  at lesst, the proba"oilistic part of the results.
These are the followlng: We again take a region .£J. and a point .—g .
Let us staz;t a Brownlan particle from ...g .

Now T know, with probabllity one, that tle curve will eventually
enter the region (L . But I can ask for the probability th,;:l_t it wlli not

enter theA region up tec time t. In other words, I can ask fors
Prob{%w(f);éﬂ_ fr 0&TLE (147)

In the plane, as t approaches infinity, this probability must approach zero.

But the remarkable thing is that it approaches zero, asymptetically, as
R(g)

i & :
Q(%) is the two-dimensional analogue of the capacitory potential. It is,

(248)

namely, that harmonic functicn which is zero on the boundary of the'reg:i_.on

and behaves likse
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at infinity. In other words, it has a logariihmic singularity at infinity.

- 8o even here you have a probabilitistic interpretation of the
capacitory potential, a much more unpleasant ons. It would be useless for
Monte Carlo purposes, because you would really have %o waii a long, long vime.
Convergence would be woefully slow,

To prove these things the methods have to be modified. The proofs
become reasonably unpleasant. Some of it has been published. This theorem
was conjectured by me and then proved by one of my colleagues.. I have now,
under somewhat stringent conditions, a reascnably simple proof. It will
eventually appsar in print.

Now, to finish up this thing I will make some remarks. You remember
_ that all this measure theory, starting from a oné-dimenéional.case,»wae built

on this function:

; (k- xo)"

— & 2t | | (150)

e

The reason we needsd such 8 function was that 3t was a solution of the
Qhapman«Kolmogcroff equation. It is of intsrest to see what would happsu 1Lf

we were to take obthexr solutions of this equation. For instance; the ons which

I showed yous
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The second moment of this one is infinite. It has to be. If the second
moment is finite then you can only get (i50).

So suppose we try to build a measure theory based on {151). Ve
introduce the windows (see page 136} and consider the set of paths passing
through them, and so forth. But then you discover to your great surprise that
with probability one the paths are discontinuous. This is one of the most
interesting facts in ﬁhis business. I think it was first dlscoversed by Faul
Levy. You cannot build a measwre in the set of continvous paths based on
this function (151). So the best you can do is to build the measure in a
. certain set of discontinuous functions. ”

One of the very interesting outcomes is the change this mekes in
.our.potential theory. The integral equation (128) has to be changed. But
you can get & formula similar to (136). But now, as (L goes to infinity,
the mass bscomes distributed all over the region. In the other case it got
concentrated on the boundary. The difference.is a direct consequsnce of the
discontinﬁity of the paths. That is very interesting and very charming.
Before, the only reason that I could-use the argument that crossing thé.
boundary was the same as entering the interior was @hat the paths were con-

tinuous. Thal's not true anymere, bvecause the paths can jump. You might

enter the interior without ever crossing the boundary. So you ses, the fact
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that in ordinary potential theory the peths are continuous is equivalent to
the statement that the charges giving rise to the capacitory potentlal are

distributed on the boundary.

The measure in the space of all these discontinuous paths ls a very
pathological affair. In fact, considerabls cautlon has to be exercised. Nevers
theless, it is very intimately comnected with purely analytic questions. You
might think that such a measure would only bs of intersst in itself, to see how
bad things can get; But one finds that it can be applied with reascnable
success to analytical problems.

I may as well finish up with a famous staztement due either to Russell
or 'to Whitehead. I don't remember which. One of them gave a lscture and the
other was presiding. Ilet us say that Russell was presiding and Whitehead gave
;he lecturs. The " lecture was on the foundations of guantum mechanicso It
was apparently not only too much for the audience; but alsc teo much for the
preslding officer. The whole thing was extraordinarily difficult, absiruss;
and unclear. Yet, when the lecture was ovsr the'bhairman felt fhat~he must
make soms comment. He made one which was both polite and true.A He simply

said, "We must be thankful to the speaker for not further darkening this

vastly obscure subject."
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