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Characterizations of Regular Languages

We now show that the class of regular languages can be
characterized as the class of all languages obtained from finite
languages using the operations ∪, ·, ∗ a finite number of times.

We will see that there are other characterizations of regular
languages as well.
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Definitions of L1 · L2 and L∗

Definition. Let L1, L2 ⊆ A∗. Then we write

L1 · L2 = L1L2 = {uv | u ∈ L1 and v ∈ L2}.

2.

Definition. Let L ⊆ A∗. Then we write

L∗ = {u1u2 . . . un | n ≥ 0, u1, u2, . . . , un ∈ L}.

2.

Note that, for L∗,

I 0 ∈ L∗

I The notation of A∗ is consistent with the definition of L∗.

3 / 18



Regular Languages (9)
Kleene’s Theorem (9.5)
The Pumping Lemma and Its Application (9.6)

L · L̃
Theorem 5.1. If L, L̃ are regular languages, then L · L̃ is regular.
Proof. Let M and M̃ be dfas that accept L and L̃ respectively.
The two are distinct but use the same alphabet. We now construct
a ndfa ˙M by “gluing together” the two dfas. We define

I the set of states Q̇ = Q ∪ Q̃

I the transition function δ̇ by

δ̇(q, s) =


{δ(q, s)} if q ∈ Q − F

{δ(q, s)} ∪ {δ̃(q̃1, s)} if q ∈ F

{δ̃(q, s)} if q ∈ Q̃

I the set of final states

Ḟ =

{
F ∪ F̃ if 0 ∈ L̃

F̃ if 0 6∈ L̃

Clearly, L · L̃ = L( ˙M ), so that L · L̃ is regular. 2.
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L∗

Theorem 5.2. If L is a regular languages, then so is L∗.

Proof. Let M be a nonrestarting dfa that accept L. We now
construct a “looping” ndfa M̃ with the same states and initial
state as M , and accepting state q1. The transition function δ̃ is
defined as follows:

δ̃(q, s) =

{
{δ(q, s)} if δ(q, s) 6∈ F
{δ(q, s)} ∪ {q1} if δ(q, s) ∈ F

That is, whenever M would enter an accepting state, M̃ will enter
either the corresponding accepting state or the initial state.
Clearly, L∗ = L(M̃ ), so that L∗ is a regular language. 2.
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Kleene’s Theorem

Theorem 5.3. A language is regular if and only if it can be
obtained from finite languages by applying the three operators
∪, ·, ∗ a finite number of times.
Proof. (⇐=) Every finite language is regular. The three operators
build regular languages from regular languages. Therefore, by
induction on the number of applications of ∪, ·, ∗, any language
obtained from finite languages by applying these operators a finite
number of times is regular.
(=⇒) Let L = L(M ) where M is a dfa with states q1, . . . , qn. As
usual, q1 is the initial state, F the set of accepting states, δ the
transition function, and A = {s1, . . . , sm} the alphabet.
We define the sets Rk

i ,j , for all i , j > 0, k ≥ 0, as follows:

Rk
i ,j = {x ∈ A∗ | δ∗(qi , x) = qj and, as it moves across x ,

M passes through no state ql with l > k}
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Kleene’s Theorem, Continued

Proof (continued). We observe that

R0
i ,i = {0}

R0
i ,j = {a ∈ A | δ(qi , a) = qj}, for i 6= j

Now, to process any string of length > 1, M will pass through
some intermediate state ql , l ≥ 1. We can write

Rk+1
i ,j = Rk

i ,j ∪ (Rk
i ,k+1 · (Rk

k+1,k+1)∗ · Rk
k+1,j)

In addition, Rk
i ,j is regular for for all i , j , k. This is proved by an

induction on k . For k = 0, R0
i ,j is finite hence regular. Assuming

the result known for k , (⇐=) yields the result for k + 1. Finally,
we note that

L(M ) =
⋃
qj∈F

Rn
1,j

and we conclude the proof. 2
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Regular Expressions

For an alphabet A = { s1, s2, . . . , sk }, we define the corresponding
alphabet

A = { s1, s2, . . . sk, 0,∅,∪, ·, ∗, (, ) }.

The class of regular expressions on A is then defined to be the
subset of A∗ determined by the following:

1. ∅, 0, s1, s2, . . . sk are regular expressions.

2. If α and β are regular expressions, then so is (α ∪ β).

3. If α and β are regular expressions, then so is (α · β).

4. If α is a regular expression, then so is α∗.

5. No expression is regular unless it can be generated using a
finite number of applications of 1–4.
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Semantics of Regular Expressions

For each regular expression γ, we define a corresponding regular
language 〈γ〉 by recursion according to the following rules:

〈si〉 = {si}
〈0〉 = {0}
〈∅〉 = ∅

〈(α ∪ β)〉 = 〈α〉 ∪ 〈β〉
〈(α · β)〉 = 〈α〉 · 〈β〉
〈α∗〉 = 〈α〉∗

When 〈γ〉 = L, we say that the regular expression γ represents L.
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Regular Expressions, Examples

〈(a · (b∗ ∪ c∗))〉 = {ab[n] | n ≥ 0} ∪ {ac [m] | m ≥ 0}
〈(0 ∪ (a · b)∗)〉 = {(ab)[n] | n ≥ 0}
〈((c∗ · b∗))〉 = {c [m]b[n] | m, n ≥ 0}
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Finite Subsets of A∗

Theorem 5.4. For every finite subset L of A∗, there is a regular
expressions γ on A such that 〈γ〉 = L.
Proof. We need only to consider the following:
I If L = ∅, then L = 〈∅〉.
I If L = 0, then L = 〈0〉.
I If L = {x}, where x = si1si2 . . . sil , then

L = 〈(si1
· (si2
· (si3

. . . sil
) . . .))〉.

I If L has more than one elements. Assuming the result is
known for languages of k elements, let L have k + 1 elements.
Then we can write L = L1 ∪ {x}, where x ∈ A∗ and L1
contains k elements. By induction hypothesis, there is a
regular expression α such that 〈α〉 = L1. By the above, there
is regular expression β such that 〈β〉 = {x}. Then we have

〈(α ∪ β)〉 = L1 ∪ {x} = L
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Kleene’s Theorem — Second Version

Theorem 5.5. A language L ⊆ A∗ is regular if and only if there is
a regular expression γ on A such that 〈γ〉 = L.
Proof. (⇐=) For any regular expression γ, the regular language
〈γ〉 is built up from finite languages by applying ∪, ·, ∗ a finite
number of times, so 〈γ〉 is regular by the Kleene’s theorem.

(=⇒) If a regular language L is finite, then by Theorem 5.4, there
is a regular expression γ such that 〈γ〉 = L. Otherwise, by Kleene’s
theorem, L can be obtained from certain finite languages by a
finite of applications of ∪, ·, ∗.
Starting with regular expressions representing these finite
languages, we then build up a regular expression representing L by
simply indicating each use of the operations ∪, ·, ∗ by writing ∪, ·,
∗, respectively, and punctuating with ( and ). 2
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Pigeon-Hole Principle

Pigeon-Hole Principle. If n + 1 objects are distributed among n
sets, then at least one of the sets must contain at least two
objects. 2
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Pumping Lemma
Theorem 6.1. Let L = L(M ), where M is a dfa with n states.
Let x ∈ L, where |x | ≥ n. Then we can write x = uvw , where
v 6= 0 and uv [i ]w ∈ L for all i = 0, 1, 2, 3, . . ..
Proof. Since x has at least n symbols, M must go through at least
n state transitions. Including the initial state, this requires M to
visit at least n + 1 states. We conclude that M must visit at least
one state q more than once. Then we can write x = uvw , where

δ∗(q1, u) = q,

δ∗(q, v) = q,

δ∗(q,w) ∈ F .

However, the loop starting and ending at q can be repeated any
number of times and M still reachs the accepting states. It is clear
that

δ∗(q1, uv
[i ]w) = δ∗(q1, uvw) ∈ F .

Hence uv [i ]w ∈ L. 2
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Applications of The Pumping Lemma, I

Theorem 6.2. Let M be a dfa with n states. Then, if L(M ) 6= ∅,
there is a string x ∈ L(M ) such that |x | < n.

Proof. Let x be a string in L(M ) of the shortest possible length.
Suppose |x | ≥ n. By the pumping lemma, x = uvw , where v 6= 0
and uw ∈ L(M ). Since |uw | < |x |, this is a contradiction. Thus
|x | < n. 2

This theorem shows how to test a given dfa M to see whether the
language it accepts is empty! We need only “run” M on all strings
of length less than the number of states of M . If none is accepted,
we then conclude L(M ) = ∅.
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Applications of The Pumping Lemma, II

Theorem 6.4. Let M be a dfa with n states. Then, L(M ) is
infinite if and only if L(M ) contains a string x such that
n ≤ |x | < 2n.
Proof. (=⇒) Let L(M ) be infinite. Then L(M ) must contain
strings of length ≥ 2n. Let x ∈ L(M ), where x has the shortest
possible length ≥ 2n. We write x = x1x2, where |x1| = n and
|x2| ≥ n. By using the pigeon-hole principle, we can write
x1 = uvw , where

δ∗(q1, u) = q,

δ∗(q, v) = q, with 1 ≤ |v | ≤ n,

δ∗(q,wx2) ∈ F .

Thus uwx2 ∈ L(M ), and |x | > |uwx2| ≥ |x2| ≥ n.
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Applications of The Pumping Lemma, II, Continued

Proof (Theorem 6.4). Recall that we assume x is a shortest string
of L(M ) with length at least 2n. If |x | = 2n, then
|uwx2| < |x | = 2n. If |x | > 2n, then either uwx2 becomes the
shortest string of length at least 2n (which is a contradiction), or
|uwx2| < 2n. we conclude n ≤ |uwx2| < 2n.
(⇐=) Let x ∈ L(M ) with n ≤ |x | < 2n. By the pumping lemma,
we can write x = uvw , where v 6= 0 and uv [i ]w ∈ L(M ) for all i .
This shows that L(M ) is infinite. 2

Theorem 6.4 shows how to test a given dfa M to see whether the
language it accepts is finite! We need only run M on all strings x
such that n ≤ |x | < 2n, where M has n states. L(M ) is infinite
just in case M accepts at least one of these strings.
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Applications of The Pumping Lemma, III

The pumping lemma also provides us a technique for showing that
given languages are not regular.

For example, L = {a[n]b[n] | n > 0} is not regular. Suppose it is,
then L = L(M ), where M is a dfa and has m states. We will
derive a contradiction by showing that there is a word x ∈ L, with
|x | > m, such that there is no way of writing x = uvw , with v 6= 0,
so that {uv [i ]w | i ≥ 0} ⊆ L.

Let x = a[m]b[m]. If we write x = uvw , with v 6= 0, then either
v = a[l1], or v = a[l1]b[l2], or v = b[l2], with l1, l2 ≤ m. However, in
each case, uvvw 6∈ L, contradicting the pumping lemma, so there
can be no such dfa M . We just show that L is not regular.
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