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PREFACE

These notes based on a series of lectures delivered at the Scuola Nor-
male Superiore in May 1980 are meant to provide an introduction to
the subject of functional integration. Although integration in function
spaces owes its origins to Probability Theory on the one hand, and to
Quantum Mechanics on the other, I assumed only most rudimentary
familiarity with either of these disciplines. Also I did not attempt to
write a minitextbook on the subject of integration in function spaces.
I was much more concerned in exhibiting the spirit of the subject than
in teaching it in an organized and systematic way. Consequently I
stressed the formal and eschewed, perhaps even above and beyond the
call of duty, technicalities. To borrow a famous saying, I came to Pisa
to praise functional integration not to bury it.

I hope the reader will keep this in mind and be willing to forgive
me for being sketchy, incomplete and moving in too many directions
at once. I also hope that the reader will understand that constraints
the written woi-d imposes on a speaker prevent him from including
numerous side remarks of scientific and anecdotal nature which he could
use freely to (hopefully!) edify (and perhaps even amuse) his live audience.

There remains the pleasant duty to thank Accademia Nazionale dei
Lincei and the Scuola Normale Superiore for inviting me to deliver this
year’s Lezioni Fermiane and to all my friends for their wonderful hospi-
tality for ‘which Italy, in general, and Pisa, in particular, are justly
famous. '

It was a great honor to join a long line of distinguished colleagues
in paying tribute to the memory of one of this century’s greatest scien-
tists.

(

Pisa, May 1980.
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SECTION 1

Introduction

The subject of integration in function spaces was first introduced
by Norbert Wiener in a series of papers written in the early twenties.
He later summarized certain aspects of his work in a chapter on Random
functions in the book « Fourier Transforms in the Complex Domain »
written jointly with R.E. A. C. Paley (the book was completed after
Paley’s premature and tragic death in a skiing accident).

Wiener has always been interested in problems of Physics (and Engi-
neering) and he was familiar with the work of Einstein and Smoluchowski
on the theory of Brownian motion. He has read Jean Perrin’s beautiful
book « Les Atomes » and it was a remark in this book that, according to
Wiener’s own acecount, provided the inspiration for his work in this area.

What made such an impression on Wiener was a passage in « Les
Atomes » in which Perrin said in effect « that the very irregular curves
followed by particles in Brownian motion led one to think of the sup-
posed continuous nondifferentiable curves of the mathematicians » (quoted
from Wiener’s autobiography «I am a mathematician. The later life of a
prodigy »).

It should be recalled that the fundamental result of the theory of
Brownian motion is that the mean square displacement of a free particle
during a time interval ¢ is proportional to ¢

N

1.1) . (a?y = 2Dt

and that the « diffusion coeﬁiciént » D for spherical particles of radius a
in a liquid with viscosity coefficient # is given by the formula

kT

(1.2) = 3an

where T' is the absolute temperature and % the Boltzmann constant.
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Since

R
(1.3) k=%

where R is the well known gas constant and N the Avogadro number,
experimental determination of D would provide a novel way of deter-
mining the Avogadro number. This in fact was done by Perrin, and
for this (and a number of closely related experiments) he was awarded
the Nobel Prize in Physics in 1926.

To determine D experimentally one can observe a large number n
of (independent) Brownian particles for the same time interval ¢ and
measure their displacements

Zi(1), ®(2), ..., Z(n) ;

an estimate for D is then given by the obvious formula

3 at(k)
(1.4) 2D~ - %=t

ek

«h

n

As can be noted this involves statistics of particles as indeed do all
experimentally testable statements about Brownian Motion.

Wiener wanted to justify Perrin’s remark about non-differentiability
of Brownian paths and for this he needed a deeper theory based on what
one might call the statistics of the paths, or, to use more conventional
terminology, an appropriate measure in the space of paths. Since Wiener
took continuity of paths for granted he proceeded to construct a measure
in the space of -continuous functions.
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SECTION 2

Construction of the Wiener Measure
and Integration
of Some Simple Functionals

How does one construct a measure in a space?! One begins with a
collection of sets (called elementary) whose measure is somehow given
and one uses the axioms of additivity and complementarity to extend
the measure to a wider collection.

The axiom of (complete or denumerable) additivity states that if

o]

A,, 4,, ... are measurable and non-overlapping then the union U 4, is
measurable and . n=1

(2.1) m( G A,.) = § m(4,)

n=1 k=1

where m(...) denotes the measure of the set in parenthesis. « Measurable »
means that the set can be assigned a measure.

The axiom.of complementarity merely says that if 4 is measurable
then so is its complement A.

The whole space is assumed measurable (and hence so is the empty
set), and in probability theory it is customarily assigned measure 1.

Lebesgue also added an axiom (which was at the center of a vigorous
priority polemic with Borel who stopped with the first two axioms) that
a subset of a set of measure zero is measurable (and hence also of measure
Zero).

The familiar Lebesgue measure on a line starts with open intervals
a8 elementary sets assigning to each interval its length as its measure;
one then extends this measure to the « Borel field » generated by the
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open intervals by taking unions and complements. One then adds the
Lebesgue axiom and one is done.

One can prove that the measure obtained in this way is equivalent
to the measure as actually introduced by Lebesgue in terms of coverings
and outer and inner measures.

Two points should be made:

1) The assignment of measures to elementary sets must be con-
sistent with the axioms of additivity and complementarity.

2) The assignment of measures to elementary sets is often dictated
by considerations’ which are mot measure theoretic. E.g. assigning the
length of an open interval as its measure is a response to a geometric
desideratum that the measure be translationally invariant.

With this cursory review of the elementary facts about measure
theory as background let me sketch Wiener’s construction.

The space in question is the set Cy(0,1) of all continuous functions
z(t), #(0) = 0, 0<t<1 (the extension to the time interval 0Kt <oo is
routine as will be indicated a little later).

The elementary sets are sets of functions x(f) which at prescribed
times

0<<t<... <11

assume values in prescribed intervals (a,, f,), .-, (0tn, Ba) (¢ slalom gates»
a8 the late Lars Onsager liked to call them).

The measure (or probability) assigned to the set of continuous func-
tions

(2.2) {a1< 2(t) < fry < Z(t)) <Py ...y %y < 2(ta) < ﬂn}

is by the Einstein-Smoluchowski theory
\

By Be Bn
(2.3) f f f P(O0|zy; t) P(@3]@s; ta— 1) ... P@p_s|Tn; ta— ta_y) 4 4, ... doz,

&Ky (X3 &Xp

where

(2.4) Plaly; 1) = — exp(—‘—"’—g{-”f)

(choosing units so that D = 1).
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Wiener then proved that if Gy, @y, G, ... are independent, Gaussian
random variables each with mean 0 and variance 1 then

(a) The series

& ol sin nkt
(2.5) Git+Y T GvVI—
n=1 k=2n-1 wk

converges uniformly with probability 1.

(b) Denoting by «(t) the sum of the series in (a) one has

(2.6) P{051< 2(t) < Pry ey An < (L) <ﬂn} =
B Bn
=f...fp(0|5o1; £) oo P(@ns|@n; tu— to_y) Aty ... deo,

xy &gy

with P as given above.

Thus a measure in the space C,(0,1) of continuous function z(t),
(#(0) = 0), 0<t<1, consistent with the physical theory of Brownian
motion, is established by the mapping given by

e 2l in 7kt
2.7) o) =Gt +3 3 GVE—Z

of 0y(0,1) into the infinite product space EXEX... (B = the set of
real numbers) with the Gaussian product measure. '

The mapping is not quite one-to-one because while to each z(f) in
Co(0, 1) there corresponds a wmique sequence G, Gy, G,, ... — the con-
verse is only true if one allows a set of measure zero of exceptional
sequences. In other words, only to almost every sequence G,, G,, G,, ...
there corresponds a continuous function (recall that the series in (a)
converges uniformly with probability one allowing for an exceptional
event of probability zero when the series either doesn’t converge at all
or if it does converge its sum is not a continuous function).

Once the Lebesgue measure is constructed it is a matter of routine
to define the Lebesgue integral with respect to the measure. The integral
in probabilistic terminology is the mathematical expectation, and we shall
throughtout these lectures use the symbol F for the integral.

Having established a Lebesgue measure (in C,(0,1)) Wiener then
proved that almost every z(f) is nowhere differentiable.
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Let me conclude this part of the historical introduction with a number
of remarks.

(a) To extend the construction of the measure to the space of
continuous functions on the infinite interval 0<t <oco it is sufficient to
construct infinitely many independent copies

() , o<i<l, z®(0) = 0
(by simply taking many independent collections

(Gg)k)r G(1k)’ G(zk)y v k=1, 2, )

and setting
z(t) = 2V(t) for 0<IL1
and
o(t) = oM(1) + ... + a*-(1) 4 a®(t— (k— 1))
for

k<i<k+1 (k>1).

(b) An alternative construction of the Wiener measure can be
accomplished by means of a different representation which goés back
to Paul Lévy and which I sketch here in a version devised by Z. Cie-
sielski [1].

We start with the orthonormal complete system of Haar, whose
functions

ho(t) KR , O0<k<2"—1, o<i<1

are defined as follows

~ htt) =1,
k
Ve Fo EEE ,
2n 2"
h’(‘k)(t)___ — /9 k+%<t<k+1’
" 2
0 otherwise ,

for n=0,1,....

BN
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The integrals of the Haar functions

4
80(t) = f (v dr, n=0,1,2,..
0

are known as Schauder functions and they form & basis in the space ot
continuous functions

(1), z(0) =0, o<igs,

in the sense that every such x(t) is uniquely representable as a uniformly
convergent series of Schauder functions

oo 27—1

o(t) = 2, 8,(0) + X 3 28R

=0 k=0

(it is not necessary to partition the series into dyadic blocks).

To construct the measure we replace the x’s by independent Gaus-
sian random variables G,, G each with mean 0 and variance 1.

The proof that the series :

oo 9n-1

Gt+3 3 dRsEw)

=0 k=0

converges uniformly with probability one and provides us with a suitable
mapping to establish a Lebesgue measure in the space of continuous
functions in (0,1) which vanish at the origin is much easier than for
the Wiener representation and it remains equally easy (unlike in the
Wiener case) if one abandons the dyadic partitioning.

(¢ Neither the Wiener representation nor the one of Ciesielski are
« natural » in the following sense:

Suppose we wish to calculate

E{exp (i&fwz(r) dt)}_, - & real,
0
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which is the characteristic function of the distribution of the functional

1

f x23(7) dr .

Either the Wiener or the Lévy-Ciesieiski representation gives

1 oo

fm’(r) dr= Y a6,

0 €,§=0

and upon diagonalizing the quadratic form on the right hand side we
would get

=]

1 o0
f o(v)dv =3 AH,
0

where the H, being orthogonal linear combinations of the G’s are again
independent, Gaussian random variables each with mean zero and vari-

ance 1.
It is now obvious that

1
o 2 — = > 2 [ = _1___
B {exp (i£[s*(x) dr) } = [1 Blexp GéaED) = [T T

0

But how does oné find the A’st
Here is a way to proceed. Let

@), ¢a(t)y ..., 0<I<1

\.

be a complete orthonormal set and expand x(f) in this system

o(t) ~ Z L,pa(t) ,

n=1

L = [o(x)pu(z) dr .
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Since () (either by the Wiener or the Ciesielski representation) is a
linear combination of independent (Gaussian variables (each with mean
zero and variance 1) then clearly the L,’s are linear combinations of the
same Gaussian variables. It is a well known and quite elementary fact
that linear combination of independent Gaussian variables are them-
selves independent if and only if their correlations vanish. Thus for the
L,’s to be independent it is necessary and sufficient that

1 1

B{ [a(t)palt) dt [ a(t)putt) a8} = 0
0

0

for m # n. )
This condition is clearly equivalent to

11
[[Blato@)}pu6igais) deds = 0
00

(the interchange of the orders of integration being easily justified) and
since

E{w(i)w(s)} = Min (2, 8)

our condition is equivalent to
11
”‘Min'(t, 8) Pu(t) pm(8) dtds =0, m#=n.
00

It is obvious that if the ¢,’s are eigenfunctions of the kernel Min (s, ?)
the eondition above is satisfied and since Min (s, ¢) being a covariance
(i.e. of the form E{z(t)z(s)}) is a positive definite kernel the ¢’s form a
complete set. By Mercer’s theorem we also have

Min (¢, 8) = E An@a(t) Pn(8)

n=1

the series being absolutely and uniformly convergent and the eigenvalues
Ay Agy ... PoOBitive.
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We also have

11
B{I% = f f Min (2, s) @a(t) @a(s) dt ds = A,
00

and clearly
E{L,,} =0
Setting
H
L,==-2
Va2,
we can write
2(t)~ > VA, H,apu(t)
n=1

where the H,’s are independent Gaussian variables each with mean zero
and variance 1.
We now see that the A,’s in the formula

B {oxp (it [o?(r) dr)} = fjm

are the eigenvalues of the kernel
Min (s, ?), 0<s, i<1l.

It is @n elementary exercise to verify that the integral equation
1
[Min (5, 901t = Ag(s)
0

is equivalent to the differential equation

o1
" “o=290
PrI?T
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with the boundary conditions

¢(0)=0, ¢'1)=0.

Thus
@a(t) = V2 sin ('n + %) nt
1
G g y
and

1

1

E {exp (i{-'o 2%(7) d‘t)} = m .

This result was first derived in 1944 by Cameron and Martin [2] by
a different method.
The «natural » reppresentation

H,
z(t) ~ —————— gin{n
O~3, g V29 (n + )
is a special case of a representation introduced by Kac and Siegert [3]
(and suggested by a problem in the theory of noise in radio receivers [4])
and independently by Karhunen [5] and Loé&ve [5a].
Cameron and Martin [6] also calculated

1

E{exp (z&‘ o4(7)p(z) dr)}
1}
N
for p(7) >0 and sufficiently regular (e.g. continuous). A slight modifica-
tion of the method used above will yield the desired result.
Instead of the kernel Min (s, f) we consider the kernel

V(s) Min (s, 1) Vp(?)

and denote again by 1, and @.(t) its elgenvalues and normalized eigen-
functions.
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If we now expand Vp(t)x(t) in the system {p,}

V@) o)~ S Luga(t),

n=1

1
L, = pr(t) (1) ga(t) 2
0

again the L, are linear combinations of independent Gaussian variables
each of mean zéro and variance one and

11
B{LnL,} = f fx/p(t) Min (8, 2) VP(8) Pun(t) @a(8) A d8 = Ao 8 .
00

Setting again
L,=H nﬂ:

we get

1
- [pwary @ = 3 2,82
0

n=1

where the H, are independent Gaussian variables each with mean zero
and variance one.

’ Finally, as before,

1
. ad 1
Ble (g0 @)} = I =

The A8 now turn out to be the eigenvalues of the Sturm-Liouville
problem

P(t) + 3 2()plt) = 0,

with the boundary condition

¢(0) =¢'(1)=0.
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This result was also obtained by Cameron and Martin [6] (by a dif-
ferent method) and it was the first indication that there may be an inti-
mate connection between Wiener integrals and problems of analysis.

It should also be mentioned that quite recently A. M. Garsia, E. Rode-
mich and H. Rumsey Jr. [5b] proved directly that '

E Hﬂ\/)'_"‘Pn(t)

n=1

(for arbitrary non-negative sufficiently regular p(¢)) is uniformly con-
vergent with probability one and hence it can be used to construct the
Wiener measure in Cy(0, 1) thus by passing the other representations.

(@) If p(#), 0<t<1, changes sién the kernel
Vp(8) Min (s, 1) Vp(?)

is not hermitian and the method above fails. The result nevertheless
remains valid as the following alternative derivation shows (}). For sim-
plicity assume that p(f) is continuous and note that (since z(f) is also
continuous)

1

[pooa=tm? 3 5(2)ar(2).

0

Thus for every real &

1

il-ri exp (;—é ,21 P (—2) x? (%)) = exp (iE p(t)x2(t) dt)

\. 0

and since

(*) For details see [7].
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we have by the Lebesge bounded convergence theorem

i sfoer (£ 3.2 (2)= )} -

1
=E {exp (iffp(t)w?(t) dt)} .
R

By the definition of the Wiener integral

it

N k=1 k=1

Setting

‘@w _
2 k"‘yky

we obtain

«axp(“’E 2 P( ) )exp'(-“% i (Te— Tx_y)

2) dz, ... dz,

(g = 0) .

sfofé 2o - prr 5

where A® is the (slightly modified) Jacobi matrix

2 —1 0
—1 2 —1 0
0 —1 2 —1
0 —1 2
0 0 —1

EECERY

ot |
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and R™ the diagonal matrix

2
n) — —
" o)

It is obvious that

det AP =1
and almost equally obvious that

AP™ = Min (3, j) .
Thus
det (A,‘,”’—-?lij"") =
n
— det (1— zif-Aﬁ“"'R‘“’) .
n
The (4, j) element of AT R™ ig

Min 6, /12 (1)

i9

and by a classic theorem of Hilbert the limit, a8 # — oo, of our deter-

minant is the Fredholm determinant D(2¢£) of the kernel

Min (s, t)p(t)

which can easily be shown to be equal to

[T — 2:&,)
kw1




20 SECTION 2

where A’s are again the eigenvalues of
. |
¢' +ap)p =0

with boundary condition

p(0) = ¢'(1) = 0.

(e) It should be emphasized that the very existence of the measure
and the integral can have purely analytic implications. For example the
exigtence of the limit as n — oo of the multiple integral

B R

(o =0),

is a consequence of Lebesgue’s bounded convergence theorem (for the
Wiener integral). ’

In the sequel many other instances of analytm implications of the
underlying measure theory will be (explicitely or implicitely) encoun-

tered.

(f) Wiener’s way of introducing his measure in C,(0, 1) by an explicit
construction tends to hide a subtlety of the problem which was brought
up by Doob in a series of works culminating in his book [8].

Doob starts with the space of all real valued functions x(t) ((0) = 0,
0<t<oo) and keeps the assignment of measure to the sets of functions

N .
{a < 2(t) < B,y ta< Blty) < Py ... ata < T(ta) < fn}

a8 given by the Einstein-Smoluchowski theory of Brownian motion.

It turns however out that the Borel field generated by the above
« elementary » sets is too small in the sense that many i'xiteresting non-
elementary sets turn out to be non-measurable. In particular, the set
C,(0, oo) of continuous functions is non-measurable! Fortunately its outer
measure is one and because of this it is possible to concentrate the
measure on it while maintaining the original assignment of measures to -
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the elementary sets. One is then led to back to the original Wiener
measure having been however a little frightened in the process.

Lest the reader gets the impression that the measure theoretic sub-
tleties are by and large of an exotic nature let me reassure him that
this is not necessarily the case.

Some measure theoretic features which smack of pathology have
purely analytic classical counterparts and in the next seetions I shall
discuss some examples.




SECTION 3

Elements bf Probabilistic Potential Theory

The reader is by now sufficiently familiar with the measure and
integration theory in C,(0, oo) to believe that the extension from one
space dimension to several should present no real difficulties.

Let us then take for granted that we have at our disposal a measure
and integration theory in the space of all continuous curves in R, (three-
dimensional Euclidean spaces) starting at the origin "

r@), r0)=0, 0<i<oo.

Just to remind ourselves that we are dealing with Brownian motion
of a free particle in three dimensions I shall wnte down the analogue
of (2.6) and (2.4) ’ :

(3.1) P{r(t,)e2,, r(t,) €Ly, ..., r(t,) € R,} =

=J....IP(‘O[r,; 1) P(ry|ry; ts—1y) ... P(Pa_y|ra; ta—1a) dry ... dry
Q, 0O '

P |r—el?®
(3.2) P(rlp; t) = @iyt oXP {— —27“—},

£y, 8,, ..., 2, are Borel sets (in RB;) and |a| denotes the length of the
vector a.

Consider now a closed region £ which is the closure. of its interior
0, and denote by Vgo(r) the indicator function of £, i.e.

1, reQ,
0, r¢Q.

(3.3) Vatr) = {
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Let

(3.4) Taly) =fVo(y + r(z)) dr .
0

To(y) is clearly the total time the curve y + r(z), 0< 7 < oo, spends in Q
and for sgome curves this time is infinite. However for almost all curves

it is finite as can be seen by calculating

E {TVQ(.Y + r(7)) dr} .

0
Since everything in sight is non-negative we can interchange the order
of integration (E and J ) obtaining

©0

E{J‘Vé(y + r(r)) dr} =

oo

= [a B{Taly +r@)} =

©0

= PP{.‘Y+ r(r)eQ}dr = -

w Ir—y|®
© ¢ GXP{—T

=|dz @)t dr =

([ 1 lr—yl7 .
=|dr { @me) exp {— T} dr =
) @

1

T _dr<oo.
2z ] r—y]|

Ve

Since the expectation (Wiener integral) of To(y) is finite it follows
that To(y) itself is finite with probability one (i.e. almost every three-




ELEMENTS OF PROBABILISTIC POTENTIAL THEORY 25

dimensional Brownian path spends a finite time in 2). In two dimensions
(as well as in one) with probability one the path spends an infinite time
) in every region.

2 Higher moments of T'o(y) can also be easily calculated. For example,

" o0

E{Tb(y)} =E {( fVa(y + r(7)) dz)'} =

= 2! ffE {Valy + r(z)) V(y + r(zs))} dv, dv, =

0<% <7<op

= 2! I.P{y + r(v,) €2, y + r(v,) € 2} dv, dr, =
0<1:<1.<oo

' )

— 21 f f f Pylry; ) Plrulrs; ta—1,) dry dry d, dr, =

o
.40<31<1|< o Q0

1 1 1
= 2! ' ar, dr
(2n)* J“-f llrx-—yll ""s‘"l" T

where it is understood that here as well as in the sequel

Jdp

is a multiple integral (triple in our case) with dp denoting the (multi-
dimensional) element of integration.
Similarly fq;' every positive integer k¥ we have

1 1 1 1
- ="!—“f'"f . ary ... dry .
B{Th(y)} - (27:)'1:9 2 =l [ra—r]| |re—rea| k ™
The kernel
1 1
mlr—e] TP

is easily seen to be positive definite and of the Hilbert-Schmidt type.
Denoting by 4,, 4, ... its eigenvalues by ¢.(p), ¢i(p), ... the corresponding
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normalized eigenfunctions, we obtain

- 1 i) -
B{Ta(y)} =k! 2 4™ f pi(P)dp o= | T — 7 9P
’-f P 27 3 "9 3'"

. For sufficiently small |¢| (¢ complex) it follows that

(3.7) E{exp (2Taly))} =

— _}_ @i(p)
1423 g zz P %R 2 ) To—y1

It is easily seen that both sides of (3.7) are analytic in the right half
plane Re 2> 0 and that henece (3.7) is valid throughout this half plane.

In particular, for ¥ > 0 we have

(3.8) 1— E{exp (—uTal(y))} =

“2
I8
[y
+ Pt
>
£ 3
s’
T
(=Y
b+ ]
Ny
%
Sle
| 1=
R

Consider now the L* function f (r) for r € 2 defined by the formula

©.9) M)~ s 3130 [oe dopitr
and note th&t ]

. - 1-F {exp (—uTa(y))} = ) :"(P)y“
For ye Q2

1 o5(p)
— de = A
27;! "P___y" (3 i@i(y)

and hence

(3.10) 1 — E {exp (—uToly))} = Z i + uﬂ. @i(p) dp @i(y) -
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Integrating both sides of (3.10) over a region A contained in £
(4 c Q) we have

[t1—Blexp (—uzaty1 ay -

2wl
=21 j_,’% f ¢s(p) dp | ps(y) dy = |4|— f fuly) dy
Q A

4

use having been made of the Parseval relation

4] =§1 @i(p) dp | s(y) dy
2

4

Since both 4 and Tgo(y) are non-negative we have
0< f [1— B{exp (— uTa(y))}] dy<|A],
4
where |4| denotes the L.ebesgue measure of A. It therefore follows that

0 ffu(r) dr<|d]
4
and hence

(3.11) Hu(4) = f fu(r) ar
|

is a bounded postitve Radon measure.
We can now write

«(dp)
(3.12) 1—B{exp (—uTo(y))} = | L2700
af le—#l

and let %4 oo.
'The left hand side of (3.12) aproaches

- P(Taly) > 0}
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while (at least through an appropriate subsequence) the right hand side

approaches
f Ilp—yll

(3.13) D) = P{Taly) > 0} = f e

Thus

_ldp)
yl

so that P{To(y)> 0} is a poteniial of a mon-negative mass distribution.
It can be shown that

Uly)—>0 a8 Iyl = oo

and that
Uy —>1

a8 y approaches a (properly defined) regular p;)int on the boundary
of L. For a wide class of regions U(y) is therefore its capacity potential.
Now, it is well known from the classical theory of the Newtonian

. potential that the charge u(dp) is concentrated on the boundary of the

region. What I want to emphasize is that this fact is intimately related
(in fact, essentially equivalent) to the continuity of Brownian paths.

In fact, let y ¢ £ and cut out an arbitrarily large open subregion B
contained in the open interior £, (B c £2,). Now, because of continuity
of the paths -

N -~ P{Ta(y)> 0} = P{Tas(y) > 0}

and therefore yx is concentrated on 2 — B for every B c £,, i.e. on the
boundary of Q.

To dramatize a little more the interplay of measure theoretic and
purely analytic aspects let me consider briefly the following problem.

The Wiener measure a8 we have seen was based on assigning the
measures (2.3) to sets (2.2) with P given by the formula (2.4). The choice
of P is not arbitrary since consistence of the assignment requires that P
satisfy the Chapman-Kolmogorov (or more justly the Einstein-Smolu-
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chowski) equation
(3.14) P(aly; t + 1) = [P(al¢; O P(Lly; r) aL

for all positive ¢t and 7. If we further assume that P(z|y;t) be spatially
homogeneous (i.e. dependend only on y — ) and symmetric, then the
only solutions are of the form .

0

Ply—a;8) = - [exp (—tiélr) exp (i£y — o)) &

- co

with 0 < x<2. Can one use these P’s to construct a Wiener like measure?
The answer is « yes», but the measure can no longer be concenfrated
on the space of continuous functions!

Let me prove it in the case « <1 since it is simpler than the case
1I<a<<2.

We simply imitate word for word the potfential theoretic considera-
tions at the beginning of this section replacing Q by the interval

(—1,1) and r(z), 0<T< o0
by the process
z() , z(0)=0, << o0,

based on P given by the formula (3.14).
We are then led to the result that

u(dz)
|z —yl|*

Uly) = P{Toly)> 0} = f

N
and if the paths were continuous x would be concentrated in points
—1, 41 yielding

p—1)
1 +yp—=

p(1)

+

On the other hand for — 1 <y <1, U(y) must clearly be equal to 1
and it is equally clear that for no choice of u(1) and u(— 1) is this
possible. '




SECTION 4

Asymptotics of the Number of Bound States
of Certain Schriodinger Equations
and Related Topics

The calculations of the preceeding section contain the seeds of a
probabilistic approach to Potential Theory, a subject which has received
much attention in the mathematical literature of the past thirty years.
I shall not dwell farther upon Potential Theory having recently reviewed
the subject in a monograph [9]. I shall, however, sketch a related devel-
opment bgcalise it is closely tied to a subject which has recently been
actively pursued by a number of investigators.

I shall do it in & partly historical (and even autobiographical) setting
because I believe that something may be learned from such a presen-
tation. ' ‘

My own interest in probabilistic Potential Theory originated in an
attempt to prove a conjecture of Erdos to the effect that for f — oo

(4.1) P{To(y) >}~ O exp (— uf) .

The conjecture had nothing to say about the constants C and u except,
of course, that both depended on the region £ and possibly on y.

This was in the late forties and we all knew much less about con-
nections between differential and integral equations on the one hand
and Probability Theory on the other, than we do now.

Mathematicians, or rather mathematical analysts, are divided roughly
speaking into two classes: the «calculators », i.e. those who look for
exact formulas, and the « estimators », i.e. thogse who live by inequali-
ties. I belong to the first class while Erdos is one of the most brilliant
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representative of the second. Naturally then I began to look for a for-
mula for
P{Ta(y) > B} .

This led to the calculation of the moments
E{T%(y)}
and the moment generating function

B{exp (— uTo(y))} , u>0.
Setting
o(B) = P{To(y) < B}

we rewrite (3.8) in the equivalent form

oo 1 1
fexm—uﬁ)da(ﬁ)—l “2 2 1+ ud, "’“’)d"% II-z)ip;lld"
e

0

and in a few elementary steps we arrive at

P{Toly) >} =1 —a(p) = 3. 7' exp (—flA)

where

a; = fPi(P) 927:,[ ":,(Py" e-

<Thus
P{To(y)>p} ~a, exp (— B[4,)

confirming Erdos’ conjecture with € = a,/, and u = 1/4,.
This as well as other results tended to focus attention on the integral
equation

1 _ole) . _
(4.2) ||P T dp = Ap(r), reQ

. . SENO Wy G it s S5 o
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and almost as an afterthought I tried to determine the asymptotic
behavior of the eigenvalues A, a8 n — oo. The answer was easy to guess
because the integral equation is equivalent to the differential equation

1 1
EV’¢+1¢=O, ref,,

with the « boundary conditions »

) 1 opp) 1 -
- f G e e =

for every r € 2,. S denotes the boundary surface of 2 and do the surface
element.

At the time these developments were taking place I have formulated
H. Weyl’s celebrated theorem about the agymptotic behavior of the eigen-
values of the Laplacian in terms of what I called «the principle of not
feeling the boundary », and this principle implied (heuristically of course)
that the asymptotic behavior of the eigenvalues of the Laplacian is the
same regardless of the boundary condition.

This led to the conjecture that as 1 — oo

V2 |9,

Ayt<a

where |2| is the volume of .
Since the « boundary condition » (4.3) was so unusual it seemed worth-
while to prove (4.3).
To do this it seemed useful to consider not just the fotal time
N

- -]

Toly) = J' Vo(y + r(v)) dv

0

the curve y + r(r) spends in Q but also the time «up to tr

i
Toly; §) =[Valy + r(v)) dz ;
0
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and it seemed also useful to calculate

fE {exp (— usn(y -+ r(t)) dr) Vly + r(t))} dt

(V, is, of course, the indicator function of the A4).
It is just as easy as it was to derive (3.10) to obtain the formula

oo 11
(4.8) fE {exp (—— uJ.Va(y + r(7)) dr) Vuly + r(t))} dt =
0 g 0

-3 !sv,(r) ir g,()

provided 4 c Q and y e 2. By a simple inversion we now obtain
[

fP{fVo(y +r(r))dr>B; y + r(t) eA} dt =
0 0

=3 e b e arei.
=1 4
Let now A be the sphere of radius é center at y: dividing both sides
by the volume of A and letting 4 - 0 we obtain

oo [3
1 1
. —‘P V = o=
(4.7) (\/57;)’ J a {6[ o(y + r(r)) dv > B|r(?) 0} dt

=,~§1 exp (—B(—B/A;)) Aip(y) -
N

We have used here conditional probability defined by the usual for-
mula

P {fva(y + r(z)) dr > BIr(t) = 0} _

. P{ng(y +r(@))dr>B,y + r(t) EA}
= },l_{% Py + r(t)e A}

i
b
2
i
¥
&
E
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and the trivial observation that

. P{y+rit)ed} 1
Al (e

Integrating (4.7) over £ with respect to y we obtain

oo ¢
1 1
4.8 —— ldy| P} |V d t)=0;dt =
(4.8) (xfz—u)agfiy!t* {f Wy + r(r)) x> Blr(t) = 0]

=5§::16XP (—BIA) 4.

If we now set

t=pE, T=fn

we can rewrite (4.8) in the equivalent form

S exp (—BlA) A =

i=1

I

==

(\/;;)s fdyf%iP{an(y + r(Bn)) dn > 1|r(BE) =0}d§.

Q2 0

The integration on £ is actually from 1 to oo since for £ < 1

§
[Vely + ripm) an <1
0

and hence

3

P{ [Valy + r+ (Bn)) dn>1jr(ge) = 0} = 0.

0

It is now convenient to observe that the statistical properties of
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r(fn) are the same as those of vBr(n) so that
¢
P{ [Valy + r(pm)) an > 11r(pt) = 0} =
0

= P{fVa(y+~/Br<n)) dn > 1[r(£) =0} :

Thus as f — 0 this probability for y € £ and £ > 1 clearly approa-
ches 1.

We therefore have, asymptotically as g — 0

Kl ) 212 1
exp (— f/A;s) As~ =

igl p( ﬂ/ i) 5 ( /———27‘)3 ﬂ*

and by a Tauberian theorem
> l;~@\/§ ) A —> o0
At<a %
which implies almost at once that
V22|

(4.9) >1 3 A,

A<

The above calculations can be immediately extended in two directions.
First, Vo(r) can be replaced by a general non-negative V(r) which is
integrable over the whole space

fV(r) dr < oo

N

and satisfies mild regularity conditions.
For example, formula (4.6) becomes now

00 [ 1 E
(4.10) VV(y) E’{exp(— us(y + r(v)) dt)V V(y + r(t)-
0 0

As

'VA(IY + r(t))}dt =5§11 T ul, @;(r) dr ¢,(y) )
4
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where the A’s and the ¢’s are now the eigenvalues and the (normalized)
eigenfunctions of the kernel

1 1
L Vv VT

and the asymptotic formula (4.9) becomes

(4.11)

(4.12) S 1~———fo rdrit, 1-oo.
A7t<a

From the mathematical point of view this is not much of a generali-
zation since no new idea is needed and the result doesn’t seem to be,
in itself, particularly interesting. But appearances are deceiving as we
shall see in a moment.

Consider the Schrodinger equation

«13) 1Vip = AV(r)y=— By (4>0),

where V(r) is non-negative, integrable (over the whole space) and satis-
fying (mild) regularity conditions needed to justify the formal steps
leading to (4.10).

If we are interested in bound states, i.e. solutions of (4.13) which
are square integrable we must have ¥ < 0 and we can therefore sef

E=— x® (% real) .

The differential equation (4.13) with B = — %? is equivalent to the
integral equation

(4.12) Aw(r = I exp - ’:‘ii"l' oL ey pie) 2o

‘Which by setting
p(r) = VV(r)y(r)

becomes

415 T = o [vie) V2l —el} v yioe) de

Ir—el
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If we denote by A,(x), As(x), ... the eigenvalues of the kernel

1 e e ExVEr—el}  ms
(4.16) o VV(r) el V(e

then we see that the energies »j, »], ... of the bound states (if any) are
obtained by solving the equations

1
— = M%) ,

A = Ag(%s) ’

1

4

Since for every x A,(x) — 0 (decreasingly) as # — oo and since for
%—>0 An(%) = 24(0) = A,

the eigeqvalues of the kernel (4.11) it follows that the number n(4)
of bound states is equal to the number of eigenvalues of the kernel (4.11)
which exceed A-1. In other words

(4.17) wd)= > 1.

-1
iji<a

This elegant result connecting the number of bound states of the
Schrodinger equation (4.13) and the number of eigenvalues of the kernél
(4.11) whose inverses do not exceed A is due to J. Schwinger [10] and
it immediately adds spice to formula (4.12) since it now reads

n(A)~;—:§fV’(r)drA*, A—>oc0,

an asymptotic result first obtained by A. Martin [11].
The second direction in which the results of this section can be
extended is to replace r(z) by the process z(7),

0<t<oo,  @(0)=0,
mentioned at the end of Section 3.

In this case a8 we have seen the paths are not continuous, but this
does not prevent one from imitating the formal steps and we reach the
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formula
oo ¢

V7@ f B {exp (— u f V(y + o)) dr) VY T 20) Vily + w.(t))} it =
0 0

e A
=2 T az, |70 99)

4

where the A’s and ¢’s are the eigenvalues and (normalized) eigenfunetions
of the kernel

C(ex)V V(w)-lﬁz_——%/_l_‘:; VV(y)
where
Im y|1—a f J‘exp (—t|&|*) exp (i€(x —y)) dé dt =

_1 f 35(90—:1/) _i F cos & 1

o [, e %= ) T e
ie. .

1 mcosf
) =3 ) HF %

The analogue of (4.8) is now

5%5 ﬁ(i) j? V(y)ft%‘P { fV(?I + (7)) dv > Blo(t) = 0} dtdy =
e 0 5

=3 exp (— Bl Ay

i=1

and again as before one obtains

S 1~;f71/¢(w)dw11/a A—>o0.

7t<a
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The result was first proved by me in [12] and subsequently by
H. Widom [13] by a purely analytic method without any reference to
probability or integration in function spaces.

Finally it should be mentioned that derivation of (4.6) can be trivially
modified to give

oo ¢
(4.18) 1% V(y)fexp (— st)E{exp (—— us(y + r(7)) dr)v V(y + r()-
0 0

VIl TN =3 2Oy [ty ar,

4

where the y,(s) and the y{” are the eigenvalues and the (normalized)
eigenfunctions of the kernel:

Vv R (=V2sr—el) o
V(e anlr—p] v(r).

If we multiply both sides of (4.18) by a suitable A(u) and integrate
(on %) from 0 to oo we obtain

3
) ¢

VV(y)|exp [—st]E {f(fV(y + r(7) dr) VV(y + r(t))\/V‘(y + r(t))} dt =

0 0

= 2 F(4,(8)) v’ (y) | v§"(r) dr

. A4
where
@) = [h(w) exp (— uz) du
0

and

©o

F(y) = y|exp (— z)f(zy) d= .
0
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One can now pass to conditional expectations and integrate over y
obtaining

¢

( V( )J‘exp( { (fV(y-i-r(r))dr)

r(t) = o} dt =

ot

= F(As8)) -

j=1

This slight modification of (4.8) is called Lieb’s formula in a recent
book [14] by B. Simon.




SECTION 5

Scattering Length and Capacity

Closely related to the subject matter of the two preceding sections
is the concept of scattering length. Apart from the intrinsic interest of
this concept a discussion of this topic in these lectures is further justi-
fied by the fact that it was Enrico Fermi who introduced scattering length

into nuclear physics (see e.g. [15]).
Let us begin with a brief review of the basic facts of quantum mecha-

nical scattering theory.
Let, as before, V(r) be & non-negative function such that

jV(r)ar<oo

and again satisfying mild regularity conditions.
The scattering problem is to find the solution of the Schrédinger
equation

%—V‘tp— Virlp=—x'¢  (x real)

which“at infinity (i.e. a8 |r|| - oo) has the agsymptotic behavior

(6.1) @x(r) ~exp (ixv/22) + fu(e) °xp (i’i:ﬂ& I

where e is the unit vector in direction r i.e.

e —= o

r
Irl-
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The first term on the right hand side of (5.1) is the incident plane
wave in the direction of z-axis and the second term represents the
(asymptotically) principal part of the scattered wave. The complex scalar
f,(e) is called the scattering amplitude and the integral

o*=If (e)*] do
(1)

over the surface S(1) of the unit sphere of the absolute square of the ‘
scattering amplitude is called the scattering cross-section. ‘ 5

It is eagy to see and not too difficult to show that ¢, (r) is the (unigque) |
solution of the integral equation

"exp (ixv2 [r—p|)

Ao -

(6.2)  gu(r) = exp (ixv2z) — 27‘ Te—r] V(p)p«(p) dp
from which it follows that - '
(5.3) fu(€) = —— fexp (ixVZ |r-e]) oulr) V(r) dr .
. ‘i

In the low energy limit x» — 0 the integral equation (5.2)/ assumes |

the form
, _ %(9) Vie)

(5.4) po(r) =1— 2,, r—o %

and the scattering amplitude becomes independent of e

5.5) e =—T=—g [vonwar.

~

If due attention is paid to physical dimensions it turns out that I
has the dimension of length and it is called the sca.ttermg length.
Consider now the expression

L R R R P
R Sl RO A TR Bl Loy oo s R s 2 5 Gt o 4 . oy

oo

(5.6) G (y) = 8f exp (— st) B {exp (—}V(y + r(7)) dr)‘}'dt
0 o .

where 8> 0.
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By calculations similar to those of Section 3 we find that @, satisfies
the integral equation

(5.7) G(y) =1— 1 f exp (—V2s|y—r|) V(r)@,(r) dr
2 ly—r|

from which it follows almost at once that
1
(5.8) [a—cmay =5 [vmemar.

Formula (5.8) ce;n be rewritten in the equivalent form

o0 [ 1

(5.9) f exp (— st)fE {1 — exp (— f V(y + r(z)) dr) dy} dt =

= -;;8 f V(r)Q,(r)dr

and from (5.2) and (5.7) we see that

lim @,(r) = @y(r) .
=0

Thus for 8 -0 we have the asymptotic formula

co H
(5.10) f exp (— st) f E {1 —exp (——fV(y + r(7)) d‘t)} dy dt~ 2%1-1
0 0

and hence, by‘a Tauberian theorem,
N

(6.11) fE{l — exp (——fV(y + r(7)) dr)} dy ~ 2zl
5

a8 1 — oo.
It is well known that for a « hard » potential, i.e.

+ oo, ref,
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the scattering length is equal to the capacity of £ (about the region Q
we make the same assumptions as in Section 3).

Let me sketch a derivation of this result to illustrate once again the
interplay between probabilistic and purely analytic ideas..

If T set

V(r) = uVa(r)

then (5.7) becomes

exp (—V2s |y —r]|)
ly—rl

G, (r; w)dr

.(y,u)--l———f

and denoting by A,(s) the eigenvalues and by y:ﬁ"(r) the normalized eigen-
functions of the kernel

1 exp (—Va|r—el)

e Tr—el ref, pe2,
we obtain at once that for re Q
ar;u~S —— [ye) dp vi(r)
’ ,_11+uus) ¥i P

Formula (5.8) becomes now

f(l - G,(y; u)) dy = —}f‘uG,(‘r; u)dr =
3

1
8 ;

2 s 1fu + 1/w + A,(s) (f 5”“’)‘1")2

and letting 44 oo we obtain

©0

(5.17) fexp(—st)fP{ngy+r(r dr>0}
o
l

2 —1—1—— (fzp}”(r) dr)2 .

Q2

bttt b bt bt e 4 et St

B O e U
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By analogy with u,(4) of section 3 we can introduce the Radon
measure u'”(4) and obtain as before

w(dp)

(5.18) 1—6.(y; u) = f exp (—V2s |y —epl)
Q

ly—el

and in the limit #4}oo

oo t
(5.19) sfexp (— st) P{ Voly + r(v)) dz> 0} dt =
0 -

0

_[exp (—v2s |y —pl) *)(d
[  weae.
Also since
@ 1 & ﬁf'/’;')(") dr)’

[weae -5 5 S
we see that

. ([l drs
(5.20) 521 L—_j}?)"——"’ = 2nfp(l)(d9) .

If in (5.18) we let s|0 we obtain

. [exp(—V2s|y—el|)

5.21 P{T 0} = U(y) = o)(dp) =
( ) { Q(y)> } (y) .10 “y""P" “ (P)
_5im [ #%@0)
ssod |y—el

\.
It is not difficult to prove that the measure u'® approaches the
measure x as |0 and that also

(5.22) li;n p#®(dp) = | u(dp) .
sl0

Now

f u(dp)
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is the capacity O(R2) of £ and finally (5.17) becomes

oo ¢
(5.23) fexp (— st)fP { f Voly + r(z)) dv > 0} dy dt~ 2”32('9) , 80,
, J - | . ,

showmg that indeed the scattering length of the « hard » pobentlal on Q

is the capacity of Q.
A final point of purely mathematical interest. The capacity C(R2)

is mot the usual capacity.
The usual eapacity y(.Q) is defined as the mverse of

int f f »(dr) »(dp)
r—el

over all measures v such that

f ydr) =1.

Q2

The capacity C({2) is the inverse of

1) f(p), arde

" Tr—el ®

over all f € L*Q) such that

{ f(r) dr =
2

There are regions which are closures of their interiors for which

y(2) > 0(Q) .

These sets are in a sense pathological because for them the proba-
bility of hitting is not equal to the probability of spending a positive
time in them. For such sets the probability that a Brownian motion
curve will « hit and run » is not zero!

It is interesting that the natural extension of the concept of scattering
length leads to O(£) rather than to ¥(Q2). (For further details see [16].)




SECTION 6

Feynman’s Approach

to non-Relativistic Quantum Mechanics

In the preceding pages I made a number of references to problems
of Quantum Mechanics which were closely related to Wiener integrals.
The recognition however of the clogse ties between Wiener’s theory and
Quantum Mechanics came about through the work of R. P. Feynman,
who in his doctoral dissertation (Princeton, 1942) picked up an idea of
Dirac’s and made it a starting point of a novel and, as it turned out,
immensely fruitful way of looking at Quantum Mechanical problems.

Feynman began with ordinary nen-relativistic Quantum Mechanic of
systems with a finite number # of degrees of freedom, and I shall give
here a brief presentation of his ideas restricting myself to the case n = 1,
i.e. of a particle moving along the z-axis in a potential V().

In classical Mechanics if we want to find the path z(7), 0<T<{,
which at r = 0 starts from z, (#(0) = #,) and which at v =1 termi-
nates at = (#(!) = «) we can use the Maupertuis-Hamilton principle,
i.e. try to solve the variational problem

o0 o o fBE —vea] o,

(6.2) 20)=w, t)=2x.

The mass of the particle is assumed to be one (m = 1) and |

. f I g
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is of course the classical action, the integrand being the Lagrangean of
the problem.

In Quantum Mechanics the fundamental quantity is the propagator
K(x,|z, t), which allows one to calculate the probability of finding the
system in state y at time ¢ if it has started from state ¢ at time 0.
« States » in Quantum Mechanics are vectors (of length one) in a Hilbert
space, which in the coordinate representation, which I shall use, are
simply square integrable functions over the set of reals. The rule for
calculating the above probability is embodied in the formula

(- - T - -]

(6.3) I f fdwodwtp(%)ff(%l% t)p*(x) 2

i~

where * denotes the complex conjugate.
In the standard theory the propagator is obtained by solving the
(time-dependent) Schrédinger equation

LK R oK

with the initial condition
(6.5) K(z,|z; 0) = 8(z— ) .

Feynman showed (heuristically) that the propagator K can be written
as the « path integral »

I3

18[x]
fi

(6.7) K(z,|z, t) = exp( )d(path)

< ; '
where the «integration » is over all paths «(z) such that x(0) = z, and
2(!) = # and # = h/2n with A being the usual Planck’s constant.

The d(path) «integral » is defined (4 la Riemann) as the limit of

(- -

1 i[(@—20) (@)
(6.8) (———2m4ﬁ)mf...fexp{x[ ot et

— o0 - 00

TR o = VAl TP | O RS
24 e
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a8 N > oo, 4 >0 and N4 =¢. To make the definition unambiguous
we set

V7 = exp (’_g) .

The occurrence of ¢ (which is essential for Quantum Mechanics!)
makes manipulations with integrals like (6.8) extremely tricky.

First the existence of the limit is, in general, difficult to establish,
and secondly it is awkward to be dependent on a particular discretiza-
tion of the action integral. Still the intuitive appeal of Feynman’s defi-
nition is enormous; and it gave birth to a dream that perhaps all of
Physics could be rewritten in terms of « sums over histories ».

Be this as it may, the formal amalogy between (6.8) and integrals
appearing in Wiener’s theory is striking and sihce Wiener’s theory is
rigorously founded Feynman’s heuristic connection between the Schro-
dinger equation and the path integral can be made into an unassailable
theorem.

The theorem in question is the following:

Let #(z), #(0) =0, 0< 7 < oo be the Brownian path (Wiener process)
then

v+ 4y

(6.9) E{exp (fV(a:, + (7)) d't); y<z+2@l)<y+ Ay} _—_fQ(wo]w; t) dz
. 0

where Q(z,|z, t) is the solution of

@ _10Q
(6.10) . %5 T 7)€
subjeet to the initial condition
(6.11) lim Q(%|z; t) = d(x — x,) -
t—0

Here

B{(...; y<z+(t) <y + 4y)}

denotes the Wiener integral of ... over that portion of the space of
Brownian paths which satisfy the condition y <z 4 z(f) <y + 4y.
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V(x) must, of course, be subject to certain regularity conditions, but
these are mild and of technical interest only. It is, however, important
to stress that V can be also a function of time ¢, so that in (6.9) and
(6.10) V(x) can be replaced by V(z,?).

Formula (6.9) is often called the Feynman-Kac formula and there
are literally dozens of proofs of varying degrees of «slickness». The
least «slick » is my original proof [17] (which allowed only for V’s not
depending explicitely on t) and the most straightforward (though by no
means the simplest) is the proof I sketched in [8]. A proof that is a
candidate for the ultimate in streamlining can be found in the afore-
mentioned book [14] by B. Simon.

Instead of repeating once again the proof of (6.9) I shall derive its
analogue for a simple finite state Markov chain with continuously varying
time. The idea behind the proof is the same and the technicalities are
almost trivial. To simplify matters further I shall assume that V does
not depend explicitely on ¢.

Let then 2(z) be a Markov process with states 1, 2, ..., » and transi-
tion probabilities matrix P(¢) which satisfies of course the equation

P(s + t) = P(s) P(t) , 8>0,1t>0.

Let now V(i) be real (or complex) valued function on the states and
consider the expectation

¢
(6.12) QGi,l4; t) = B,, {exp (fV (#(z) dr); o(t) = z)} .
s ,

The notatmn ma.kes it clear that z(0) = i,.
Expa.ndmg exp ( f V(x(z)) dr) in powers of the argument we get

(6.13)  Qioli; t) =

=3 f S V) . V() Plhliy; 7) Plslis; Ta— ) ..
k=0 !

i;,l‘g,. . .,ik =]

v P(Alt; t— ) dry ... d1y.

where the integration is over the region

<< 1,<... < <1,
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and upon taking Laplace transforms

(6.14) exp (— 8t)Q(4lé; ¢) dt =

0

k

Ims

z V(i) ... V(%)Po(%'ﬁ)?:(i;’lfn) P_((i:l';) .

$1sd25e00s tx=1

Here P(i|j; t) is the (%, j)-th element of P(t) and

| 2.(¢[j) =fexP (— st) P(i]§; t) dt .

Let

0

(6.15) V= ve),

“Vin)

and p, be the matrix with entries p,(t|j), i.e.

©0

(6.16) p, = |exp (— st) P(t) @t .

o

Thus denoting by Q(t) the matrix with entries Q(i,|¢; {) we have

©0

617 [exp—an@ma= 3 @.Vr. = I —p.V1p..
F ' k=0

Now it is well known that

(6.18) P(t) — exp (tR)

where the (infinitesimal generator) matrix E has negative elements on
the main diagonal and the sum of elements in each row is zero. Con-
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sequently
p,= (sI— R)™!
and therefore

(-]

f oxp (— 88)Q(t) 4t = (I— (sI— R)V)(sI— By = (sI— (B + V))™*

0

whence
(6.19) “ Q(t) = exp ({R + V))
or

aQ
(6.20) ¥ i (B+V)Q,
(6.21) - QO)=1

a clear analogues of (6.10) and (6.11).
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SECTION 7

Feynman’s Approacﬁ Continued.
Semi-Classical Quantum Mechanics
and a Theorem of Morse

Returning to Feynman’s ideas I shall now discuss the so-called semi-
classical approximation to Quantum Mechanics.
A glance at Feynman’s formula ' :

-

(7.1) EK(@|w, t) = |exp (3%5"-]) d(path)

is sufficient to make it clear that for small # (*) the major contribu-
tion to the integral comes from areund the classical path z,(7) defined by

(7.2) 68=0, z(0) = @, , () =2 .

In the semiclassical approximation one goes one step farther by
setting ‘

(1.3) #(t) = wy(7) + y(7),
N .
expanding the. action about z, and stopping at the quadratic term:

¢
4) S Stoae) + [ [(2) -3 eamro| o
0

(2) Actually one  must rewrite everything in terms of dimensionless quanti-
ties 8o that % would become a small dimenstonless parameter.
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One now replaces K(z,|r,t) by the (semi-classical) approximation

(1.5 Rmof, 1) = exp (;- S[wc«r)])-

1
d
fooli )~
0

where the integration d(path) is over the space of paths y(z) such that

(7.6) y(0) = y(t) =

Now, the path integral is again defined as the limit of the multiple
integral

- oo
R i

| + ?—2’%—‘ —-;1 Nlilr(kd)y,’,] dgs ... dy,_l}
where I have put
(7.8) rz) = V*(5y(x)) -

The limit is, of course, a8 N — oo, 4 - 0 and N4 = ¢.
Il has been shown by Pauli [19] (see also R.F. Dashen, B. Hassla-
cher and A. Neven [20]) that the limit of (7.7) is

11/ 8
(7.9) | o | Lme

with some uncertainty concerning the 4 sign. (I have tacitly assumed
that the classical path is unique; if this is not the case the semiclassical
approximation is a sum of contributions from all classical paths.)

It turns out that as far as eigenvalues (energy levels) are concerned
the quadratic approximation is essentially equivalent to the Bohr-Som-
merfeld « old » quantum theory. I shall not go into this especially since
this aspect has been a subject of geveral recent reviews (for the latest -
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see [21]). It should however be remarked that most of the uses of
Feynman’s path integrals in recent physics literature are centered around
the quasi-classical approximation.

I shall conclude this section by discussing briefly an aspect of a theory
developped by Marston Morse.

If the classical path starts at ¢ = 0 from &, with initial momentum p,
its position z at time ¢ is a function of z,, p, (and, of course, ?)

@ = @(%y, Po3 T) .

If we change p, by a small amount ¢ (leaving z, and ¢ unchanged) then
the final position z(z,, p,+ ¢; #) will, in general, differ from x(z,, p,; ?)
by an amount of order ¢. Howewver it is possible that for some z and ¢
the difference is of higher order in & in which case (x, t) is called con-
jugate to (w, 0).

The condition of conjugacy is clearly

0oy Do; 1) -

by

(7.10)

and it can be written in a much nieer way if one recalls that by the
Hamilton-Jacobi theory (in its simplest form)

o8

(7.11) Do = ““'a—w"" .
Thus

o : G
(1.12) s 0w = oo

N .
or
aw alS -]

9 oo~ am)

The condition of conjugacy (7.10) is therefore equivalent to

: 08 \




‘"""‘“;"1 i stttk et ires 3 e snt, oo o

I

58 SECTION 7

On the other hand by changing p, to p, + ¢ we change (to first order
in &) the classical path zy(z)

(24(0) = @y, 2y(t) = @) into @y(7) + &p(7)

with @(0) = 0 to preserve the initial condition. If (z,t) is to be con- -
jugate to (w,, 0) we must also have ¢(t) = 0.
Recalling now that the equation of motion of our particle is

(7.15) R+ V(a(m) = 0

we obtain at once that in order that (z,f) be conjugate to (w,, 0) it is
necessary and sufficient that a non-trivial solution

(7.16) ¢'(7) + V(2y(7)) p(r) = 0
exists subject to the boundary condition
(7.17) 90)=¢(t)=0.

In other words (z, t) is conjugate to (z,, 0) if and only if A =1 is
an eigenvalue of the problem

(1.18)  A¢"(v) + V*(z4(v))p(z) =0, @(0) = ¢(t) =

Morse’s theorem states that if 1 is the n-th eigenvalue (in decreasing
order) i.e. A,(t) = 1, there are n conjugate points (z, v) to (@, 0):for
0< <Lt 4

There is an obvious generalization of this simple and elegant result
to gystems of any finite number of degrees of freedom.

I shall now show how one can obfain a vast extension of this result
based on ideas of functional integration.

I shall in fact prove that

(7.19) (8—2?—) =1t 11'[ (1—A,(2)) .

Actually (7:19) has little to do with Mechanics, and I shall carry
out the derivation in, so to speak, a neutral setting.




FEYNMAN’S APPROACH CONTINUED ETC. 59

Consider

13

(7.20) I(z; 1) = E{exp (%fr(r)m’(t) d‘r)); z(t) = w} =

14
—F {exp (% f r(7) 0%(7) drja(t) = :1:)} 9’5%—‘72” .
0

Here z(7), #(0) = 0, in the Wiener process, and I have used condi-
tional expectations.
To be specific I shall remind the reader that

¢
(7.21) I(z; t) =lim —l—E {exp (lfr(r)aﬂ(r) dv:); s<a(t) <z + Aw} .

dz—0 Az 2
0

To avoid non-essential complexities I shall assume that r(z) is con- .
tinuous. .

I shall now. direct the reader ‘to part (d) of Section 2 and assure him
that with only slight modifications he should obtain the result

_exp(—af2t) ¥ (“”af (%) dr2t)

(7.22) Hes ) =— 7 [1(A—2)

]

where the A’s are the eigenvalues of the problem:
(7.23) ig"(v) + r(x)p=0, @(0) =¢(t) =0,
\
and %(7) the solution of the integral equation
3
(7.24) () —r(z) f [min (0, 7)— G—:] n(0) do = Tr(7) .
0

Setting

(7.25) | 7(z) = 8(7) (7)
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one gets easily that s(z) satisfies the integral equation

3
(7.26) 8(7) — f [min (0, 7) — ‘-’;] (o) 8(0) do = 7
0

which is equivalent to the differential equation
ds

(7.27) 5 + (@)@ =0

with the boundary conditions

(7.28) 50)=0,  st)=:¢.

It now follows in a few steps that

. 4
ds
(7.29) f m(z) dr = — ‘V.(E%'),_,“" ;
(1]
and finally that
(1.30) I(o; t) = (= (@*/20(ds/dr).y)

V2mt 1j (1—40)
By (6.9) and (6.10) with

Vi@, t)={r(t)s*
N ,

we see that I(z; t) satisfies the differential equation

al

(7.31) e~

1 1 .
=3 + Er(t)w I

=

and the initial condition

(7.32) I(z; 0) = &() .
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It is natural to seek the solution of (7.31) in the form
(7.33) I(m,t) = A(t) exp (— $B(t)a*)

which upon substituting in (7.31) tields

A 1
(7.34a) & =—34B
and
(7.34b) | —%1-3 = B 4 1(l). ’

We recognize (7.34b) as the classical non-linear Riceati equation and by
comparing (7.33) with (7.3) we see that

et

T)r=t

where s is the solution of the linear equation (7.27) with the boundary
condition (7.28). ’
Let now s,(t) be the solution of (7.27) satisfying the initial conditions

(7.36) ' 8(0) =0, 8(0)=1.
Then clearly
_ ¢ 5(7)
(7.37) B 8(z) = ts., ©

(assum?ng that ;.(:t) 7 0) and hence

(7.38) Bt) = j:g;

which also implies that

(7.39) B(t)~ -tl- , t—>0.
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Formula (7.38) is, of course, the famous substitution which linearizes
the Riccati equation and reduces it to
dazs,

W+7‘(t)80=0-

From (7.38), (7.34a) and (7.30) we obtain that

o0

(7.40) so(t) =t ] (1 — 24(2))
i=1
and I leave it to the reader to derive (7.19) from (7.40).

Strictly speaking the above derivation is valid only for sufficiently
small times, but by a simple argument based on considering 2r(r) and
on analytic continuation one can extend the validity of (7.40) to all
times t. "

The extension to the multidimensional case is straightforward although
the details are a little tedious.

The final result is the following: Let s,(¢) be an n X7 matrix solution
of the differential equation

(7.41) ¥ Rs, =0
with the initial condition
(7.42) 8(0) =0, §(0) =1,

where

is @ matrix with confinuous enfries.
Let furthermore 4,, 4,, ... be the eigenvalues of the problem

as : .
A ¢‘+zr“¢,;—"-0, ‘b=1,2,...,’n,

a5
@4(0) = @(t) =0, i=1,2,..,n
then
(7.43) det so(t) = t= [T (1 — 24(2)) .

j=1

4 r
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In deriving this result one encounters the matrix Riccati equation
in the form

iB .
—= =B'+R

which is then linearized by the substitution

P
B=—P.

The Riccati equation both in its scalar and in its matrix form is, of
course, well known as are the linearizing substitutions. That they are
encountered in an unexpected context is not only a source of amuse-
ment but also of hope that such miracles, minor as they are, may happen
again.

Formula (7.40) was first discovered and proved by purely analytic
methods by N. Levinson [22], and & purely analytic proof of (7.43) was
given by L. Bers (unpublished) following a talk I gave at Columbia
University at a seminar conducted by D. V. and G. V. Chudnovsky.
L. Faddeev informed me that (7.43) was known to him and his colla-
borators, but while there is no reason to doubt this assertion I could
not find an unambiguous statement of the formula in the published
literature.




SECTION 8

Short Time Asymptotics
and High Eigenvalues
of the Schrodinger Equation

The Feynman-Kac formula ((6.9) with @ defined by (6.10)) allows
one to obtain various results concerning the Schrddinger equation

aty

e Vizg)y =— 2y

(8.1) %

on the mﬁmte line — co < 2 < oo,
For example if V(z) is such that

lim V(2) = + oo

>4 00

and V(z) is bounded from below (8.1) has only a discrete set of eigen-
values A, <A< 4; ... and it is quite easy to obtain the asymptotic behavior
of A, a8 n — oo. Although this has been repeatedly discussed in the lit-
erature it is so simple and intuitively appealing that I shall once again
summarize (briefly) the underlying idea.

It is well known that Q(z,|z; t) can be written in terms of the nor-
malized eigenfunctions and eigenvalues of (8.1) as follows:

(8.2) Qolo; 1) = 3 6xP (— A0 E)a(@0) pa(®)

ne=1
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and hence by (6.9) and using conditional probability

exp (— (z —2,)*/2¢
27t

(8.3) ) E {exp (——fV(a:., + (7)) dr|z, + @(f) = w)} =

= i exp (— }'n t) '/’n(wo)Wn(m) .

n=]

Setting « = x, and integrating both sides over # we get

oo t
(8.4) ’zlexp (; Anl) = \/——%‘B—n_t f dz E {exp (—-. f Vi(z + w(r))dt) z(t) = 0} .
—00 . 0

For ¢ — 0 it is intuitively obvious that

E {exp (— f V(z + 2(r) dt)|w(t) = o} ~ exp (— tV (@)
0

and one hould therefore expect that as ¢'—> 0 we have asymptotically

8 5) S exp (— Ant) ~ v.;__m f exp (—tV(2)) do

=1

provided, of coui-se, V satisfies certain conditions.
The right hand side of (8.5) can be written as

(8.6) 517—‘ ‘fexp A(—t(%f + V(w))) dz dp = % exp (— tA) dA(2)

N ;
where A4(A) is the area of the set in the (x, p) (phase) plane defined by

-the inequality
2
1’2- + V(@) <i.

The left hand side (of (8.5)) can be written as

fexp (—ti)dN(A)
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~where N(A) is the number of eigenvalues 4, do not exceed A i.e.

=>1.

<A

Thus (8.5) can be written in the form
fexp (—tA)dAN(A) ~ 2—17; exp (—tA)dA(4), t—>0,
which (under appropriate Tauberian conditions) should imply that
1 .
(8.7) NA)~—4A(4), A—>oco.
2n

If A = 4, we have
A(Ay) ~ 27em n —> oo
and we hould recognize that
A(4,) = 27tn

is precisely the quantization rule which Planck first introduced into
Physies.

Rigorous justifications of (8.5) and (8.7) are subtle and were first -
given by D. B. Ray [23] in 1954 (?); the intuitive background is however
completely transparent and closely related to considerations of Section 4.
Because only the limit ¢ — 0 is involved very little information about
the paths is used. In fact, all we use is that for small ¢ the path originating
at zero and terminating at zero can be replaced by the chord connecting

(0, 0) and (0, t), (i.e. & piece of the z-axis).

The standard way of deriving (8.7) based on the familiar WKB method
18 limited to the one-dimensional case while our argument is .quite general.

(®) Considerable simplification of some of Ray’s argu;nents was given recently
by Mr. van den Berg of the University of Groningen as I learned while attending
a conference on Statistical Mechanics on April 18, 1980 in Groningen, Holland.
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Introduction to the Donsker-Varadhan
Long Time Asymptotics

This and the following section is devoted to a brief introduction to
the recent work of Donsker and Varadhan (¢), which, in my opinion, is
the most interesting and novel development in the field of functional
integration sinee the ascendency of the subject in the early fifties.

The origin of the work goes back to a formula for the lowest eigen-
value of the Schrédinger equation.

From (6.9), (6.10) and (8.2) we get

(9.1) B {;xp (—- f V(=(z)) d_t)} »==fQ(0|w; t)do =
, 0 oo

=“§;exp (— 2.,,’5) Ya(0) | ¥alz) do

- 00

and therefore
' ¢
(9.2 A= ——‘l_l;m%log E,{exp (——— f V(x(z)) d )}

(since we are dealing with the infinite interval term by term integration
of (8.2) requires justification). - ' '

(*) Donsker and Varadhan developed their theory in a series of papers of
which [24] is the most useful as a start. ‘
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On the other hand we have by the well known Raleigh-Ritz principle

0

(9.3) A= ix;f f [(%,)z + V(m)zp”] dx

-— o0

the infimum being over functions y satisfying the cendition

9.4) [v@ a0 =

The question now arises how are (9.3) and (9.2) related and Donsker
suspected for a long time that lurking in the background was a kind of
steepest descent method in function space. This turns out to be entu'ely

right, but in a somewhat unexpected way.
. Let me first try to explain the underlying ideas on the simple case
of a finite state Markov chain with continuously varying time.

I shall agssume that the Markov chain is ergodic (°), and I shall de-
note by W(i) the stationary probabilities, i.e.

9.5)° | s W) Plj; ) = ).

i=1
Ergodicity means that
(9.6) Lim P(slj; t) = W(j)

(though less would suffice) and it implies the occupation time @(t) of
the state i (i.e. the time up to ¢ which z(z) spends in the state i) obeys

the (weak) ergodic theorem, i.e.

(9.7) lim Q;‘—t) = W)

t—>o0

in probability (actually the process also obeys the strong ergodic theorem).

(®) This is actually not really necessary in our simple case, but in the con-
tinuous version discussed in the next section ergodicity becomes important.
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Let us also note that

i=1 1‘._1

t
(9.8) E{exp( f V((v)) dr)} — i S Wiio)QUioli; 1) -
0

From (6.12) and (6.19) it follows at once that

[
(9.9) lim tllogE{exp(fV(w(r)) dr)} = Aumax(B + V),
e 0

where (7) is now our finite state Markov chain and A_ (R + V) the
maximum eigenvalue of the matrix R -+ V (which as a consequence of
a classical theorem of Frobenius-Perron must be real). It is clear that
(9.9) is the analogue of (9.2), but it will be more convenient to write
it in the ferm

i

(9.10) E{exp ([7(em) dr)} ~exp (tA_(R+TV)).
0
Now,
. ‘
f V(z(z))dr =1t i V(i) @‘t(t)
i=1
0
and hence
: ¢
E {exp (fV(w(r)) dr)} = f f exp (t‘g1 V(i)a‘) doy(atyy ..oy 0tn) ,
N 0 agt...ton=]
where

— ooty ..y o)
is the joint distribution of the relative occupation times

> 6,(?) O.(t)
T g
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If one thinks of doy(ay..., ®s) a8 Pyles, ..., %s)[/d0, (40, being the
surface element of «; + ... + «, = 1) then the asymptotic relation (9.10)
suggests that

(9.11) Pty oo, an) ~0xD (tL(ea, .. @m),  t—> oo,

and

(9.12) M B 4Y) = max { 3 0V + L, .y 22}
=1

the maximum being over non-negative «’s, a; > 0, ¢ = 1, 2, ..., n, whose
sum is one

Ea;=1.

i=1

The I-function .is the principal discovery of Donsker and Varadhan
and it depends only on the process x(t).

Actually (9.11) may be slightly misleading and the definition of the
I-function can be given differently. Roughly speaking one can proceed
as follows:

First partition the set

>0, i=1,2,..,n, Sa;=1

f=1

into two disjoint sets E, and F,, then in turn partition each of these
into two disjoint sets, etc. We thus obtain a sequence of partitions,
the sets of the n-th partition being labelled

\.

B

81,655...,8n )

& — 0,1.

We have, of course,

ete. .

81384503804y €1,83,...,€n

We also make sure that the mawximal diameter of the sets of the n-th
partition approaches zero as #n — oo,

DU R G . 8
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Given now a point (&, ..., &,) there is a sequence of sets F, (p standing
for a sequence of binary &’s) such that

E -FH,..

Ld

and whose intersection consists of the single point (&, ..., &,). We define
I(&, ..., &) by the formula

p—>o00 {—>00

' e
(9.13) I(&,y ...y &) =1lim lim sup(fda,(acl, ey ac,,)) .
E’
To see why this is so, note that

exp (t S V(i)) do (g, ., dn) =

t=1
&+t og=1

=Y |exp (t‘zla,V(i)) doy(ctyy «eey 0ty) ~ OXP (tApac(R +‘V))

Ep

where the E’s are the sets comprising the n-th partition.
Hence

n \1/¢
Amx(BR + V) = tlim ( f exp (t‘gl V(i)oz,) dog(ctyy ooy oc,.))

00

Ey,
where
fexp (t,él V(3) ac,) doe(0yy oory Og)
< Po

is the largest of the integrals 1 . Since diameters of sets comprising par-
titions of high order are sma]i

S Vi)

N

varies little over each such set and consequently the limit superior and
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limit inferior of

=1

( f exp (t 3 V(i)a,) doy(ogy .., oz,,))m

.
*

a8 t — oo differs little and in fact their difference goes to zero as the )
order of the partition goes to infinity.

Let us then take it for granted that there exists a function (e, ..., o,)
associated with the process z(r) such that

Aol B +V) = max | S V() + I, ...y )}
with 2,50 and

z¢¢=1.

$=1

How does one find 1%

First note that the eigenvector corresponding to the maximum eigen-
value of R 4V must have non-negative components. This follows at
once from the fact that for sufficiently large a the entries of R.+V 4 al
are non-negative and hence the principal eigenvector of ‘R V4 al
(which is the same as the principal eigenvector of R 4-V) has non-
negative components. Next if «,, u,, ..., 4, are all positive and if we set

(9.14) V@) = --3— i ”. U

§ fm=1

then the maximum eigenvalue is 0 (the components of the corresponding
eigenvector being u,, 4y, ..., %y).
Thus

n

9.15) 0= lpu(R+ V)= nax {— S % S gy (o, ey az,.)}

=1 Uy 5=1

for all u,, ..., 4, which are positive. It is now a small step to conclude
that

(9.16)  I(ogy ey ) =inf 3 X Sy,

>0 ¢=1 Y; j=1
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Finally one gets

9.17) (B +V)= ma.x{ S V@) +int $E3 r,,u}

(¢) li=1 u>0 {=1 Uy j=1

If the chain is time reversible i.e.
W (@) P(ilj; ?) = W(5)P(jli; 9)
it follows that
W@ ry = W(G)rs,

. _ VW@, VWG,
VWG VW

Setting .
Uy
W(4) =0
\/‘; (7) i
we see that =
zaz, z"'u‘“i—-’ 2811\/_\/_( )
im=1 Up j=1 (A
But

v, , Yy
% + v‘>2
(the equality occurring when v, = v,) and hence

™ inf z - Zr,,u, z_lsu\/&;\/&'_! .

w>0 =1 Uy 4=1

Finally in this case

(B4 V) = max{Z“fV(") + z su\/—\/—i}

=1

which upon setting
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becomes

(9.18) A (B+V)= max{ SVE@+ S s,,m,}
=1 $5=1

the maximum being over 2’s satisfying

(9.19) Sat=1.

i=1

Thus in & roundabout way we have arrived at the Raleigh-Ritz prin-
ciple for a special case of Markov chains (namely those whose infini-
tesimal generators are symmetrizeable).

What is however more interesting is that the Donsker-Varadhan
method led to (9.17) which in a slightly disguised way gives a variational
characterization of the maximum eigenvalue of an arbitrary matrix with
non-negative elements since every such matrix can be written in the
form R4V (with R an infinitesimal generator of a Markov process).
As far as I know such a characterization is new and thus a new theorem
about non-negative finite matrices was discovered. Direct proofs (i.e.
not using Markov processes and Donsker-Varadhan ideas) of (9.17) were
given (post factum!) by Paul Chernoff and by I. M. Singer and Don
Friedan (in response to my challenge in & lecture last January at I. M.
Singer’s Seminar in Berkeley).
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SECTION 10

Introduction to the Donsker-Varadhan

Theory Cont.in ued

Formally, the extension of the ideas presented in Section 9 to the
Wiener process is almost immediate.
We consider

(10.1) E{exp (—}V(w(r)) dt)}

and introduction the distribution function’
L(dz; z(7), 0<T<t) =

X time up to ¢ spent by 2(t) in dx

|

so that

[1 oo
[V (@) a4z = ¢[ V(o) L(d) .
0 — oo

One can now think of the integral (10.1) over the space of paths as
the integral of

exp (— th(w)F(dw))
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over the space of distribution functions F which is the analogue of the set

n
2a¢=1, d¢>0, ’i=1,2, ey M

i=1

of the preceding section.
It is harder to think of the analogue of oy(c,, ..., x,) but the anal-
ogue of

jdﬂt(“n veey On)
E .

is clearly the probability that L.(dxr) belongs to a set E of distribution
functions.

If one closes one’s eyes and waves one’s hands one can convince
oneself that there is a functional I(#) such that

(10.2) | A= sup {— f V(@) F(dx) + I(F)}

and that even if E, is a sequence of sets (in space of distribution func-
tions) such that

E,HE,>..
and whose intersection contains the single distribution function ¥ then

(10.3) I(F) =lim limsup (P{L.(dz)e B,})".

p—>00 ¢—>00

Once we grant the existence of the I-functional such that (10.2)
holds we can proceed as in Section 9 and consider the class of V’s given
by the formula

Play=— L %)

u(x)

with w(z) > 0.
We then have for every u(z)> 0

0 =1 =sup {—% f w0 plas) + I(F)}

-— 00
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and as before

(10.4) I(F)=%inf f V@) gy

Assuming (optimistically) that we may restrict ourselves to F’s which
have a differentiable derivative f which also behaves well at 4 oo we

have

-0

(-4

- T () —r e

—oo

Sinee >0 (being the derivative of a non-decreasing functlon F)w
have (wherever f > 0)

) () 1@ o >3

%(z) w@)
the equality occurring only when

W(2) _1f@)
we) 2 f@)

-3/

Finally,

con-*

N
and (by 10.2)

(10.5) ‘ A, = —sup {—fV(w)f(m) dx — % f I da;} =
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The sup and the inf are taken over all f’s such that

>0  and ffdm:l.

Setting

we obtain the Raleigh-Ritz principle in the form (9.3).
To tighten up this argument and to apply the theory to more com-
plicated functionals of L,(dx) than the simple linear functional

fm)L,uw)

is not at all easy and, in fact, the complete theory is directly applicable
only to ergodic processes (the Wiener process is clearly not ergodic).
Still the underlying ideas are simple and elegant, and they are attracting
more and more attention. There is therefore little doubt that much
simplification of the apparatus which at present depends on rather subtle
estimates will be forthcoming.
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