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Dedicated to My Probability Professors at Courant:
Raghu Varadhan and Monroe Donsker
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In Memoriam: Nikolai Simonov, 1956–2019

Figure: Died in an avalanche in the Altai Mountains, May 6, 2019
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Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Early History of MCMs for PDEs

1. Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has
probabilistic interpretations and MC algorithms for linear elliptic
and parabolic problems

2. Fermi/Ulam/von Neumann: Atomic bomb calculations were done
using Monte Carlo methods for neutron transport, their success
inspired much post-War work especially in nuclear reactor design

3. Kac and Donsker: Used large deviation calculations to estimate
eigenvalues of a linear Schrödinger equation

4. Forsythe and Leibler: Derived a MCM for solving special linear
systems related to discrete elliptic PDE problems
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Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x) dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi )

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi ), constant as dimension increases we see the

MC advantage vs. the curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical

quantity of interest, I
I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi )
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi ), var(I) =
1

N − 1

N∑
i=1

(f (xi )−Ī)2 =
1

N − 1

[
N∑

i=1

f (xi )
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)
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Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with∑M
i=1 pi = 1, and pi > 0 whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of
S, as E [ai/pi ] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then

the following iterative method converges:

xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the
Neumann series converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b
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Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

More Modern Monte Carlo Applications
I Methods for partial differential and integral equations based on

random walks/Markov chains (no need to find a discrete
approximation to the PDE/IE)

1. Integral equation methods are similar in construction to the linear
system methods

2. PDEs can be solved by using the Feynman-Kac formula
3. Some Monte Carlo methods can now beat deterministic solvers

(electrostatics)
I Efficient methods that exploit fast probabilistic application of a

linear operator
I Modern sampling methods linear algebra (SVD) based loosely

on the Johnson-Lindestrauss projection method
I Generation of random fields
I Stochastic DEs and PDEs
I Financial computing
I Uncertainty quantification (UQ)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Back to our canonical elliptic boundary value problem:

1
2

∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

I Distribution of z is uniform on the sphere
I Mean of the values of u(z) over the sphere is u(x)

I u(x) has mean-value property and harmonic
I Also, u(x) satisfies the boundary condition

u(x) = Ex [f (X x(t∂Ω))] (1)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

x;  starting point

z
first passage location

��
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Reinterpreting as an average of the boundary values

u(x) =

∫
∂Ω

p(x , y) f (y) dy (2)

Another representation in terms of an integral over the boundary

u(x) =

∫
∂Ω

∂g(x , y)

∂n
f (y) dy (3)

g(x , y) – Green’s function of the Dirichlet problem in Ω

=⇒ p(x , y) =
∂g(x , y)

∂n
(4)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

‘Walk on Spheres’ (WOS) and ‘Green’s Function First
Passage’ (GFFP) Algorithms

I Green’s function is known
=⇒ direct simulation of exit points and computation of the
solution through averaging boundary values

I Green’s function is unknown
=⇒ simulation of exit points from standard subdomains of Ω,
e.g. spheres
=⇒ Markov chain of ‘Walk on Spheres’ (or GFFP algorithm)
x0 = x , x1, . . . , xN
xi → ∂Ω and hits ε-shell is N = O(| ln(ε)|) steps
xN simulates exit point from Ω with O(ε) accuracy
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

‘Walk on Spheres’ (WOS) and ‘Green’s Function First
Passage’ (GFFP) Algorithms

              

x;  starting point

Ω

first−passage location

ϵ

∂Ω

Xx(τ∂Ω)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

Architectural Considerations as We Move Towards the
Exascale

I Some trends in HPC architectures
1. Memory per processor/core has inflected and is now decreasing
2. Long-term trend is that memory bandwidth is the limiting factor for

performance and cost
3. High clock rates and high bandwidth communication lead to high

energy consumption and hot boxes that need cooling
I These Monte Carlo algorithms avoid all three of issues due to

their innate performance
1. Minimal memory usage has always been a benefit of Monte Carlo

methods
2. Independent sampling means that the communication to

computation ratio is extremely small and tunable
I Monte Carlo is a very simple computational paradigm to explore

fundamental aspects of parallelism, algorithmic resilience,
fault-tolerance
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

Continuum Biochemical Electrostatics
Motivation
I Experimental Data: Folding, stability & binding behavior of

biomolecules can be modulated by changes in salt concentration
I Physical Model: Implicit solvent-based Poisson-Boltzmann model

can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems
I Electrostatic free energy for linear case: only finite number of

electrostatic potential point values
I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

Mathematical Model: Molecular Geometry

Figure: Biomolecule with dielectric εi and region region Gi is in solution with
dielectric εe and region Ge. On the boundary of the biomolecule, electrostatic
potential and normal component of dielectric displacement continue
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Mathematical Model: Partial Differential Equations
I Poisson equation for the electrostatic potential, Φi , and point

charges, Qm, inside a molecule (in CGS units):

εi ∆Φi (x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

I For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

I For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Electrostatic Potential and Energy
I Point values of the potential: Φ(x) = Φrf (x) + Φc(x)

Here, singular part of Φ:

Φc(x) =
M∑

m=1

Qm

|x − x (m)|

I Reaction field electrostatic free energy of a molecule is linear
combination of point values of the regular part of the electrostatic
potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

I Electrostatic solvation free energy = difference between the
energy for a molecule in solvent with a given salt concentration
and the energy for the same molecule in vacuum:

∆Gelec
solv = Wrf (εi , εe, κ)−Wrf (εi ,1,0)
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Feynman-Kac Formula
I If we set f (x) = 0 and have g(x) 6= 0, the solution is

u(y) = E
[ ∫ τ∂Ω

0
g(βy (s)) ds

]
I By linear superposition, the solution to Poisson equation is given

probabilistically as

u(y) = E
[ ∫ τ∂Ω

0
g(βy (s)) ds + f (βy (τ∂Ω))

]
I The linearized Poisson-Boltzmann equation is given by

∆u(x)−κ2u(x) = 0, x ∈ Ω, u(x) = f (x), x ∈ ∂Ω, u → 0 as |x | → ∞

and has Wiener integral representation:

u(y) = E
[
f (βy (τ∂Ω))e−

∫ τ∂Ω
0 κ2 ds

]
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di ), where q(κ,di ) =
κdi

sinh(κdi )
to deal

with LPBE
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i ), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i )2

|xi − xi+1|3
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Monte Carlo Estimates

I The estimate for the reaction-field potential point value:
ξ[Φrf ](x (m)) = −Φc(x∗1 )

+

Nins∑
j=2

Fj (κ) (Φc(x ins
j )− Φc(x∗j,ins)) (5)

I Here {x∗j,ins} is a sequence of boundary points, after which the
random walker moves inside the domain, Gi , to x ins

j
I The estimate for the reaction-field energy:

ξ[Wrf ] =
1
2

M∑
m=1

Qm ξ[Φrf ](x (m)) (6)
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

A Picture: The Algorithm for a Single Spherical Atom
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Algorithm in Pictures: Walk Inside
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Algorithm in Pictures: Walk Inside
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Algorithm in Pictures: Walk Outside
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

The Algorithm in Pictures: Walk Outside
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Some Examples Using This for Computing Elliptic Problems

Biochemical Problems

Monte Carlo Algorithm’s Computational Complexity
Cost of a single trajectory
I Number of steps is random walk is not dependent on M, the

number of atoms
I The cost of finding the nearest sphere is M log2(M) due to

optimizations

0
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Figure: The CPU time per atom per trajectory is plotted as function of number of atoms. For small
number of atoms the CPU time scales linearly and for large number of atoms it asymptotically
scales logarithmically
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Generalization of the Monte Carlo Approach

Accuracy: Monte Carlo vs. Deterministic
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Generalization of the Monte Carlo Approach

Computational Geometry

Geometry: Problem Descriptions

There are many geometric problems that arise in this algorithm:
I Efficiently determining if a point is on the surface of the molecule

or inside of it (for interior walks)
I Efficiently determining the closest sphere to a given exterior point

(for walks outside molecule)
I Efficiently determining if a query point is inside of the convex hull

of the molecule
I Efficiently finding the largest possible sphere enclosing a query

point for external walks
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Generalization of the Monte Carlo Approach

Important Computational Paradigm: Computing Capacitance

Porous Media: Complicated Interfaces
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Generalization of the Monte Carlo Approach

Important Computational Paradigm: Computing Capacitance

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold the conductor, Ω, at unit potential

u = 1, then C = total charge the conductor’s surface, ∂Ω

I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞

I Recall u(x) = Ex [f (X x(t∂Ω))] = 1, if the walker hits ∂Ω, or 0, if the
walker→∞ = probability of walker starting at x hitting Ω before
escaping to infinity

I Charge density is first passage measure on the exterior of Ω

I Construct a sphere, S(R), such that Ω ⊂ S(R)

I Capacitance is C = R × P(t∂Ω <∞) = R ×
∫
∂S(R)

u(x)ds, where
the starting point of the walk is chosen uniformly on the ∂S(R)

I Note, this definition is independent of R
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Generalization of the Monte Carlo Approach

Capacitance as a Computational Paradigm

Capacitance as a Computational Paradigm

I We have found that the running time of these codes hinged on
the efficiency of geometrical computations

I The probabilistic capacitance computation is key in
1. Permeability computation via Hubbard-Douglas
2. Many other electrostatics computations in areas of chemistry,

computer science, physics, and materials science, including our
own PBE computations

3. In the ZENO code written for materials property computations at
NIST

I We took the NIST ZENO code and analyzed it to determine
areas for improvement
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Generalization of the Monte Carlo Approach

Capacitance as a Computational Paradigm

The NIST ZENO Code

I ZENO uses Monte Carlo sampling to compute a variety of
materials properties

I ZENO is a FORTRAN 77 code that had a very suggestive CPU
profile

listersort

22.12%

(22.12%)

4097018175×

distance

98.55%

(30.43%)

309977×

22.12%

4097018175×

minsphere

45.99%

(7.02%)

4097842470×

45.99%

4097842470×

pythag

38.98%

(38.98%)

4097842470×

38.98%

4097842470×
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Generalization of the Monte Carlo Approach

Capacitance as a Computational Paradigm

What is the Computational Geometric Problem?

I ZENO is named for the paradox, and getting close the boundary
for producing approximate first-passage locations is done with
the ZENO algorithm, which is WOS by another name

I The usual geometry in these problems is additive
I As mentioned above the primitive computation geometrically is

given a query point, find the closest point to the boundary, and
that is used as the radius to construct the WOS radius

I The usual ZENO problem is the so-called exterior problem,
which is what is done in permeability: computing the probability
of first-passage from∞ using relative capacitance of a bounding
sphere
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Generalization of the Monte Carlo Approach

Capacitance as a Computational Paradigm

Different Approaches to the Computational Geometry

I ZENO used a linear pass thought the additive list of
subcomponents of the geometry, far from optimal

I This is a problem that computational geometers have studied,
mostly in very high dimensions

I Here is a comparison of some low-dimensional techniques that
use a hierarchical k-D tree decomposition of the additive
components

Type Time (s) Speedup
Linear List 3,993
ANN (k-D Tree) 82.19 48.58x
NanoFLANN (k-D) 41.97 95.28x
CGAL (k-D Tree) 63.20 63.18x

Table: Zeno C++, 1M paths, Intelr Xeonr CPU E5-2630 v2 @ 2.60 GHz
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Generalization of the Monte Carlo Approach

Parallel Scalability

Parallel Scalability using MPI

Nodes
Processes
per node Time (s) Speedup

1 1 41.91 –
1 12 3.383 12.39x
12 1 3.699 11.33x
12 12 0.5068 82.70x

Table: Zeno C++, 1M paths, Intelr Xeonr CPU E5-2630 v2 @ 2.60 GHz, 12
physical & 24 logical cores

Nodes
Processes
per node Time (s) Speedup

1 1 416.8 –
1 12 31.45 13.25x
12 1 35.16 11.86x
12 12 2.922 142.6x

Table: Zeno C++, 10M paths, Intelr Xeonr CPU E5-2630 v2 @ 2.60 GHz,
12 physical & 24 logical cores
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Generalization of the Monte Carlo Approach

Scalability Plots

Single Node Scalability
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Generalization of the Monte Carlo Approach

Scalability Plots

Almost Linear Scalability
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Conclusions

Conclusions

I Monte Carlo can be an efficient method for the numerical
solution of PDEs as evidenced by

1. Financial computing
2. Numerous problems in electrostatics
3. Problems in computational materials

I The computation of capacitance is a good model problem for
computational investigation

1. Computational geometry is the bottleneck that can be overcome
with proper choice of data-structure/algorithm

2. Allows for almost perfect parallelization, across cores and multicore
nodes

I C++ version of ZENO uses SPRNG
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Conclusions

Future Work

I We expect to be able to improve all the codes we have
developed

1. New C++ version of ZENO
2. Current C++ version of the WOS-PBE code

I We want to have a WOS-based implementation of the
capacitance code using CUDA on NVidia GPUs

1. Must use the analogous implementation that was developed for
vectorizing neutron transport

2. Will take advantage of the GPU version of SPRNG
I Plan to move to nonlinear PB solver using branching processes
I Two orders of magnitude improvement with almost perfect

parallel scaling will permit the rapid solution of very large
problems
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Conclusions
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