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1. The main paradigms

The purpose of this chapter is to review the main methods for generating random vari-
ables, vectors and processes. Classical workhorses such as the inversion method, the rejection
method and table methods are reviewed in section 1. In section 2, we discuss the expected
time complexity of various algorithms, and give a few examples of the design of generators that
are uniformly fast over entire families of distributions. In section 3, we develop a few universal
generators, such as generators for all log concave distributions on the real line. Section 4 deals
with random variate generation when distributions are indirectly specified, e.g, via Fourier coef-
ficients, characteristic functions, the moments, the moment generating function, distributional
identities, infinite series or Kolmogorov measures. Random processes are briefly touched upon
in section 5. Finally, the latest developments in Markov chain methods are discussed in section
6. Some of this work grew from Devroye (1986a), and we are carefully documenting work that
was done since 1986. More recent references can be found in the book by Hörmann, Leydold
and Derflinger (2004).

Non-uniform random variate generation is concerned with the generation of random
variables with certain distributions. Such random variables are often discrete, taking values in
a countable set, or absolutely continuous, and thus described by a density. The methods used
for generating them depend upon the computational model one is working with, and upon the
demands on the part of the output.

For example, in a ram (random access memory) model, one accepts that real numbers
can be stored and operated upon (compared, added, multiplied, and so forth) in one time unit.
Furthermore, this model assumes that a source capable of producing an i.i.d. (independent
identically distributed) sequence of uniform [0, 1] random variables is available. This model is of
course unrealistic, but designing random variate generators based on it has several advantages:
first of all, it allows one to disconnect the theory of non-uniform random variate generation from
that of uniform random variate generation, and secondly, it permits one to plan for the future,
as more powerful computers will be developed that permit ever better approximations of the
model. Algorithms designed under finite approximation limitations will have to be redesigned
when the next generation of computers arrives.

For the generation of discrete or integer-valued random variables, which includes the vast
area of the generation of random combinatorial structures, one can adhere to a clean model, the
pure bit model, in which each bit operation takes one time unit, and storage can be reported in
terms of bits. Typically, one now assumes that an i.i.d. sequence of independent perfect bits is
available. In this model, an elegant information-theoretic theory can be derived. For example,
Knuth and Yao (1976) showed that to generate a random integer X described by the probability
distribution

� {X = n} = pn, n ≥ 1,

any method must use an expected number of bits greater than the binary entropy of the distri-
bution, ∑

n

pn log2(1/pn).

They also showed how to construct tree-based generators that can be implemented as finite or
infinite automata to come within three bits of this lower bound for any distribution. While
this theory is elegant and theoretically important, it is somewhat impractical to have to worry
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about the individual bits in the binary expansions of the pn’s, so that we will, even for discrete
distributions, consider only the ram model. Noteworthy is that attempts have been made (see,
e.g., Flajolet and Saheb, 1986) to extend the pure bit model to obtain approximate algorithms
for random variables with densities.

1.1. The inversion method. For a univariate random variable, the inversion method is
theoretically applicable: given the distribution function F , and its inverse F inv, we generate a
random variate X with that distribution as F inv(U), where U is a uniform [0, 1] random variable.
This is the method of choice when the inverse is readily computable. For example, a standard
exponential random variable (which has density e−x, x > 0), can be generated as log(1/U). The
following table gives some further examples.

Name Density Distribution function Random variate

Exponential e−x, x > 0 1− e−x log(1/U)

Weibull (a), a > 0 axa−1e−x
a

, x > 0 1− e−xa (log(1/U))1/a

Gumbel e−xe−e
−x

e−e
−x − log log(1/U)

Logistic 1
2+ex+e−x

1
1+e−x − log((1− U)/U)

Cauchy 1
π(1+x2)

1/2 + (1/π) arctanx tan(πU)

Pareto (a), a > 0 a
xa+1 , x > 1 1− 1/xa 1/U 1/a

Table 1: Some densities with distribution functions that are explicitly invertible.

The fact that there is a monotone relationship between U and X has interesting ben-
efits in the area of coupling and variance reduction. In simulation, one sometimes requires
two random variates from the same distribution that are maximally anti-correlated. This can
be achieved by generating the pair (F inv(U), F inv(1 − U)). In coupling, one has two distri-
bution functions F and G and a pair of (possibly dependent) random variates (X,Y ) with
these marginal distribution functions is needed so that some appropriate metric measuring dis-
tance between them is minimized. For example, the Wasserstein metric d2(F,G) is the minimal

value over all couplings of (X,Y ) of
√ � {(X − Y )2}. That minimal coupling occurs when

(X,Y ) = (F inv(U), Ginv(U)) (see, e.g., Rachev, 1991). Finally, if we wish to simulate the max-
imum M of n i.i.d. random variables, each distributed as X = F inv(U), then noting that the
maximum of n i.i.d. uniform [0, 1] random variables is distributed as U 1/n, we see that M can
be simulated as F inv(U 1/n).
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1.2. Simple transformations. We call a simple transformation one that uses functions and
operators that are routinely available in standard libraries, such as the trigonometric, exponen-
tial and logarithmic functions. For example, the inverse of the normal and stable distribution
functions cannot be computed using simple transformations of one uniform random variate. For
future reference, the standard normal density is given by exp(−x2/2)/

√
2π. However, the next

step is to look at simple transformations of a k uniform [0, 1] random variates, where k is either a
small fixed integer, or a random integer with a small mean. It is remarkable that one can obtain
the normal and indeed all stable distributions using simple transformations with k = 2. In the
Box-Müller method (Box and Müller, 1958), a pair of independent standard normal random
variates is obtained by setting

(X,Y ) =
(√

log(1/U1) cos(2πU2),
√

log(1/U1) sin(2πU2)
)
,

where U1, U2 are independent uniform [0, 1] random variates. For the computational perfection-
ists, we note that the random cosine can be avoided: just generate a random point in the unit
circle by rejection from the enclosing square (more about that later), and then normalize it so
that it is of unit length. Its first component is distributed as a random cosine.

There are many other examples that involve the use of a random cosine, and for this
reason, they are called polar methods. We recall that the beta (a, b) density is

xa−1(1− x)b−1

B(a, b)
, 0 ≤ x ≤ 1,

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b). A symmetric beta (a, a) random variate may be generated
as

1

2

(
1 +

√
1− U

2
2a−1

1 cos(2πU2)

)

(Ulrich, 1984), where a ≥ 1/2. Devroye (1996) provided a recipe valid for all a > 0:

1

2


1 +

S√
1 + 1(

U
− 1
a

1 −1

)
cos2(2πU2)


 ,

where S is a random sign. Perhaps the most striking result of this kind is due to Bailey (1994),
who showed that √

a
(
U
− 2
a

1 − 1
)

cos(2πU2)

has the Student t density (invented by William S. Gosset in 1908) with parameter a > 0:

1
√
aB(a/2, 1/2)

(
1 + x2

a

) a+1
2

, x ∈ �
.

Until Bailey’s paper, only rather inconvenient rejection methods were available for the t density.

There are many random variables that can be represented as ψ(U)Eα, where ψ is a
function, U is uniform [0, 1], α is a real number, and E is an independent exponential random
variable. These lead to simple algorithms for a host of useful yet tricky distributions. A random
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variable Sα,β with characteristic function

ϕ(t) = exp

(
−|t|α − iπβ(α− 2

�
α>1) sign(t)

2

)

is said to be stable with parameters α ∈ (0, 2] and |β| ≤ 1. Its parameter α determines the size
of its tail. Using integral representations of distribution functions, Kanter (1975) showed that
for α < 1, Sα,1 is distributed as

ψ(U)E1− 1
α ,

where

ψ(u) =

(
sin(απu)

sin(πu)

) 1
α

×
(

sin((1− α)πu)

sin(απu)

) 1−α
α

.

For general α, β, Chambers, Mallows and Stuck (1976) showed that it suffices to generate it as

ψ(U − 1/2)E1− 1
α ,

where

ψ(u) =

(
cos(π((α− 1)u+ αθ)/2)

cos(πu/2)

) 1
α

×
(

sin(πα(u+ θ)/2)

cos(π((α− 1)u+ αθ)/2)

)
.

Zolotarev (1959, 1966, 1981, 1986) has additional representations and a thorough discussion
on these families of distributions. The paper by Devroye (1990) contains other examples with
k = 3, including

Sα,0E
1
α ,

which has the so-called Linnik distribution (Linnik, 1962) with characteristic function

ϕ(t) =
1

1 + |t|α , 0 < α ≤ 2.

See also Kotz and Ostrovskii (1996). It also shows that

Sα,1E
1
α ,

has the Mittag-Leffler distribution with characteristic function

ϕ(t) =
1

1 + (−it)α , 0 < α ≤ 1.

Despite these successes, some distributions seem hard to treat with any k-simple trans-
formation. For example, to date, we do not know how to generate a gamma random variate
(i.e., a variate with density xa−1e−x/Γ(a) on (0,∞)) with arbitrary parameter a > 0 using only
a fixed finite number k of uniform random variates and simple transformations.
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1.3. Simple methods for multivariate distributions. For random vectors (X1, . . . ,Xd),
the inversion method proceeds by peeling off the dimensions. That is, we first generate Xd from
its marginal distribution, then Xd−1 given Xd, using a conditional distribution, and so forth.
There is of course no reason to employ conditioning in that rigid manner. For example, if a
distribution has a density that is a function of

∑
i x

2
i only, then it is advantageous to find the

marginal of
∑

iX
2
i , generate a random variate from this marginal distribution, and then generate

a random variate uniformly distributed on the surface of the ball with the given random radius.
And to generate a uniformly distributed point on the surface of the unit ball, just generate d
i.i.d. standard normal random variates X1, . . . ,Xd, and normalize the length to one.

Sometimes, one wishes to generate random vectors with a certain dependence structure.
This can be captured by various measures of correlation. For a survey of random variate
generators in this vein, see Devroye (1986a). An interesting new area of research is related to
the development of generators with a given copula structure. The copula of two uniform [0, 1]
random variables X and Y is given by the joint distribution function

C(x, y) =
� {X ≤ x, Y ≤ y}.

We say that two arbitrary continuous random variables X and Y (with distribution functions
F and G, respectively) have the copula structure given by C if F (X) and G(Y ) (which are both
uniform [0, 1]) have joint distribution function C. Thus, we need methods for generating random
vectors with distribution function C. Various interesting families of copulas and some seedlings
of algorithms, are given in Nelsen’s book (1999) and in Chapter 5 of the present volume.

1.4. Inversion for integer-valued random variables. For integer-valued random variables
with

� {X = n} = pn, n ≥ 0, the inversion method is always applicable:

X ← 0
Generate U uniform [0, 1]
S ← p0 (S holds the partial sums of the pn’s)
while U > S do

X ← X + 1, S ← S + pX
return X

The expected number of steps here is
� {X + 1}. Improvements are possible by using data

structures that permit one to invert more quickly. When there are only a finite number of
values, a binary search tree may help. Here the leaves correspond to various outcomes for X,
and the internal nodes are there to guide the search by comparing U with appropriately picked
thresholds. If the cost of setting up this tree is warranted, then one could always permute the
leaves to make this into a Huffman tree for the weights pn (Huffman, 1952), which insures that
the expected time to find a leaf is not more than one plus the binary entropy,

∑

n

pn log2(1/pn).

In any case, this value does not exceed log2N , where N is the number of possible values X can
take.

Another way of organizing this is to store an array with the partial sums p1, p1 +
p2, . . . , p1 + · · · + pN = 1, and to search for the interval in which U falls by binary search,





which would take O(log2 N) time. As mentioned above, the Huffman tree is optimal, and thus
better, but requires more work to set up.

1.5. Guide tables. Hash tables, or guide tables (Chen and Asau, 1974), have been used to
accelerate the inversion even further. Given the size of the universe, N , we create a hash table
with N entries, and store in the i-th entry the value of X if U were i/N , 0 ≤ i < N . Then U
gets “hashed” to Z = bNUc. Then return to the table of partial sums and start the search at
p1 + · · · + pZ . It is easy to show that the expected time, table set-up excluded, is bounded by
a constant uniformly over all distributions on N values. The table can be constructed in O(N)
time.

Walker (1974, 1977) showed that one can construct in time O(N) a table (qi, ri), 1 ≤ i ≤
N , such that the following method works: pick a uniform integer Z from 1, 2, . . . , N . Generate
a uniform [0, 1] random variate U . If U ≤ qZ , then return Z, else return rZ . The values ri are
called the aliases, and the method is now known as the alias method. If a distribution is fixed
once and for all, and N is such that the storage of the table is of no concern, then the alias
method is difficult to beat.

1.6. Mixture methods. Densities that can be written as mixtures
∑

n

pnfn(x),

with nonnegative weights pn summing to one, are trivially dealt with by first generating a
random index Z with discrete distribution {pn}, and then generating a random variate with
density fZ . They do, therefore, not require any special treatment.

Sometimes, we have more intricate mixtures, when, e.g.,

f(x) =
� {gZ(x)},

where Z is a random variable, and gZ is a density in which Z is a parameter. Clearly, it suffices
to generate Z first and then to generate a random variate from gZ . The textbook example here
is N/

√
Ga, where N is standard normal, and Ga is a gamma random variable with parameter a,

independent of N . The ratio has the Student t distribution with parameter a. Other examples
relevant for further on are U/V , a ratio of two i.i.d. uniform [0, 1] random variates, which
has density (1/2) min(1, 1/x2), and UV , which has density log(1/x) on (0, 1]. Gamma random

variates of parameter less than one are often cumbersome, but we know that Ga
L
= U 1/aGa+1

where the notation is as above and all variates are independent on the right. Finally, a Cauchy
random variate can be obtained as N1/N2, the ratio of two independent standard normal random
variates.

Mixtures are also useful in discrete settings. For example, the negative binomial distri-
bution (the number of failures before the n-th success) with parameters (n, p), n ≥ 1, p ∈ (0, 1),
is given by the probabilities

pk =

(
n+ k − 1

k

)
(1− p)kpn, k ≥ 0.

One can check that this can be generated as a Poisson (Y ) random variate where Y in turn is
(1− p)/p times a gamma (n) random variate. A special case is the geometric (p) distribution,





which is negative binomial (1, p). Here, though, it is better to use the inversion method which
can be made explicit by the truncation operator: it suffices to take

blog1−p Uc,
where U is uniform [0, 1].

1.7. The rejection method. Von Neumann (1951) proposed the rejection method, which
uses the notion of a dominating measure. Let X have density f on

�
d. Let g be another density

with the property that for some finite constant c ≥ 1, called the rejection constant,

f(x) ≤ cg(x), x ∈ � d.

For any nonnegative integrable function h on
� d, define the body of h as Bh = {(x, y) : x ∈

�
d, 0 ≤ y ≤ h(x)}. Note that if (X,Y ) is uniformly distributed on Bh, then X has density

proportional to h. Vice versa, if X has density proportional to h, then (X,Uh(X)), where U is
uniform [0, 1] and independent of X, is uniformly distributed on Bh. These facts can be used
to show the validity of the rejection method:

repeat

Generate U uniformly on [0, 1]
Generate X with density g

until Ucg(X) ≤ f(X)
return X

The expected number of iterations before halting is c, so the rejection constant must be kept
small. This method requires some analytic work, notably to determine c, but one attractive fea-
ture is that we only need the ratio f(x)/(cg(x)), and thus, cumbersome normalization constants
often cancel out.

1.8. Rejection: a simple example. The rejection principle also applies in the discrete
setting, so a few examples follow to illustrate its use in all settings. We begin with the standard
normal density. The start is an inequality such as

e−x
2/2 ≤ eα2/2−α|x|.

The area under the dominating curve is eα
2/2 × 2/α, which is minimized for α = 1. Generating

a random variate with the Laplace density e−|x| can be done either as SE, where S is a random
sign, and E is exponential, or as E1 −E2, a difference of two independent exponential random
variables. The rejection algorithm thus reads:





repeat

Generate U uniformly on [0, 1]
Generate X with with the Laplace density

until Ue1/2−|X| ≤ e−X2/2

return X

However, taking logarithms in the last condition, and noting that log(1/U) is expo-
nential, we can tighten the code using a random sign S, and two independent exponentials,
E1, E2:

Generate a random sign S
repeat

Generate E1, E2

until 2E2 > (E1 − 1)2

return X ← SE1

It is easy to verify that the rejection constant (the expected number of iterations) is
√

2e/π ≈
1.35.

1.9. Rejection: a more advanced example. Assume that f is a monotonically decreasing
density on [0, 1], and define M = f(0). We could apply rejection with M as a bound:

repeat

Generate U uniformly on [0, 1]
Generate X uniformly on [0, 1]

until UM ≤ f(X)
return X

The expected number of iterations is M . However, the algorithm does not make any use of the
monotonicity. As we know that f(x) ≤ min(M, 1/x), and the integral of the upper bound (or
the rejection constant) is 1 + logM , we can exponentially speed up the performance by basing
our rejection on the latter bound. It is a simple exercise to show that the indefinite integral of
the upper bound is {

Mx (0 ≤ x ≤ 1/M)
1 + log(Mx) (1/M ≤ x ≤ 1).

A random variate can easily be generated by inversion of a uniform [0, 1] random variate U : if
U ≤ 1/(1 + logM), return (1 + logM)U/M , else return (1/M) exp((1 + logM)U − 1). Thus,
we have the improved algorithm:





repeat

Generate U, V independently and uniformly on [0, 1].
Set W = V (1 + logM).
If W ≤ 1 then set X ←W/M

else set X ← exp(WU − 1)/M
until U min(M, 1/X) ≤ f(X)
return X

It is possible to beat even this either by spending more time setting up (a one-time cost) or
by using additional information on the density. In the former case, partition [0, 1] into k equal
intervals, and invest once in the calculation of f(i/k), 0 ≤ i < k. Then the histogram function
of height f(i/k) on [i/k, (i + 1)/k) dominates f and can be used for rejection purposes. This

requires the bin probabilities pi = f(i/k)/
∑k−1

j=0 f(j/k). Rejection can proceed as follows:

repeat

Generate U, V independently and uniformly on [0, 1]
Generate Z on {0, 1, . . . , k − 1} according to the probabilities {pi}.
Set X = (Z + V )/k.

until Uf(Z/k) ≤ f(X)
return X

Here the area under the dominating curve is at most one plus the area sandwiched between f and
it. By shifting that area over to the left, bin by bin, one can bound it further by 1+M/k. Thus,
we can adjust k to reduce the rejection constant at will. For example, a good choice would
be k = dMe. The expected time per variate would be O(1) if we can generate the random
integer Z in time O(1). This can be done, but only at the expense of the set-up of a table
of size k (see above). In one shot situations, this is a prohibitive expense. In Devroye (1986),
methods based on partitioning the density in slabs are called strip methods. Early papers in this
direction include Ahrens and Dieter (1989), Ahrens (1993, 1995), Marsaglia and Tsang (1984)
and Marsaglia, Maclaren and Bray (1964).

Assume next that we also know the mean µ of f . Then, even dropping the requirement
that f be supported on [0, 1], we have

µ =

∫ ∞

0

yf(y)dy ≥ f(x)

∫ x

0

ydy = f(x)x2/2.

Hence,

f(x) ≤ min

(
M,

2µ

x2

)
.

The integral of the upper bound from 0 to x is
{
Mx 0 ≤ x <

√
2µ/M

2
√

2µM − 2µ
x

x ≥
√

2µ/M .

The area under the upper bound is therefore 2
√

2µM . To generate a random variate with
density proportional to the upper bound, we can proceed in various ways, but it is easy to check
that

√
2µ/MU1/U2 fits the bill, where U1, U2 are independent uniform [0, 1] random variables.

Thus, we summarize:





repeat

Generate U, V,W independently and uniformly on [0, 1].

Set X =
√

2µ/MV/W.

until UM min (1, (W/V )2) ≤ f(X)
return X

This example illustrates the development of universal generators, valid for large classes
of densities, as a function of just a few parameters. The reader will be able to generalize the
above example to unimodal densities with known r-th moment about the mode. The example
given above applies with trivial modifications to all unimodal densities, and the expected time
is bounded by a constant times

√
f(m)

� {|X −m|}, where m is the mode. For example, the
gamma density with parameter a ≥ 1 has mean a, and mode at a − 1, with f(a− 1) ≤ C/

√
a

for some constant C, and
� {|X− (a−1)|} ≤ C ′

√
a for another constant C ′. Thus, the expected

time taken by our universal algorithm takes expected time bounded by a constant, uniformly
over a ≥ 1. We say that the algorithm is uniformly fast over this class of densities.

1.10. The alternating series method. To apply the rejection method, we do not really need
to know the ratio f(x)/(cg(x)) exactly. It suffices that we have an approximation φn(x) that
tends, as n → ∞, to f(x)/(cg(x)), and for which we know a monotone error bound εn(x) ↓ 0.
In that case, we let n increase until for the first time, either

U ≤ φn(X)− εn(X)

(in which case we accept X), or

U ≥ φn(X) + εn(X)

(in which case we reject X). Equivalently, we have computable bounds ξn(x) and ψn(x) with
the property that ξn(x) ↑ f(x)/(cg(x)) and ψn(x) ↓ f(x)/(cg(x)) as n → ∞. This approach
is useful when the precise computation of f is impossible, e.g., when f is known as infinite
series or when f can never be computed exactly using only finitely many resources. It was first
developed for the Kolmogorov-Smirnov limit distribution in Devroye (1981a). For another use
of this idea, see Keane and O’Brien’s Bernoulli factory (1994).
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repeat

Generate U uniformly on [0, 1]
Generate X with density g
Set n = 0
repeat n← n+ 1 until U ≤ ξn(X) or U ≥ ψn(X)

until U ≤ ξn(X)
return X

The expected number of iterations in the outer loop is still c, as in the rejection method.
However, to take the inner loop into account, let N be the largest index n attained in the inner
loop. Note that N > t implies that U ∈ [ξt(X), ψt(X)]. Thus,

� {N |X} =
∞∑

t=0

� {N > t|X} ≤
∞∑

t=0

(ψt(X)− ξt(X)).

Unconditioning,

� {N} ≤
∞∑

t=0

� {ψt(X)− ξt(X)}.

To be finite, this requires a rate of decrease in the approximation error that is at least 1/t. One
must also take into account that the computation of ξt and ψt may also grow with t. The bound
above is indicative of the expected complexity only when, say, ξt can be computed from ξt−1 in
one time unit.

We cannot stress strongly enough how important the alternating series method is, as
it frees us from having to compute f exactly. It is indeed the key to the solution of a host of
difficult non-uniform random variate generation problems.

2. Uniformly bounded times

If F is a class of distributions, it is useful to have generators for which the expected time
is uniformly bounded over F . In the case of the rejection method, this often (but not always,
see, e.g., the alternating series method) means bounding the rejection constant uniformly. For
example, pre-1970 papers routinely recommended generating gamma (k) random variables as a
sum of k independent exponentials, and generating a binomial (n, p) random variate as a sum of
n indepoendent Bernoulli (p) random variables. Even today, many may still simulate a sum of
n i.i.d. random variables by generating all n of them and summing. So, whether F is the class
of all gamma distributions, all binomial distributions, or all sums of distributions with a fixed
density f , the idea of a uniformly bounded time is important, and has, in fact, given new life
to the area of non-uniform random variate generation. In this section, we briefly survey some
key classes F , and provide some references to good generators.

Many methods in the literature are rejection methods in disguise. For example, for real-
valued random variates, the ratio of uniforms method is based upon the use of bounding curves
of the form

min

(
A,

B

x2

)
.
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The area under the bounding curve is 4
√
AB, and a random variate with density proportional

to it can be generated as
√
B/ASU/V , where S is a random sign, and U, V are independent

uniform [0, 1] random variates. The method is best applied after shifting the mode or mean of
the density f to the origin. One could for example use

A = sup
x

f(x), B = sup
x

x2f(x).

In many cases, such as for mode-centered normals, gamma, beta, and Student t distributions,
the rejection constant 4

√
AB is uniformly bounded over all or a large part of the parameter

space. Discretized versions of it can be used for the Poisson, binomial and hypergeometric
distributions.

Uniformly fast generators have been obtained for all major parametric families. Inter-
esting contributions include the gamma generators of Cheng (1977), Le Minh (1988), Marsaglia
(1977), Ahrens and Dieter (1982), Cheng and Feast (1979, 1980), Schmeiser and Lal (1980),
Ahrens, Kohrt and Dieter (1983), and Best (1983), the beta generators of Ahrens and Dieter
(1974), Zechner and Stadlober (1993), Best (1978), and Schmeiser and Babu (1980), the bino-
mial methods of Stadlober (1988, 1989), Ahrens and Dieter (1980), Hörmann (1993), and Ka-
chitvichyanukul and Schmeiser (1988, 1989), the hypergeometric generators of Stadlober (1988,
1990), and the code for Poisson variates by Ahrens and Dieter (1980), and Hörmann (1993).
Some of these algorithms are described in Devroye (1986a), where some additional uniformly
fast methods can be found.

All the distributions mentioned above are log-concave, and it is thus no surprise that we
can find uniformly fast generators. The emphasis in most papers is on the details, to squeeze
the last millisecond out of each piece of code. To conclude this section, we will just describe a
recent gamma generator, due to Marsaglia and Tsang (2001). It uses almost-exact inversion.
Its derivation is unlike anything in the present survey, and shows the careful planning that goes
into the design of a nearly perfect generator. The idea is to consider a monotone transformation
h(x), and to note that if X has density

eg(x) def
=
h(x)a−1e−h(x)h′(x)

Γ(a)
,

then Y = h(X) has the gamma (a) density. If g(x) is close to c−x2/2 for some constant c, then
a rejection method from a normal density can be developed. The choice suggested by Marsaglia
and Tsang is

h(x) = d(1 + cx)3 , −1/c < x <∞,
with d = a− 1/3, c = 1/

√
9d. In that case, simple computations show that

g(x) = 3d log(1 + cx)− d(1 + cx)3 + d+ C , −1/c < x <∞,
for some constant C. Define w(x) = −x2/2− g(x). Note that w′(x) = −x− 3dc

1+cx
+ 3dc(1 + cx)2,

w′′(x) = −1 + 3dc2

(1+cx)2 + 6dc2(1 + cx), w′′′(x) = − 6dc3

(1+cx)3 + 6dc3. The third derivative is zero at

(1 + cx)3 = 1, or x = 0. Thus, w′′ reaches a minimum there, which is −1 + 9dc2 = 0. Therefore,
by Taylor’s series expansion, and the fact that w(0) = −C, w′(0) = 0, we have w(x) ≥ C.
Hence,

eg(x) ≤ eC−x
2/2

and the rejection method immediately yields the following:
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d← a− 1/3

c← 1/
√

9d
repeat

generate E exponential

generate X normal

Y ← d(1 + cX)3

until −X2/2− E ≤ d log(Y )− Y + d
return Y

We picked d so that
∫
eg−C is nearly maximal. By the transformation y = d(1 + cx)3 and by

Stirling’s approximation, as d→∞,
∫ ∞

−1/c

eg(x)−Cdx =

∫ ∞

0

yd−2/3ed−y

3cdd+1/3
dy =

Γ(d+ 1/3)ed

3cdd+1/3

∼ (1 + 1/3d)d+1/3
√

2π

3ce1/3
√
d+ 1/3

∼
√

18πd

3
√
d+ 1/3

∼
√

2π.

Using
∫
e−x

2/2 dx =
√

2π, we note that the asymptotic (as a → ∞) rejection constant is 1: we
have a perfect fit! Marsaglia and Tsang recommend the method only for a ≥ 1. For additional
speed, a squeeze step (or quick acceptance step) may be added.

3. Universal generators

It is quite important to develop generators that work well for entire families of distri-
butions. An example of such development is the generator for log concave densities given in
Devroye (1984a), that is, densities for which log f is concave. On the real line, this has several
consequences: these distributions are unimodal and have sub-exponential tails. Among the log
concave densities, we find the normal densities, the gamma family with parameter a ≥ 1, the
Weibull family with parameter a ≥ 1, the beta family with both parameters ≥ 1, the expo-
nential power distribution with parameter ≥ 1 (the density being proportional to exp(−|x|a)),
the Gumbel or double exponential distribution (kk exp(−kx − ke−x)/(k − 1)! is the density,
k ≥ 1 is the parameter), the generalized inverse Gaussian distribution, the logistic distribution,
Perks’ distribution (with density proportional to 1/(ex + e−x + a), a > −2), the hyperbolic se-
cant distribution (with distribution function (2/π) arctan(ex)), and Kummer’s distribution (for
a definition, see Devroye, 1984a). Also, we should consider simple nonlinear transformations
of other random variables. Examples include arctanX with X Pearson IV, log |X| (X being
Student t for all parameters), logX (for X gamma, all parameters), logX (for X log-normal),
logX (for X Pareto), log(X/(1−X)) (for all beta variates X), and logX (for X beta (a, b) for
all a > 0, b ≥ 1).

In its most primitive version, assuming one knows that a mode occurs at m, we consider
the generation problem for the normalized random variable Y = f(m)(X−m). One may obtain
X as m + Y/f(m). The new random variable has a mode at 0 of value 1. Call its density g.
Devroye (1984a) showed that

g(y) ≤ min
(
1, e1−|y|) .
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The integral of the upper bound is precisely 4. Thus, the rejection constant will be 4, uniformly
over this vast class of densities. A random variable with density proportional to the upper
bound is generated by first flipping a perfect coin. If it is heads, then generate (1 +E)S, where
E is exponential, and S is another perfect coin. Otherwise generate US, where U is uniform
[0, 1] and independent of S. The algorithm is as follows:

repeat

Generate U (a uniform on [0, 1]), E (exponential), and S (a fair random bit).

Generate a random sign S ′.
If S = 0 then Y ← 1 + E

else Y ← V , V uniform [0, 1]
Set Y ← Y S′

until U min
(
1, e1−|Y |) ≤ g(Y )

return Y

Various improvements can be found in the original paper. In adaptive rejection sampling,
Gilks and Wild (1992) bound the density adaptively from above and below by a number of
exponential pieces, to reduce the integral under the bounding curve. If we denote the log
concave density by f , and if f ′ is available, then for all x, log-concavity implies that

log f(y) ≤ log f(x) + (y − x)
f ′(x)

f(x)
, y ∈ �

.

This is equivalent to

f(y) ≤ f(x)e(y−x)f ′(x)/f(x), y ∈ �
.

Assume that we have already computed f at k points. Then we can construct k+ 1 exponential
pieces (with breakpoints at those k points) that bound the density from above, and in fact,
sampling from the piecewise exponential dominating curve is easily carried out by inversion.
The integral under a piece anchored at x and spanning [x, x + δ) is

f 2(x)
(
eδf

′(x)/f(x) − 1
)

f ′(x)
.

Gilks and Wild also bound f from below. Assume that y ∈ [x, x′], where x and x′ are two of
those anchor points. Then

log(f(y)) ≥ log(f(x)) +
y − x
x′ − x (log(f(x′))− log(f(x))) .

The lower bound can be used to avoid the evaluation of f most of the time when accepting or
rejecting. It is only when f is actually computed that a new point is added to the collection to
increase the number of exponential pieces.

Hörmann (1995) shows that it is best to add two exponential tails that touch g at
the places where g(x) = 1/e, assuming that the derivative of g is available. In that case,
the area under the bounding curve is reduced to e/(e − 1) ≈ 1.582. Hörmann and Derflinger
(1994) and Hörmann (1995) (see also Leydold (2000a, 2000b, 2001) and Hörmann, Leydold
and Derflinger (2004)) define the notion of Tc-concavity, related to the concavity of −1/(f(x))c,
where 0 < c < 1. For example, the Student t distribution of parameter ≥ 1 is T1/2-concave.
Similar universal methods related to the one above are developed by them. Rejection is done
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from a curve with polynomial tails, and the rejection constant is
(
1− (1− c)1/c−1

)−1
. The

notion of T -convexity proposed by Evans and Swartz (1996, 2000) is useful for unbounded
densities.

Discrete distributions are called log concave if for all n,

p2
n ≥ pn−1pn+1.

Some examples are shown in the table below.

Name Probability vector pk Parameter(s)

Binomial (n, p)
(
n
k

)
pk(1− p)n−k (0 ≤ k ≤ n) n ≥ 1, 0 ≤ p ≤ 1

Poisson (λ) λke−λ

k!
(k ≥ 0) λ > 0

Negative binomial (n, p)
(
n+k−1
n−1

)
(1− p)kpn (k ≥ 0) n ≥ 1, 0 ≤ p ≤ 1

Geometric (p) p(1− p)k (k ≥ 0) 0 ≤ p ≤ 1

Logarithmic series (p) pk

k! log(1/(1−p)) (k ≥ 1) 0 < p < 1

Hypergeometric (b, w, n)
(wk)(

b
n−k)

(w+b
n )

(0 ≤ k ≤ min(w, n)) n ≥ 1, b ≥ 0, w ≥ 0

Table 2: Some important discrete distributions and their parameter ranges.

Others not shown here included the Pólya-Eggenberger distribution (see Johnson and Kotz,
1969) and the hyper-Poisson distribution. For all discrete log-concave distributions having a
mode at m, we have (Devroye, 1987a):

pm+k ≤ pm min
(
1, e1−pm|k|) , all k.

Mimicking the development for densities, we may use rejection from a curve that is flat in the
middle, and has two exponential tails. After taking care of rounding to the nearest integer, we
obtain the following code, in which the expected number of iterations before halting is 4+pm ≤ 5
for all distributions in the family.
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Compute w ← 1 + pm/2 (once)

repeat

Generate U, V,W uniformly on [0, 1], and let S be a random sign.

If U ≤ w
1+w

then Y ← V w/pm
else Y ← (w − log V )/pm

X ← S round(Y )
until W min (1, ew−pmY ) ≤ pm+X/pm
return m+X

We can tighten the rejection constant further to 2 + pm for log concave distributions that are
monotonically decreasing. The disadvantage in the code is the requirement that pm must be
computed.

The development for log-concave distributions can be aped for other classes. For ex-
ample, the adaptive rejection method of Gilks and Wild can be used for unimodal densities
with known mode m. One just needs to replace the exponential upper and lower bounds by
histograms. This is covered in an exercise in Devroye (1986a). General algorithms are known
for all Lipschitz densities with known bounds on the Lipschitz constant C and variance σ2, and
all unimodal densities with mode at m, and variance bounded by σ2, to give two examples (see
Devroye, 1984b, 1986a).

4. Indirect problems

A certain amount of work is devoted to indirect problems, in which distributions are not
described by their density, distribution function or discrete probability vector. A partial list
follows, with brief descriptions on how the solutions may be constructed.

4.1. Characteristic functions. If the characteristic function

ϕ(t) =
� {

eitX
}

is known in black box format, very little can be done in a universal manner. In particular
cases, we may have enough information to be able to deduce that a density exists and that it is
bounded in a certain way. For example, from the inversion formula

f(x) =
1

2π

∫
ϕ(t)e−itxdt,

we deduce the bounds

sup
x

f(x) ≤M
def
=

1

2π

∫
|ϕ(t)|dt

and

sup
x

x2f(x) ≤M ′ def
=

1

2π

∫
|ϕ′′(t)|dt

Thus, we have
f(x) ≤ min(M,M ′/x2),

a bound that is easily dealt with by rejection. In principle, then, rejection can be used, with f(x)
approximated at will by integral approximations based on the inversion integral. This method





requires bounds on the integral approximation, and these depend in turn on the smoothness of
ϕ. Explicit bounds on some smoothness parameters must be available. There are descriptions
and worked out examples in Devroye (1981b, 1986b, 1988). Devroye (1988) uses this method
to simulate the sum Sn of n i.i.d. random variables with common characteristic function ϕ in
expected time not depending upon n, as Sn has characteristic function ϕn.

Pólya showed that any convex function ϕ on the positive halfline that decreases from 1
to 0 is the characteristic function of a symmetric random variable if we extend it to the real
line by setting ϕ(−t) = ϕ(t). These distributions correspond to random variables distributed
as Y/Z, where Y and Z are independent, Y has the de la Vallée-Poussin density

1

2π

(
sin(x/2)

x/2

)2

, x ∈ �

(for which random variate generation by rejection is trivial), and Z has distribution function on
the positive halfline given by 1− ϕ(t) + tϕ′(t). See Dugué and Girault (1955) for this property
and Devroye (1984a) for its implications in random variate generation. Note that we have
made a space warp from the complex to the real domain. This has unexpected corollaries. For
example, if E1, E2 are independent exponential random variables, U is a uniform [0, 1] random
variable, and α ∈ (0, 1], then Y/Z with

Z = (E1 +E2

�
U<α)

1
α

is symmetric stable of parameter (α), with characteristic function e−|t|
α

. The Linnik-Laha
distribution (Laha, 1961) with parameter α ∈ (0, 1] is described by

ϕ(t) =
1

1 + |t|α .

Here Y/Z with

Z =

(
α+ 1−

√
(α+ 1)2 − 4αU

2U
− 1

) 1
α

has the desired distribution.

4.2. Fourier coefficients. Assume that the density f , suitably scaled and translated, is
supported on [−π, π]. Then the Fourier coefficients are given by

ak =
�
{

cos(kX)

π

}
, bk =

�
{

sin(kX)

π

}
, k ≥ 0.

They uniquely describe the distribution. If the series absolutely converges,
∑

k

|ak|+ |bk| <∞,

then the following trigonometric series is absolutely and uniformly convergent to f :

f(x) =
a0

2
+
∞∑

k=1

(ak cos(kx) + bk sin(kx)).
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If we only use terms with index up to n, then the error made is not more than

Rn+1 =
∞∑

k=n+1

√
a2
k + b2

k.

If we know bounds on Rn, then one can use rejection with an alternating series method to
generate random variates (Devroye, 1989).

A particularly simple situation occurs when only the cosine coefficients are nonzero, as
occurs for symmetric distributions. Assume furthermore that the Fourier cosine series coeffi-
cients ak are convex and ak ↓ 0 as k → ∞. Even without absolute convergence, the Fourier
cosine series converges, and can in fact be rewritten as follows:

f(x) =

∞∑

k=0

π(k + 1)∆2akKk(x),

where ∆2ak = ak+2 − 2ak+1 + ak (a positive number, by convexity), and

Kk(x) =
1

2π(k + 1)

(
sin((k + 1)x/2)

sin(x/2)

)2

, |x| ≤ π,

is the Fejer kernel. As Kk(x) ≤ min((k + 1)/4, π/(2(k+ 1)x2), random variates from it can be
generated in expected time uniformly bounded in k by rejection. Thus, the following simple
algorithm does the job:

Generate U uniformly on [0, 1].
Z ← 0, S ← π∆2a0.

while U > S do

Z ← Z + 1.
S ← S + π(Z + 1)∆2aZ.

Generate X with Fejer density KZ.

return X

4.3. The moments are known. Let µn denote the n-th moment of a random variable X.
One could ask to generate a random variate when for each n, µn is computable (in a black box).
Again, this is a nearly impossible problem to solve, unless additional information is available.
For one thing, there may not be a unique solution. A sufficient condition that guarantees the
uniqueness is Carleman’s condition

∞∑

n=0

|µ2n|−
1

2n =∞

(see Akhiezer, 1965). Sufficient conditions in terms of a density f exist, such as Krein’s condition
∫ − log(f(x))

1 + x2
dx =∞,

combined with Lin’s condition, applicable to symmetric and differentiable densities, which states
that x|f ′(x)|/f(x) ↑ ∞ as x → ∞ (Lin, 1997, Krein, 1944, Stoyanov, 2000). Whenever the
distribution is of compact support, the moments determine the distribution. In fact, there are





various ways for reconstructing the density from the moments. An example is provided by the
series

f(x) =
∞∑

k=0

akφj(x), |x| ≤ 1,

where φk is the Legendre polynomial of degree k, and ak is a linear function of all moments up
to the k-th. The series truncated at index n has an error not exceeding

Cr
∫ |f (r+1)|

(1− x2)1/4nr−1/2

where r is an integer and Cr is a constant depending upon r only (Jackson, 1930). Rejection
with dominating curve of the form C ′/(1− x2)1/4 (a symmetric beta) and with the alternating
series method can thus lead to a generator (Devroye, 1989).

The situation is much more interesting when X is supported on the positive integers.
Let

Mr =
� {X(X − 1) · · · (X − r + 1)}

denote the r-th factorial moment. Then, approximate pj =
� {X = j} by

pnj =
1

j!

n∑

i=0

(−1)i
Mj+i

i!
.

Note that pnj ≥ pj for n even, pnj ≤ pj for n odd, and pnj → pj as n → ∞ provided that
� {(1 + u)X} <∞ for some u > 0. Under this condition, an alternating series rejection method
can be implemented, with a dominating curve suggested by the crude bound

pj ≤ min

(
1,
µr
jr

)
.

In fact, we may even attempt inversion, as the partial sums p0 + p1 + · · ·+ pj are available with
any desired accuracy: it suffices to increase n until we are absolutely sure in which interval a
given uniform random variate U lies. For more details, see Devroye (1991).

4.4. The moment generating function. For random variables on the positive integers, as
in the previous section, we may have knowledge of the moment generating function

k(s) = p0 + p1s+ p2s
2 + · · · = � {

sX
}
.

Here we have trivially,

pj ≤
k(s)

sj
,

where s > 0 can be picked at will. Approximations for pj can be constructed based on differences
of higher orders. For example, if we take t > 0 arbitrary, then we can define

pnj =

∑j

i=0(−1)j−i
(
j
i

)
k(it)

j!tj

and note that

0 ≤ pnj − pj ≤
1

(1− jt)j+1
− 1.

This is sufficient to apply the alternating series method (Devroye, 1991).
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4.5. An infinite series. Some densities are known as infinite series. Examples include the
theta distribution (Rényi and Szekeres, 1967) with distribution function

F (x) =
∞∑

j=−∞
(1− 2j2x2)e−j

2x2

=
4π5/2

x3

∞∑

j=1

j2e−π
2j2/x2

, x > 0,

and the Kolmogorov-Smirnov distribution (Feller, 1948) with distribution function

F (x) = 1− 2
∞∑

j=1

(−1)je−2j2x2

, x > 0.

In the examples above, it is relatively straightforward to find tight bounding curves, and to
apply the alternating series method (Devroye, 1981a and 1997).

4.6. Hazard rates. Let X be a positive random variable with density f and distribution
function F . Then the hazard rate, the probability of instantaneous death given that one is still
alive, is given by

h(x) =
f(x)

1− F (x)
.

Assume that one is given h (note that h ≥ 0 must integrate to∞). Then f can be recovered as
follows:

f(x) = h(x)e−
∫ x

0 h(y)dy.

This may pose a problem for random variate generation. Various algorithms for simulation in
the presence of hazard rates are surveyed by Devroye (1986c), the most useful among which is
the thinning method of Lewis and Shedler (1979): assume that h ≤ g, where g is another hazard
rate. If 0 < Y1 < Y2 < · · · is a nonhomogeneous Poisson point process with rate function g, and
U1, U2, . . . is a sequence of independent uniform [0, 1] random variables, independent of the Yi’s,
and if i is the smallest index for which Uig(Yi) ≤ f(Yi), then X = Yi has hazard rate h.

This is not a circular argument if we know how to generate a nonhomogeneous Poisson
point process with rate function g. Define the cumulative rate function G(x) =

∫ x
0
g(y)dy. Let

E1, E2, . . . be i.i.d. exponential random variables with partial sums Si =
∑i

j=1 Ej . Then the

sequence Yi = Ginv(Si), i ≥ 1, is a nonhomogeneous Poisson point process with rate g. Thus,
the thinning method is a Poisson process version of the rejection method.

If h(0) is finite, and X has the given hazard rate, then for a dhr (decreasing hazard rate)
distribution, we can use g = h(0). In that case, the expected number of iterations before halting
is

� {h(0)X}. However, we can dynamically thin (Devroye, 1986c) by lowering g as values h(Yi)
trickle in. In that case, the expected time is finite when X has a finite logarithmic moment,
and in any case, it is not more than 4 +

√
24

� {h(0)X}.
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4.7. A distributional identity. The theory of fixed points and contractions can be used to
derive many limit laws in probability (see, e.g., Rösler and Rüschendorf, 2001). These often are
described as distributional identities known to have a unique solution. For example, the identity

X
L
= W (X + 1)

where W is a fixed random variable on [0, 1] and X ≥ 0 sometimes has a unique solution for X.
By iterating the identity, we see that if the solution exists, it can be represented as

X
L
= W1 +W1W2 +W1W2W3 + · · · ,

where the Wi’s are i.i.d. These are known as perpetuities (Vervaat, 1979, Goldie and Grübel,
1996). Some more work in the complex domain can help out: for example, when W = U 1/α,
where U is uniform [0, 1] and α > 0 leads to the characteristic function

ϕ(t) = eα
∫ 1

0
eitx−1
x dx.

For the particular case α = 1, we have Dickman’s distribution (Dickman, 1930), which is the
limit law of

1

n

n∑

i=1

iZi

where Zi is Bernoulli (1/i). None of the three representations above (infinite series, Fourier
transform, limit of a discrete sum) gives a satisfactory path to an exact algorithm (although
approximations are trivial). The solution in Devroye (2001) uses the characteristic function
representation in an alternating series method, after first determining explicit bounds on the
density of f that can be used in the rejection method. A simpler approach to this particular
distributional identity is still lacking, and a good exact solution for distributional identities in
general is sorely needed.

Consider distributional identities of the form

X
L
= f1(U)X + f2(U)X ′ + f3(U)

where the fi’s are known functions, U is a uniform random variate, and X,X ′ are i.i.d. and inde-
pendent of U . Exact generation here is approached by discretization in Devroye and Neininger
(2002): suitably discretize the distributions of fi(U), and apply the map n times, starting with
arbitrary values (say, zero) for X,X ′. If Xn is the random variable thus obtained, and Fn is its
distribution function, note that Fn can be calculated as a sum, due to the discretization. Some
theoretical work is needed (which involves parameters of the fi’s) to obtain inequalities of the
type ∣∣∣∣

Fn(x+ δ)− Fn(x)

δ
− f(x)

∣∣∣∣ ≤ Rn(x),

where Rn(x) is explicitly known and can be made as small as desired by appropriate choice of
all the parameters (the discretization, δ and n). This suffices to apply the alternating series
method, yet again.
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4.8. Kolmogorov and Lévy measures. Infinitely divisible distributions (Sato, 2000) have
several representations. One of them is Kolmogorov’s canonical representation for the logarithm
of the characteristic function:

logϕ(t) = ict+

∫
eitx − 1− itx

x2
dK(x),

where K(−∞) = 0, K ↑, and K(∞)−K(−∞) = σ2. Thus, K can be viewed as some sort of
measure. When K puts mass σ2 at the origin, then we obtain the normal distribution. When
K puts mass λ at 1, then the Poisson (λ) distribution is obtained. However, in general, we
only have representations as integrals. For example, with c = 1, K(x) = min(x2/2, 1/2) on the
positive halfline, we obtain Dickman’s distribution,

logϕ(t) =

∫ 1

0

eitx − 1

x
dx.

Bondesson (1982) presents approximations when one is given the measure K. Basically,
if K is approximated by n point masses each of total weight σ2/n, then the characteristic
function can be written as a product, where each term in the product, assuming c = 0, is of the
form

eα(eitβ−1−itβ)

for fixed values of α and β. This is the characteristic function of β(X − α) where X is Poisson
(α). Thus, approximations consist of sums of such random variables. However, if the true
distribution has a density, such discrete approximations are not acceptable.

5. Random processes

A random process Xt, t ∈
�
d, can not be produced using a finite amount of resources, as

the domain of the index is uncountable. So, it is customary to say that we can generate a random
process exactly if for any k, and for any set of indices t1, . . . , tk, we can generate the random
vector (Xt1 , . . . ,Xtk) exactly. Often, these points are nicely spaced out. In many processes,
we have particularly elegant independence properties. For example, for all Lévy processes and
setting d = 1, we have X0 = 0, Xt1 ,Xt2 − Xt1 , . . . ,Xtk − Xtk−1

independent, and furthermore,
less important to us, the distribution of Xs+t−Xs depends upon t only and we have continuity:
� {|Xs+t − Xs| > ε} → 0 as t ↓ 0 for all ε > 0. With that independence alone, we can thus
generate each piece independently. When k is large, to protect against a proliferation of errors,
it is wise to use a dyadic strategy: first generate the process at tk/2, then at tk/4 and t3k/4, and
so on. The dyadic trick requires that we know the distribution of Xs+u − Xs conditional on
Xs+t −Xs for all 0 ≤ u ≤ t.

An example suffices to drive home this point. In Brownian motion (S(t), t ≥ 0) (a Lévy
process), we have differences Xs+t − Xs that are distributed as

√
tN , where N is a standard

normal random variable. Furthermore, setting u = t/2, we see that

Xs+t −Xs = (Xs+t −Xs+u) + (Xs+u −Xs)

is a sum of two independent normal random variables with variances t/2 each. Conditional on
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Xs+t −Xs, Xs+u −Xs thus is distributed as

Xs+t −Xs

2
+

√
t

2
N.

Therefore, the dyadic trick applies beautifully. In the same manner, one can simulate the
Brownian bridge on [0, 1], B(t) = S(t)− tS(1). For the first systematic examples of the use of
this splitting trick, see Caflish, Morokoff and Owen (1997), and Fox (1999).

In a more advanced example, consider a gamma process S(t), where S(t) is distributed
as a gamma random variable with parameter αt. This is not a Lévy process, but rather a mono-
tonically increasing process. We have the following recursive property: given S(t), S(t/2)/S(t)
is distributed as a symmetric beta with parameter αt/2. This allows one to apply the dyadic
trick.

Perhaps the most basic of all processes is the Poisson point process. These processes
are completely described by an increasing sequence of occurrences 0 < X1 < X2, · · ·. In a
homogeneous point process of density λ, the inter-occurrence distances are i.i.d. and distributed
as exponentials of mean 1/λ. In a nonhomegenoeous Poisson point process of density λ(t), a

nonnegative function, the integrals
∫ Xi+1

Xi
λ(t) dt are i.i.d. exponential. If Λ(t) =

∫ t
0
λ(t)dt, then it

is easy to see that Xi+1−Xi is distributed as Λinv(Λ(Xi)+E)−Xi, where E is exponential. We
already discussed sampling by thinning (rejection) for this process elsewhere. This process view
also yields a simple but not uniformly fast generator for the Poisson distribution: if E1, E2, . . .
are i.i.d. exponential random variables, and X is the smallest integer such that

X+1∑

i=1

Ei > λ,

then X is Poisson (λ), as we are just counting the number of occurrences of a unit density
homogeneous Poisson point process in the interval [0, λ]. By noting that an exponential is
distributed as the logarithm of one over a uniform, we see that we may equivalently generate
i.i.d. uniform [0, 1] random variables U1, U2, . . . and let X be the smallest integer such that

X+1∏

i=1

Ui < e−λ.

This is the so-called product method for Poisson random variates.

6. Markov chain methodology

We say that we generate X by the Markov chain method if we can generate a Markov
chain Xn, n ≥ 1 with the property that

lim
n→∞

� {Xn ≤ z} =
� {X∞ ≤ z},

at all z at which the function
� {X∞ ≤ z} is continuous (here ≤ is to be taken componentwise).

We write Xn
L→ X∞, and say that Xn converges in distribution to X∞. This is a weak notion,

as Xn may be discrete and X∞ continuous. For example, we may partition
�
d into a grid of

cells of sides 1/n1/(2d), and let pu be the probability content of cell u. Let Xn be the midpoint of
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cell u, where cell u is selected with probability pu. A simple exercise shows that Xn
L→ X∞ for

any distribution of X∞. Yet, Xn is discrete, and X∞ may have any type of distribution. One
needs of course a way of computing the pu’s. For this, knowledge of the distribution function F
of X∞ at each point suffices, as pu can be written as a finite linear combination of the values of
F at the vertices of the cell u. If Xn needs to have a density, one can define Xn as a uniform
variate over the cell u, picked as above. In the latter case, if X∞ has any density, we have a
stronger kind of convergence, namely convergence in total variation (see below), by virtue of
the Lebesgue density theorem (Wheeden and Zygmund, 1977; Devroye, 1987b). A good general
reference for this section is Häggström (2002).

The paradigm described in the previous paragraph is a special case of what one could call
the limit law method. Many processes, such as averages, maxima, and so forth, have asymptotic
distributions that are severely restricted (e.g., averages of independent random variables have a
stable limit law). Markov chains can easily be molded to nearly all distributions we can imagine,
hence the emphasis on them as a tool.

In the exact Markov chain method, we can use properties of the Markov chain to generate

a random variateXT , whereXT
L
= X∞, where we recall that

L
= denotes “is distributed as”. There

are a certain number of tricks that one can use to define a computable stopping time T . The
first one was the so-called coupling from the past method of Propp and Wilson (1996), which
has been shown to work well for discrete Markov chains, especially for the generation of random
combinatorial objects. For general continuous distributions, a sufficiently general construction
of stopping times is still lacking.

6.1. The Metropolis-Hastings chain. The Metropolis-Hastings chain (Metropolis, Rosen-
bluth, Rosenbluth, Teller and Teller, 1953, and Hastings, 1970) can be used for the generation
of a random variate with an arbitrary density, provided that some care is taken in its choice
of Markov transition probabilities. It requires transition probabilities q(x, y) representing the
density of Y on [0, 1]d given X = x. Thus, for every fixed x ∈ [0, 1]d, q(x, y) is a valid density
in y from which we can generate random variates at will. The following algorithm produces a
chain on random variates {Xn, n ≥ 1}, which we call the Metropolis-Hastings chain:

Set X ← x ∈ [0, 1]d.
Repeat forever:

Generate U uniformly on [0, 1].
Generate Y with density q(X, ·) on [0, 1]d.

If U < f(Y )q(Y,X)

f(X)q(X,Y )
, then X ← Y .

The limit distribution ofXn is not necessarily a distribution with density f . For example,
if d = 1, and q(x, y) = 2

�
(x,y)∈B, where B = [0, 1/2]2 ∪ [1/2, 1]2, then if x < 1/2 is the starting

point, regardless of what f is, Xn < 1/2 for all n, and thus, universal convergence is excluded.
A sufficient condition for convergence is that for every x, y ∈ [0, 1]d, q(x, y) > 0. Here X∞ is a
random variable with density f and ≤ is to be taken componentwise in

�
d. In particular, in the

absence of any information on f , we may well just take q(x, y) = 1 for all x, y. We then obtain
the following simple version of the chain:
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Set X ← x ∈ [0, 1]d.
Repeat forever:

Generate U uniformly on [0, 1].
Generate Y uniformly on [0, 1]d.
If U < f(Y )/f(X), then X ← Y .

We would have obtained the same algorithm if we had the symmetry condition q(x, y) =
q(y, x), so we call this the symmetric Metropolis-Hastings chain. The algorithm that uses a
uniform Y thus produces a sequence of X’s that are selected from among uniforms. In this
sense, they are “pure” and amenable to theoretical analysis. In the subsection below, we recall
a lower bound for such pure methods.

6.2. The independence sampler. Tierney (1994) proposed q(x, y) ≡ q(y) for all x, y. The
independence sampler thus reads:

Set X ← x ∈ [0, 1]d.
Repeat forever:

Generate U uniformly on [0, 1].
Generate Y with density q on [0, 1]d.

If U < f(Y )q(X)

f(X)q(Y )
, then X ← Y .

If q = f , then no rejection takes place, and this algorithm produces an i.i.d. sequence of random
variates with density f . Otherwise, if q > 0 there is convergence (in total variation, see below),
and even geometric convergence at the rate 1− infx q(x)/f(x) (Liu, 1996). One thus should try
and match q as well as possible to f .

6.3. The discrete Metropolis chain. The chains given above all remain valid if the state
space is finite, provided that the density f(x) and conditional density q(x, y) are replaced by
a stationary probability πx and a transition probability p(x, y) (summing to one with respect
to y). In the discrete case, there is an important special case. A graph model for the uniform
generation of random objects is the following. Let each node in the finite graph (V,E) correspond
to an object. Create a connected graph by joining nodes that are near. For example, if a node
represents an n-bit vector, then connect it to all nodes at Hamming distance one. The degree
δ(x) of a node x is its number of neighbors, and N(x) is the set of its neighbors. Set

q(x, y) =

�
y∈N(x)

δ(x)
.

If we wish to have a uniform stationary vector, that is, each node x has asymptotic probability
1/|V |, then the Metropolis-Hastings chain method reduces to this:
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Set X ← x ∈ V .
Repeat forever:

Generate Y uniformly in N(X).
Generate U uniformly on [0, 1].
If U < δ(X)/δ(Y ), then X ← Y .

If the degrees are the same, then we always accept. Note also that we have a uniform
limit only if the graph thus obtained is aperiodic, which in this case is equivalent to asking that
it is not bipartite.

In some situations, there is a positive energy function H(x) of the variable x, and the
desired asymptotic density is

f(x) = Ce−H(x),

where C is a normalization constant. As an example, consider x is a n-bit pixel vector for an
image, where H(x) takes into account occurrences of patterns in the image. We select q(x, y) as
above by defining neighborhoods for all x. As x is a bit vector, neighborhoods can be selected
based on Hamming distance, and in that case, q(x, y) = q(y, x) for all x, y. The symmetric
Metropolis-Hastings chain then applies (in a discrete version) and we have:

Set X ← x ∈ V .
Repeat forever:

Generate U uniformly on [0, 1].
Generate Y uniformly in N(X).
If U < exp(H(X)−H(Y )), then X ← Y .

For further discussion and examples, see Besag (1986), Geman and Geman (1984) and Geman
and McClure (1985).

6.4. Letac’s lower bound. Generating a random variate with density f on the real line can
always be done by generating a random variate with some density g on [0, 1] via a monotone
transformation. Thus, restricting oneself to [0, 1] is reasonable and universal. Assume thus that
our random variate X is supported on [0, 1]. Letac (1975) showed that any generator which
outputs X ← UT , where T is a stopping time and U1, U2, . . . is an i.i.d. sequence of uniform
[0, 1] random variables must satisfy

� {T} ≥ sup
x
f(x).

Applying a simple rejection method with the bound supx f(x) requires a number of iterations
equal to supx f(x), and is thus optimal. (In fact, two uniforms are consumed per iteration, but
there are methods of recirculating the second uniform.) Since some of the symmetric Metropolis-
Hastings chains and independence samplers are covered by Letac’s model, we note that even if
they were stopped at some stopping time T tuned to return an exact random variate at that
point, Letac’s bound indicates that they cannot do better than the rejection method. There are
two caveats though: firstly, the rejection method requires knowledge of supx f(x); secondly, for
the Markov chains, we do not know when to stop, and thus have only an approximation. Thus,
for fair comparisons, we need lower bounds in terms of approximation errors.
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6.5. Rate of convergence. The rate of convergence can be measured by the total variation
distance

Vn
def
= sup

A

| � {Xn ∈ A} −
� {X∞ ∈ A}|,

where A ranges over all Borel sets of
�
d, and X∞ is the limit law for Xn. Note Scheffé’s identity

(Scheffé, 1947)

Vn =
1

2

∫
|fn(x)− f(x)|dx,

where fn is the density of Xn (with the above continuous versions of the chains, started at X0,
we know that Xn has a density for n > 0.)

Under additional restrictions on q, e.g.,

inf
x

inf
y

q(x, y)

f(x)
> 0,

we know that Vn ≤ exp(−ρn) for some ρ > 0 (Holden, 1998; Jarner and Hansen, 1998). For
more on total variation convergence of Markov chains, see Meyn and Tweedie (1993).

6.6. The Metropolis random walk. The Metropolis random walk is the Metropolis chain
obtained by setting

q(x, y) = q(y, x) = g(y − x)

where g is symmetric about 0. On the real line, we could take, e.g., g(u) = (1/2)e−|u|. The
algorithm thus becomes:

Set X ← x ∈ �
d.

Repeat forever:

Generate U uniformly on [0, 1].
Generate Z with density g.
Set Y ← X + Z.
If U < f(Y )/f(X), then X ← Y .

If g has support over all of
�
d, then the Metropolis random walk converges.

6.7. The Gibbs sampler. Among Markov chains that do not use rejection, we cite the Gibbs
sampler (Geman and Geman, 1984) which uses the following method to generate Xn+1 given
Xn = (Xn,1, . . . ,Xn,d): first generate

Xn+1,1 ∼ f(·|Xn,2, . . . ,Xn,d).

Then generate
Xn+1,2 ∼ f(·|Xn+1,1,Xn,3 . . . ,Xn,d),

and continue on until
Xn+1,d ∼ f(·|Xn+1,1, . . . ,Xn+1,d−1).

Under certain mixing conditions, satisfied if each conditional density is supported on all of the
real line, this chain converges. Of course, one needs to be able to generate from all the d − 1-
dimensional conditional densities. It is also possible to group variables and generate random
vectors at each step, holding all the components not involved in the random vector fixed.
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6.8. Universal generators. A universal generator for densities generates a random variate
X with density f without any a priori knowledge about f . The existence of such a generator
is discussed in this section. It is noteworthy that a universal discrete generator (where X is
supported on the positive integers) is easily obtained by inversion (see above). In fact, given
any distribution function F on the reals, an approximate inversion method can be obtained
by constructing a convergent iterative solution of U = F (X), where U is uniform [0, 1]. For
example, binary search could be employed.

Assume that we can compute f as in a black box, and that X is supported on [0, 1]d (see
the previous section for a discussion of this assumption). We recall that if (X,Y ) is uniformly
distributed on the set A = {(x, y) : x ∈ [0, 1]d, 0 ≤ y ≤ f(x)}, then X has density f . Thus,
the purpose is to generate a uniform random vector on A. This can be achieved by the Gibbs
sampler, starting from any x ∈ [0, 1]d:

Set X ← x ∈ [0, 1]d.
Repeat forever:

Generate U uniformly on [0, 1].
Set Y ← Uf(X).
Repeat

Generate X uniformly on [0, 1]d

Until f(X) ≥ Y .

This algorithm is also known as the slice sampler (Swendsen and Wang, 1987; Besag and Green,
1993). In the first step of each iteration, given X, Y is produced with the conditional distribution
required, that is, the uniform distribution on [0, f(X)]. Given Y , a newX is generated uniformly
on the part of [0, 1]d that is tucked under the curve of f . We chose to do this by rejection,
because nothing is known about f . If some information is known about f , serious accelerations
are possible. For example, if f is monotone decreasing on [0, 1], binary search may be used to
reduce the search region rapidly. If f is strictly unimodal, then a slight adaptation of binary
search may help. To illustrate the latter point for d = 1, assume that both f and f inv are
available in black box format, and that f is supported on the real line. Then the following
algorithm always converges, where f` and fr denote the left and right solutions of f(x) = Y :
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Set X ← x ∈ �
.

Repeat forever:

Generate U uniformly on [0, 1].
Set Y ← Uf(X).
Generate X uniformly on [f`(Y ), fr(Y )].

Note that normalization or multiplicative constants in f and f inv can be dropped altogether.

In any case, convergence theorems for the Gibbs sampler imply that the rejection Markov
chain given above produces a sequence of vectors {(Xn, Yn), n ≥ 1}, with the property that
(Xn, Yn) tends in total variation to (X,Y ), a random vector with the uniform distribution on
A. Therefore, Xn tends in total variation to X, which has density f . It is thus a universal, but
approximate, method.

There are stumbling blocks if one wishes to obtain an exact universal method. One
which requires the knowledge of the tail function

T (t) =

∫

x:f(x)>t

f(x) dx, t > 0,

can easily be constructed. We consider the density in slabs of size one and generate a uniform
random vector in A slab-wise. Define pn = T (n+ 1)− T (n), n ≥ 0, and note that

∑
n pn = 1.

Selection of a random slab can be done by inversion on the fly—it does not require storage of
the pn’s. Thus, a simple mixture and rejection algorithm would do this:

Generate Z ≥ 0 with probability distribution (p0, p1, p2, . . .).
Repeat forever:

Generate (X,Y ) uniformly on [0, 1]d × [0, 1].
Until Z + Y ≤ f(X).

Return X.

6.9. Coupling from the past. Asmussen, Glynn and Thorisson (1992) and Propp and Wilson
(1996) shocked the simulation world by announcing a way of simulating a finite discrete time
ergodic Markov chain that produces an output with the stationary distribution. Their method is
called perfect sampling, or cftp, coupling from the past. We shall denote the unique stationary
probability

vector by (π1, . . . , πn), where n is the number of states. We reserve t for the time index.

Let ωt denote a random element at time t, governing transitions from all states. That
is, Xt+1, the state at time t+ 1, is a function ϕ(Xt, ωt), and indeed, we know and design ϕ and
ωt such that the transition probabilities

� {Xt+1 = y|Xt = x} = q(x, y),

for all x, y, as prescribed. The random elements ωt form an independent sequence in t. Interest-
ingly, the transitions at time t may be coupled. For example, if the Markov chain is a random
walk on a cycle graph, then ωt may just flip a fair coin. If it comes up heads, then all transitions
are to the left, and if comes up tails, all transitions are to the right. The coupling is thus up
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to the designer. In the cftp method, the sequence ωt is fixed once and for all, but we need to
generate only a finite number of them, luckily, to run the algorithm.

Pick a positive integer T . A basic run of length T consists of n Markov chains, each
fired up from a different state for T time units, starting at time −T until time 0, using the
random elements ωt,−T ≤ t < 0. This yields n runs Xt(i), 1 ≤ i ≤ n (i denotes the starting
point), −T ≤ t ≤ 0, with X−T (i) = i. Observe that if two runs collide at a given time t, then
they will remain together forever. If X0(i) is the same for all i, then all runs have collided. In
that case, Propp and Wilson showed that X0(.) has the stationary distribution. If there is no
agreement among the X0(i)’s, then replace T by 2T and repeat, always doubling the horizon
until all X0(i)’s agree. Return the first X0(.) for which agreement was observed.

It is interesting that coupling in the future does not work. We cannot simply start the n
chains X0(i) = i and let T be the first time when they coalesce, because there are no guarantees
that XT (.) has the stationary distribution. To see this, consider a directed cycle with n vertices,
in which state 1 is the only state with a loop (occurring with probability ε > 0). Coalescence
can only take place at this state, so XT (.) = 1, no matter what. Yet, the limiting distribution
is roughly uniform over the states when ε > 0 is small.

The effort needed may be prohibitive, as the time until agreement in a well designed
coupling is roughly related to the mixing time of a Markov chain, so that n times the mixing
time provides a rough bound of the computational complexity. Luckily, we have the freedom to
design the random elements in such a manner that coalescence can be checked without doing
n runs. For example, for a random walk on the chain graph with n vertices, where a loop is
added (with probability 1/2) at each state to make the Markov chain aperiodic, we design the
ωt such that no two paths ever cross. Then coalescence can be checked by following the chains
started at states 1 and n only. The coupling in ωt is as follows: draw a uniform integer from
{−2,−1, 1, 2}. If it is −2, then all transitions are to the left, except the transition from state 1,
which stays. If it is 2, then all transitions are to the right, except the transition from state n,
which stays. If it is −1, then all states stay, except state n, which takes a step to the left. If it
is 1, then all states stay, except state 1, which takes a step to the right. As the number of steps
until the two extreme runs meet is of the order of n2, the expected complexity is also of that
order. For more on the basics of random walks on graphs and mixing times for Markov chains,
see Aldous and Fill (2004).

If the state space is countably infinite or uncountable (say,
�
d), then special constructions

are needed to make sure that we only have to run finitely many chains, see, e.g., Green and
Murdoch (2000), Wilson (2000), Murdoch (2000), or Mira, Moller and Roberts (2001). Most
solutions assume the existence of a known dominating density g, with f ≤ cg for a constant c,
with random samples from g needed to move ahead. The resulting algorithms are still inferior
to the corresponding rejection method, so further research is needed in this direction.
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6.10. Further research. If one accepts approximations with density fn of the density f ,
where n is the computational complexity of the approximation, then a study must be made
that compares

∫
|fn − f | among various methods. For example, fn could be the n-th iterate

in the slice sampler, while a competitor could be gn, the density in the approximate rejection
method, which (incorrectly) uses rejection from n (so that gn is proportional to min(f, n), and∫
|gn − f | = 2

∫
(f − n)+). Both methods have similar complexities (linear in n), but a broad

comparison of the total variation errors is still lacking. In fact, the rejection method could be
made adaptive: whenever an X is generated for which f(X) > n, then replace n by f(X) and
continue.

Simple exact simulation methods that are based upon iterative non-Markovian schemes
could be of interest. Can coupling from the past be extended and simplified?
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W. Hörmann, “A universal generator for discrete log-concave distributions,” Computing, vol. 52,
pp. 89–96, 1994.
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