
Regular Languages (9)

Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

1 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Characterizations of Regular Languages

We now show that the class of regular languages can be
characterized as the class of all languages obtained from finite
languages using the operations ∪, ·, ∗ a finite number of times.

We will see that there are other characterizations of regular
languages as well.

2 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Definitions of L1 · L2 and L∗

Definition. Let L1, L2 ⊆ A∗. Then we write

L1 · L2 = L1L2 = {uv | u ∈ L1 and v ∈ L2}.

2.

Definition. Let L ⊆ A∗. Then we write

L∗ = {u1u2 . . . un | n ≥ 0, u1, u2, . . . , un ∈ L}.

2.

Note that, for L∗,

I 0 ∈ L∗

I The notation of A∗ is consistent with the definition of L∗.

3 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

L · L̃
Theorem 5.1. If L, L̃ are regular languages, then L · L̃ is regular.
Proof. Let M and M̃ be dfas that accept L and L̃ respectively.
The two are distinct but use the same alphabet. We now construct
a ndfa ˙M by “gluing together” the two dfas. We define

I the set of states Q̇ = Q ∪ Q̃

I the transition function δ̇ by

δ̇(q, s) =

{δ(q, s)} if q ∈ Q − F

{δ(q, s)} ∪ {δ̃(q̃1, s)} if q ∈ F

{δ̃(q, s)} if q ∈ Q̃

I the set of final states

Ḟ =

{
F ∪ F̃ if 0 ∈ L̃

F̃ if 0 6∈ L̃

Clearly, L · L̃ = L(˙M), so that L · L̃ is regular. 2.
4 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

L∗

Theorem 5.2. If L is a regular languages, then so is L∗.

Proof. Let M be a nonrestarting dfa that accept L. We now
construct a “looping” ndfa M̃ with the same states and initial
state as M , and accepting state q1. The transition function δ̃ is
defined as follows:

δ̃(q, s) =

{
{δ(q, s)} if δ(q, s) 6∈ F
{δ(q, s)} ∪ {q1} if δ(q, s) ∈ F

That is, whenever M would enter an accepting state, M̃ will enter
either the corresponding accepting state or the initial state.
Clearly, L∗ = L(M̃), so that L∗ is a regular language. 2.

5 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Kleene’s Theorem

Theorem 5.3. A language is regular if and only if it can be
obtained from finite languages by applying the three operators
∪, ·, ∗ a finite number of times.
Proof. (⇐=) Every finite language is regular. The three operators
build regular languages from regular languages. Therefore, by
induction on the number of applications of ∪, ·, ∗, any language
obtained from finite languages by applying these operators a finite
number of times is regular.
(=⇒) Let L = L(M) where M is a dfa with states q1, . . . , qn. As
usual, q1 is the initial state, F the set of accepting states, δ the
transition function, and A = {s1, . . . , sm} the alphabet.
We define the sets Rk

i ,j , for all i , j > 0, k ≥ 0, as follows:

Rk
i ,j = {x ∈ A∗ | δ∗(qi , x) = qj and, as it moves across x ,

M passes through no state ql with l > k}

6 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Kleene’s Theorem, Continued

Proof (continued). We observe that

R0
i ,i = {0}

R0
i ,j = {a ∈ A | δ(qi , a) = qj}, for i 6= j

Now, to process any string of length > 1, M will pass through
some intermediate state ql , l ≥ 1. We can write

Rk+1
i ,j = Rk

i ,j ∪ (Rk
i ,k+1 · (Rk

k+1,k+1)∗ · Rk
k+1,j)

In addition, Rk
i ,j is regular for for all i , j , k. This is proved by an

induction on k . For k = 0, R0
i ,j is finite hence regular. Assuming

the result known for k , (⇐=) yields the result for k + 1. Finally,
we note that

L(M) =
⋃
qj∈F

Rn
1,j

and we conclude the proof. 2
7 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Regular Expressions

For an alphabet A = { s1, s2, . . . , sk }, we define the corresponding
alphabet

A = { s1, s2, . . . sk, 0,∅,∪, ·, ∗, (,) }.

The class of regular expressions on A is then defined to be the
subset of A∗ determined by the following:

1. ∅, 0, s1, s2, . . . sk are regular expressions.

2. If α and β are regular expressions, then so is (α ∪ β).

3. If α and β are regular expressions, then so is (α · β).

4. If α is a regular expression, then so is α∗.

5. No expression is regular unless it can be generated using a
finite number of applications of 1–4.

8 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Semantics of Regular Expressions

For each regular expression γ, we define a corresponding regular
language 〈γ〉 by recursion according to the following rules:

〈si〉 = {si}
〈0〉 = {0}
〈∅〉 = ∅

〈(α ∪ β)〉 = 〈α〉 ∪ 〈β〉
〈(α · β)〉 = 〈α〉 · 〈β〉
〈α∗〉 = 〈α〉∗

When 〈γ〉 = L, we say that the regular expression γ represents L.

9 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Regular Expressions, Examples

〈(a · (b∗ ∪ c∗))〉 = {ab[n] | n ≥ 0} ∪ {ac [m] | m ≥ 0}
〈(0 ∪ (a · b)∗)〉 = {(ab)[n] | n ≥ 0}
〈((c∗ · b∗))〉 = {c [m]b[n] | m, n ≥ 0}

10 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Finite Subsets of A∗

Theorem 5.4. For every finite subset L of A∗, there is a regular
expressions γ on A such that 〈γ〉 = L.
Proof. We need only to consider the following:
I If L = ∅, then L = 〈∅〉.
I If L = 0, then L = 〈0〉.
I If L = {x}, where x = si1si2 . . . sil , then

L = 〈(si1
· (si2
· (si3

. . . sil
) . . .))〉.

I If L has more than one elements. Assuming the result is
known for languages of k elements, let L have k + 1 elements.
Then we can write L = L1 ∪ {x}, where x ∈ A∗ and L1
contains k elements. By induction hypothesis, there is a
regular expression α such that 〈α〉 = L1. By the above, there
is regular expression β such that 〈β〉 = {x}. Then we have

〈(α ∪ β)〉 = L1 ∪ {x} = L

2 11 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Kleene’s Theorem — Second Version

Theorem 5.5. A language L ⊆ A∗ is regular if and only if there is
a regular expression γ on A such that 〈γ〉 = L.
Proof. (⇐=) For any regular expression γ, the regular language
〈γ〉 is built up from finite languages by applying ∪, ·, ∗ a finite
number of times, so 〈γ〉 is regular by the Kleene’s theorem.

(=⇒) If a regular language L is finite, then by Theorem 5.4, there
is a regular expression γ such that 〈γ〉 = L. Otherwise, by Kleene’s
theorem, L can be obtained from certain finite languages by a
finite of applications of ∪, ·, ∗.
Starting with regular expressions representing these finite
languages, we then build up a regular expression representing L by
simply indicating each use of the operations ∪, ·, ∗ by writing ∪, ·,
∗, respectively, and punctuating with (and). 2

12 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Pigeon-Hole Principle

Pigeon-Hole Principle. If n + 1 objects are distributed among n
sets, then at least one of the sets must contain at least two
objects. 2

13 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Pumping Lemma
Theorem 6.1. Let L = L(M), where M is a dfa with n states.
Let x ∈ L, where |x | ≥ n. Then we can write x = uvw , where
v 6= 0 and uv [i]w ∈ L for all i = 0, 1, 2, 3,
Proof. Since x has at least n symbols, M must go through at least
n state transitions. Including the initial state, this requires M to
visit at least n + 1 states. We conclude that M must visit at least
one state q more than once. Then we can write x = uvw , where

δ∗(q1, u) = q,

δ∗(q, v) = q,

δ∗(q,w) ∈ F .

However, the loop starting and ending at q can be repeated any
number of times and M still reachs the accepting states. It is clear
that

δ∗(q1, uv
[i]w) = δ∗(q1, uvw) ∈ F .

Hence uv [i]w ∈ L. 2
14 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Applications of The Pumping Lemma, I

Theorem 6.2. Let M be a dfa with n states. Then, if L(M) 6= ∅,
there is a string x ∈ L(M) such that |x | < n.

Proof. Let x be a string in L(M) of the shortest possible length.
Suppose |x | ≥ n. By the pumping lemma, x = uvw , where v 6= 0
and uw ∈ L(M). Since |uw | < |x |, this is a contradiction. Thus
|x | < n. 2

This theorem shows how to test a given dfa M to see whether the
language it accepts is empty! We need only “run” M on all strings
of length less than the number of states of M . If none is accepted,
we then conclude L(M) = ∅.

15 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Applications of The Pumping Lemma, II

Theorem 6.4. Let M be a dfa with n states. Then, L(M) is
infinite if and only if L(M) contains a string x such that
n ≤ |x | < 2n.
Proof. (=⇒) Let L(M) be infinite. Then L(M) must contain
strings of length ≥ 2n. Let x ∈ L(M), where x has the shortest
possible length ≥ 2n. We write x = x1x2, where |x1| = n and
|x2| ≥ n. By using the pigeon-hole principle, we can write
x1 = uvw , where

δ∗(q1, u) = q,

δ∗(q, v) = q, with 1 ≤ |v | ≤ n,

δ∗(q,wx2) ∈ F .

Thus uwx2 ∈ L(M), and |x | > |uwx2| ≥ |x2| ≥ n.

16 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Applications of The Pumping Lemma, II, Continued

Proof (Theorem 6.4). Recall that we assume x is a shortest string
of L(M) with length at least 2n. If |x | = 2n, then
|uwx2| < |x | = 2n. If |x | > 2n, then either uwx2 becomes the
shortest string of length at least 2n (which is a contradiction), or
|uwx2| < 2n. we conclude n ≤ |uwx2| < 2n.
(⇐=) Let x ∈ L(M) with n ≤ |x | < 2n. By the pumping lemma,
we can write x = uvw , where v 6= 0 and uv [i]w ∈ L(M) for all i .
This shows that L(M) is infinite. 2

Theorem 6.4 shows how to test a given dfa M to see whether the
language it accepts is finite! We need only run M on all strings x
such that n ≤ |x | < 2n, where M has n states. L(M) is infinite
just in case M accepts at least one of these strings.

17 / 18

Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

Applications of The Pumping Lemma, III

The pumping lemma also provides us a technique for showing that
given languages are not regular.

For example, L = {a[n]b[n] | n > 0} is not regular. Suppose it is,
then L = L(M), where M is a dfa and has m states. We will
derive a contradiction by showing that there is a word x ∈ L, with
|x | > m, such that there is no way of writing x = uvw , with v 6= 0,
so that {uv [i]w | i ≥ 0} ⊆ L.

Let x = a[m]b[m]. If we write x = uvw , with v 6= 0, then either
v = a[l1], or v = a[l1]b[l2], or v = b[l2], with l1, l2 ≤ m. However, in
each case, uvvw 6∈ L, contradicting the pumping lemma, so there
can be no such dfa M . We just show that L is not regular.

18 / 18

	Regular Languages (9)
	Kleene's Theorem (9.5)
	The Pumping Lemma and Its Application (9.6)

