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Numerical Integration: The 
Canonical Monte Carlo Application
Numerical integration is a simple problem to 
explain and thoroughly analyze

Deterministic methods
Monte Carlo (stochastic methods)

Integration is expectation: one can view all 
Monte Carlo as integration in appropriate 
setting
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Numerical Integration (Cont.)
Methods for approximating 
definite integrals

Rectangle Rule
Trapezoidal Rule

Divide the curve into N strips of 
thickness h=(b-a)/N
Sum the area of each trip

Approximate to that of a 
trapezium

Simpson’s Rule
Calculate piecewise quadratic 
approximation instead



General Principles of Monte CarloProf. Dr. Michael Mascagni: Advanced Monte Carlo Methods Slide 4 of 61 

The Monte Carlo Method
General Principles

Every Monte Carlo computation that leads to 
quantitative results may be regarded as estimating 
the value of a multiple integral in the appropriate 
setting

Efficiency
Definition

Suppose there are two Monte Carlo methods
Method 1: n1 units of computing time, σ1

2

Method 2: n2 units of computing time, σ2
2

Methods comparison: 2
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Monte Carlo Integration
Consider a simple integral

Definition of expectation of a function on random 
variable η

If η is uniformly distributed, then
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Crude Monte Carlo
Crude Monte Carlo

If ξ1, …, ξn are independent random numbers
Uniformly distributed 

then fi =f(ξi ) are random variates with expectation θ

is an unbiased estimator of θ
The variance is

The standard error is
σ/n1/2
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Hit-or-Miss Monte Carlo
Suppose 0 ≤ f(x) ≤ 1 when 0 ≤ x ≤ 1
Main idea

draw a curve y=f(x) in the unit square 0 ≤ x, y≤ 1
is the proportion of the are of the square beneath 
the curve
or we can write

y  f(x) if 1            
yf(x) if 
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Analysis of Hit-or-Miss Monte Carlo

θ can be estimated as the a double integral

The estimator of hit-or-miss Monte Carlo
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Hit-or-Miss Monte Carlo (Cont.)
Hit-or-Miss Monte Carlo

We take n points at random in the unit square, and count the 
proportion of them which lie below the curve y=f(x)
The points are either in or out of the area below the curve

The probability that a point lies under the curve is θ

The Hit-or-Miss Monte Carlo is a Bernoulli trial
the estimator of Hit-or-Miss Monte Carlo is binomial 
distributed
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Binomial Distribution Revisited
Binomial Distribution

Discrete probability distribution Pp(n|N) of obtaining exactly n 
successes out of N Bernoulli trials
Each Bernoulli trial is true with probability p and false with 
probability q=1-p

Mean: Np; Variance: N(1-p)p

= =



General Principles of Monte CarloProf. Dr. Michael Mascagni: Advanced Monte Carlo Methods Slide 11 of 61 

Comparison of Hit-or-Miss Monte 
Carlo and Crude Monte Carlo

Standard error of Hit-or-Miss Monte Carlo

Standard error of Crude Monte Carlo

Hit-or-Miss Monte Carlo is always worse than Crude Monte Carlo
Why?
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Comparison of Hit-or-Miss Monte 
Carlo and Crude Monte Carlo (Cont.)

Note: all of our integrands are in L2 as they have finite 
variance
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Why Hit-or-Miss Monte Carlo is 
worse?

Fact
The hit-or-miss to crude sampling is equivalent to 
replacing g(x, ξ) by its expectation f(x)
The y variable in g(x,y) is a random variable

Leads to uncertainty
Places extra uncertainty in the final results
Can be replace by exact value
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General Principle of Monte Carlo
If, at any point of a Monte Carlo calculation, 
we can replace an estimate by an exact value, 
we shall replace an estimate by an exact value, 
we shall reduce the sampling error in the final 
result
Mark Kac: “You use Monte Carlo until you 
understand the problem”
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Curse of Dimensionality
Curse of Dimensionality

If one needs n points to achieve certain accuracy for an 1-D
integral, to achieve the same accuracy one needs ns points for s-
dimensional integral

Complexity of high-dimensional integration (tensor 
product rules

Rectangle Rule
Trapezoidal Rule
Simpson’s Rule
Convergence Rate

O(n-α/s)
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High-Dimensional Monte Carlo 
Integration

Consider the following integral

Definition of expectation of a function on random variable η
that is uniformly distributed

Standard error
Independent of Dimension
σ/n1/2
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Confidence Interval
Estimator for the standard error

Confidence Intervals
66%:

95%:

99%:
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Variance Reduction Methods
Variance Reduction Techniques

Employs an alternative estimator
Unbiased
More deterministic
Yields a smaller variance

Methods
Stratified Sampling
Importance Sampling
Control Variates
Antithetic Variates
Regression Methods
Orthonormal Functions
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Stratified Sampling
Idea

Break the range of integration into several pieces
Apply crude Monte Carlo sampling to each piece separately

Analysis of Stratified Sampling
Estimator
Variance

Conclusion
If the stratification is well carried out, the variance of 
stratified sampling will be smaller than crude Monte Carlo
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Stratified Sampling

First we divide the integration interval into k
subintervals: 
The estimator is then:
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Stratified Sampling (Cont.)
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Stratified Sampling (Cont.)
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Stratified Sampling (Cont.)
This variance may be less than that from 

crude Monte Carlo with good stratification
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Stratified Sampling (Cont.)
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Importance Sampling
Idea

Concentrate the distribution of the sample points in the parts of the 
interval that are of most importance instead of spreading them out 
evenly

Importance Sampling

where g and G satisfy

G(x) is a distribution function

∫ ∫∫ ===
1

0

1

0

1

0

)(
)(
)()(

)(
)()( xdG

xg
xfdxxg

xg
xfdxxfθ

∫=
x

dyygxG
0

)()( 1)()1(
1

0

== ∫ dyygG



General Principles of Monte CarloProf. Dr. Michael Mascagni: Advanced Monte Carlo Methods Slide 26 of 61 

Importance Sampling
Variance

How to select a good sampling function?
How about g=cf?
g must be simple enough for us to know its integral 
theoretically.
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Control Variates
Control Variates

φ(x) is the control variate with known integral
Estimator

t-t’+θ’ is the unbiased estimator
θ’ is the first (known) integral

Variance
var(t-t’+θ’)=var(t)+var(t’)-2cov(t,t’)
if 2cov(t,t’)<var(t’), then the variance is smaller than crude Monte 
Carlo

t and t’ should have strong positive correlation

∫∫ −+=
1

0

1

0

)]()([)( dxxxfdxx φφθ

∑∑ ==
i

i
i

i n
tf

n
t )(1'),(1 ξφξ



General Principles of Monte CarloProf. Dr. Michael Mascagni: Advanced Monte Carlo Methods Slide 28 of 61 

Antithetic Variates
Main idea

Select a second estimate that has a strong negative 
correlation with the original estimator
t’’ has the same expectation of t

Estimator
[t+t’’]/2 is an unbiased estimator of θ
var([t+t’’]/2)=var(t)/4+var(t’’)/4+cov(t,t’’)/2

Commonly used antithetic variate
(t+t’’)/2=f(ξ)/2+ f(1-ξ)/2
If f is a monotone function, f(ξ) and f(1-ξ) are negatively 
correlated
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Antithetic Variates (Cont.)
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Antithetic Variates (Cont.)

General definition of “Antithetic Variates”: Any 
method that introduces a set of estimators that 
mutually compensate for the others’ variance
Theorem states any unbiased combination of 
variables can be rearranged into a linear combination 
that achieves the minimal possible variance
Such combinations invariably are antithetic
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Antithetic Variates (Cont.)

General definition of “Antithetic Variates”: Any 
method that introduces a set of estimators that 
mutually compensate for the others’ variance
Theorem states any unbiased combination of 
variables can be rearranged into a linear combination 
that achieves the minimal possible variance
Some examples
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Antithetic Variates: Examples
Consider examples from stratification (I)
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Antithetic Variates: Examples
Consider examples from stratification (II)
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Antithetic Variates: Examples (Cont.)
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Antithetic Variates: Examples (Cont.)
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Antithetic Variates: Examples (Cont.)
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Antithetic Variates: Examples (Cont.)



General Principles of Monte CarloProf. Dr. Michael Mascagni: Advanced Monte Carlo Methods Slide 38 of 61 

Orthonormal Functions
General method of Monte Carlo integration 
based on orthonormal functions (Ermakov & 
Zolotukhin)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)

An simple, 1-D example, n=0
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
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Orthonormal Functions (Cont.)
The formulae (quart) and (quint) exactly treat 
all quartic and quintic polynomials exactly
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Regression
Variation in Raw Experimental Data

Two parts
The first part consists of an entirely random variation

We may do little about it
The second part arises because the observations are influenced by 
certain concomitant conditions of the experiment

We may record these condition
Determine how they influence the raw observations

Regression
Calculate (estimate) the second part
Subtract it out from the reckoning
Leave only those variations in the observations which are not due to 
the concomitant conditions
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Regression Model
Model

The random observations ηi (i=1, 2, … n) are associated with a set 
of concomitant numbers xij (j=1,2, .., p)

xij describe the experimental condition under which the 
observations ηi was taken
ηi is the sum of a purely random component δi and a linear 
combination               of the concomitant numbers 
βi are called regression coefficient

The minimum-variance unbiased linear estimator of βi is
b=(X’V-1X)-1X’V-1 η
X: nxp matrix xij

V: nxn variance covariance matrix of δi

∑
j

ijj xβ
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Regression Methods
Regression Method

Suppose we have several unknown estimates θ1, θ2, …, θp
A set of estimators t1, t2, …, tn

Eti=xi1 θ1+xi2 θ2 + … + xip θp (i=1, 2, …, n)
Et=Xθ
xij are a set of known constants

Minimum-variance unbiased linear estimator of θ={θ1, θ2, …, 
θp}

t*=(X’V-1X)-1X’V-1 t
V is unknown
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Regression Methods (Cont.)

Consider an alternative estimator which uses 
an arbitrary V0

t0*=(X’V0
-1X)-1X’V0

-1 t
Et0*= θ
However, t0* is not a minimum-variance estimator

If V0 is close to V, then t0* will have a very 
nearly minimum variance
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Regression Method in Practice
Regression Method in Practice

Calculate N independent sets of estimates t1, t2, …, tn

Each result is denoted by t1k, t2k, …, tnk (k=1,2,…N)
vij can be estimated by 

Then, the estimator of θ is
t0*=(X’V0

-1X)-1X’V0
-1
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Example of Regression 
Methods
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Buffon Needle Problem Revisited
If we through a needle of length L onto a 
square grid with Δx =Δy = 1 then Mantel gives 
a quadratic estimator for the Buffon Needle
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Comparison of the Variance 
Reduction Methods

Definitions



General Principles of Monte CarloProf. Dr. Michael Mascagni: Advanced Monte Carlo Methods Slide 60 of 61 

Comparison of the Variance 
Reduction Methods (Cont.)

4901/2985Antithetic (II)*

311/262Antithetic Variate

301/260.4Control Var., ø(x)=x

101/329.9Importance, g(x)=x

101/1.313Stratified, 4 strata

0.341/10.34Hit-or-miss

EfficiencyLabor RatioVar. RatioMethod Used
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Comparison of the Variance 
Reduction Methods (Cont.)

2400001/3720000 Orthonormal

4600001/62950000Antithetic (II)* special

2500001/163980000Antithetic (II)* 8-way

310001/8249000Antithetic (II)* 4-way

39001/415600Antithetic (II)* 2-way

EfficiencyLabor RatioVar. RatioMethod


