Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

Alphabets and Strings

- ▶ An *alphabet* is a finite nonempty set *A* of *symbols*.
- An *n*-tuple of symbols of A is called a *word* or a *string* on A. In stead of writing a word as (a_1, a_2, \ldots, a_n) we write simply $a_1 a_2 \ldots a_n$.
- ▶ If $u = a_1 a_2 ... a_n$, then we say that n is the length of u and we write |u| = n.
- ▶ We allow a unique null word, written 0, of length 0.
- ▶ The set of all words on the alphabet A is written as A^* .
- Any subset of A^* is called a *language on A* or a *language with alphabet A*.

Alphabets and Strings, More

- ▶ If $u, v \in A^*$, then we write \widehat{uv} for the word obtained by placing the string v after the string u. For example, if $A = \{a, b, c\}, u = bab$, and v = caa, then $\widehat{uv} = babcaa$.
- ▶ Where no confusion can result, we write uv instead of \widehat{uv} .
- It is obvious that, for all u, u0 = 0u = u, and that, for all u, v, w, u(vw) = (uv)w.
- ▶ If u is a string, and $n \in \mathbb{N}$, n > 0, we write

$$u^{[n]} = \underbrace{uu \dots u}_{n}$$

We also write $n^{[0]} = 0$.

▶ If $u \in A^*$, we write u^R for u written backward; i.e., if $u = a_1 a_2 \dots a_n$, then $u^R = a_n \dots a_2 a_1$. Clearly, $0^R = 0$, and $(uv)^R = v^R u^R$ for $u, v \in A^*$.

The Concept of Finite Automata

- ▶ A finite automaton has a finite number of internal *states* that control its behavior. The states function as memory in the sense that the current state keeps track of the progress of the computation.
- The automaton begins by reading the leftmost symbol on a finite input tape, in a specific state called the *initial state*.
- If at a given time, the automaton is in a state q_i , reading a given symbol s_i on the input tape, the machine moves one square to the right on the tape and enters a state q_k .
- ▶ The current state plus the symbol being read from the tape completely determine the automaton's next state.
- ▶ When all symbols have been read, the automaton either stops at an accepting state or a non-accepting state.

Definition of Finite Automaton

Definition. A finite automaton \mathcal{M} consists of

- ightharpoonup an alphabet $A = \{s_1, s_2, \dots, s_n\}$,
- ightharpoonup a set of states $Q = \{q_1, q_2, \dots, q_m\}$,
- ▶ a transition function δ that maps each pair $(q_i, s_j), 1 \le i \le m, 1 \le j \le n$, into a state q_k ,
- ▶ a set $F \subseteq Q$ of *final* or *accepting* states, and
- ightharpoonup an *initial* state $q_1 \in Q$.

We can represent the transition function δ using a state versus symbol table.

The finite automaton M has

- ightharpoonup alphabet $A = \{a, b\}$.
- ▶ the set of states $Q = \{q_1, q_2, q_3, q_4\}$,
- the transition function δ defined by the following table:

δ	а	b
q_1	q_2	q_4
q_2	q_2	q_3
q 3	q_4	q_3
q_4	q_4	q_4

- ▶ the set $F = \{q_3\}$ as the accepting states, and
- $ightharpoonup q_1$ as the initial state.

What Does Automaton M Do?

For strings aabbb, baba, aaba, and abbb, the finite automaton M

- accepts aabbb as M terminates in state q₃, which is an accepting state;
- rejects baba as M terminates in state q₄, which is not an accepting state;
- ► rejects aaba as M terminates in state q₄, which is not an accepting state;
- ▶ accepts *abbb* as \mathcal{M} terminates in state q_3 , which is an accepting state.

Function $\delta^*(q_i, u)$

If q_i is any state of \mathscr{M} and $u \in A^*$, we shall write $\delta^*(q_i, u)$ for the state which \mathscr{M} will enter if it begins in state q_i at the left end of the string u and moves across u until the entire string has been processed.

- $\delta^*(q_1, baba) = q_4$,

Definition of Function $\delta^*(q_i, u)$

A formal definition of function $\delta^*(q_i, u)$ is by the following recursion:

$$\delta^*(q_i, 0) = q_i,$$

$$\delta^*(q_i, us_j) = \delta(\delta^*(q_i, u), s_j).$$

Obviously,
$$\delta^*(q_i, s_j) = \delta(q_i, s_j)$$
.

We say that \mathscr{M} accepts a word u provided that $\delta^*(q_1, u) \in F$. \mathscr{M} rejects a word u means that $\delta^*(q_1, u) \in Q - F$.

Regular Languages

The language accepted by a finite automaton \mathcal{M} , written $L(\mathcal{M})$, is the set of all $u \in A^*$ accepted by \mathcal{M} :

$$L(\mathcal{M}) = \{u \in A^* \mid \delta^*(q_1, u) \in F\}.$$

A language is called *regular* if there exists a finite automaton that accepts it.

What Language Does This Automaton Accept?

The finite automaton *M* has

- ▶ the alphabet $A = \{a, b\}$,
- ▶ the set of states $Q = \{q_1, q_2, q_3, q_4\}$,
- **ightharpoonup** the transition function δ defined by the following table:

δ	а	b
q_1	q_2	q_4
q_2	q_2	q 3
q 3	q_4	q 3
q_4	q_4	q_4

- ▶ the set $F = \{q_3\}$ as the accepting states, and
- $ightharpoonup q_1$ as the initial state.

What Language Does Automaton *M* Accept?

The language it accepts is

$${a^{[n]}b^{[m]} \mid n, m > 0}.$$

As the above language is accepted by a finite automaton, we say it is a regular language.

State Transition Diagram

- Another way to represent the transition function δ is to draw a graph in which each state is represented by a *vertex*.
- ► The fact that $\delta(q_i, s_j) = q_k$ is represented by drawing an arrow from vertex q_i to vertex q_k and labeling it s_i .
- ► The diagram thus obtained is called the *state transition* diagram for the given automaton.
- ➤ See Fig. 1.1 in the textbook (p. 240) for the state transition diagram for the finite automaton we just showed in the previous two slides.

Nondeterministic Finite Automata

- We modify the definition of a finite automaton to permit transitions at each stage to either zero, one, or more than one states.
- ▶ That is, we make the the values of the transition function δ be sets of states, i.e., sets of elements of Q (rather than members of Q).
- ► The devices so obtained are called *nondeterministic finite* automata (ndfa).
- Sometimes the ordinary finite automata are then called deterministic finite automata (dfa).

Definition of Nondeterministic Finite Automaton

Definition. A nondeterministic finite automaton \mathscr{M} consists of

- ightharpoonup an alphabet $A = \{s_1, s_2, \dots, s_n\}$,
- ightharpoonup a set of states $Q = \{q_1, q_2, \dots, q_m\}$,
- ▶ a transition function δ that maps each pair $(q_i, s_j), 1 \le i \le m, 1 \le j \le n$, into a subset of states $Q_k \subseteq Q$,
- ▶ a set $F \subseteq Q$ of final or accepting states, and
- ightharpoonup an initial state $q_1 \in Q$.

Definition of Function $\delta^*(q_i, u)$

The formal definition of function $\delta^*(q_i, u)$ is now by:

$$\delta^*(q_i, 0) = \{q_i\},$$

$$\delta^*(q_i, us_j) = \bigcup_{q \in \delta^*(q_i, u)} \delta(q, s_j).$$

- ▶ A ndfa \mathcal{M} with initial state q_1 accepts $u \in A^*$ if $\delta^*(q_1, u) \cap F \neq \emptyset$.
- ▶ That is, at least one of the states at which \mathcal{M} ultimately arrives belongs to F.
- ▶ $L(\mathcal{M})$, the language accepted by \mathcal{M} , is the set of all strings accepted by \mathcal{M} .

What Does This Automaton Do?

The nondeterministic finite automaton *M* has

- ▶ the alphabet $A = \{a, b\}$,
- ▶ the set of states $Q = \{q_1, q_2, q_3, q_4\}$,
- the transition function δ defined by the following table:

δ	а	b
q_1	$\{q_1, q_2\}$ $\{q_4\}$	$\{q_1,q_3\}$
q_2	$\{q_4\}$	Ø
q 3	Ø	$\{q_4\}$
q 4	$\{q_4\}$	$\{q_4\}$

- ▶ the set $F = \{q_4\}$ as the accepting states, and
- $ightharpoonup q_1$ as the initial state.
- ► For the state transition diagram of *M*, see Fig. 2.1 in the textbook (p. 243).

What Strings Does Automaton M Accept?

M accepts a string on the alphabet $\{a, b\}$ just in case at least one of the symbols has two successive occurrence in the string.

Why?

Viewing dfa as ndfa

- ► Strictly speaking, a dfa is *not* just a special kind of ndfa.
- ► This is because for a dfa, $\delta(q, s)$ is a state, where for a ndfa it is a set of states.
- ▶ But it is natural to identify a dfa ${\mathscr M}$ with transition function δ , with the closely related ndfa ${\mathscr M}$ whose transition function $\bar{\delta}$ is given by

$$\bar{\delta}(q,s) = {\delta(q,s)},$$

and which has the same final states as \mathcal{M} .

▶ It is obviously that $L(\mathcal{M}) = L(\bar{\mathcal{M}})$.

dfa is as expressive as ndfa

Theorem 2.1. A language is accepted by a ndfa if and only if it is regular. Equivalently, a language is accepted by an ndfa if and only if it is accepted by a dfa.

Proof Outline. As we have seen, a language accepted by a dfa is also accepted by an ndfa.

Conversely, let $L=L(\mathcal{M})$, where \mathcal{M} is an ndfa with transition function δ , set of states $Q=\{q_1,\ldots,q_m\}$, and set of final states F. We will construct a dfa $\tilde{\mathcal{M}}$ such that $L(\tilde{\mathcal{M}})=L(\mathcal{M})=L$.

The idea of the construction is that the individual states of $\tilde{\mathcal{M}}$ will be sets of states of \mathcal{M} .

Constructing $\tilde{\mathscr{M}}$

The dfa $\tilde{\mathcal{M}}$ consists of

- ▶ the same alphabet $A = \{s_1, s_2, ..., s_n\}$ of the ndfa \mathcal{M} ,
- ▶ the set of states $\tilde{Q} = \{Q_1, Q_2, \dots, Q_{2^m}\}$ which consists of all the 2^m subsets of the set of states of the ndfa \mathcal{M} ,
- ightharpoonup the transition function $ilde{\delta}$ defined by

$$\widetilde{\delta}(Q_i,s) = \bigcup_{q \in Q_i} \delta(q,s),$$

the set F of final states given by

$$\mathscr{F} = \{Q_i \mid Q_i \cap F \neq \emptyset\},\$$

▶ the initial state $Q_1 = \{q_1\}$, where q_1 is the initial state of \mathcal{M} .

Lemma 1. Let $R \subseteq \tilde{Q}$. Then

$$ilde{\delta}(igcup_{Q_i\in R}Q_i,\;s)=igcup_{Q_i\in R} ilde{\delta}(Q_i,s).$$

Proof. Let $\bigcup_{Q_i \in R} Q_i = Q$. Then by definition,

$$\tilde{\delta}(Q, s) = \bigcup_{q \in Q} \delta(q, s)$$

$$= \bigcup_{Q_i \in R} \bigcup_{q \in Q_i} \delta(q, s)$$

$$= \bigcup_{Q_i \in R} \tilde{\delta}(Q_i, s).$$

Lemma 2. For any string u,

$$\tilde{\delta}^*(Q_i, u) = \bigcup_{q \in Q_i} \delta^*(q, u).$$

Proof. The proof is by induction on |u|. If |u| = 0, then u = 0 and

$$ilde{\delta}^*(Q_i,0) = Q_i = igcup_{q \in Q_i} \{q\} = igcup_{q \in Q_i} \delta^*(q,0)$$

Proof. (Continued) If |u| = l + 1 and the result is known for |u| = l, we write u = vs, where |v| = l, and observe that, using Lemma 1 and the induction hypothesis,

$$\tilde{\delta}^*(Q_i, u) = \tilde{\delta}^*(Q_i, vs) = \tilde{\delta}(\tilde{\delta}^*(Q_i, v), s)
= \tilde{\delta}(\bigcup_{q \in Q_i} \delta^*(q, v), s)
= \bigcup_{q \in Q_i} \tilde{\delta}(\delta^*(q, v), s)
= \bigcup_{q \in Q_i} \bigcup_{r \in \delta^*(q, v)} \delta(r, s)
= \bigcup_{q \in Q_i} \delta^*(q, vs) = \bigcup_{q \in Q_i} \delta^*(q, u).$$

Lemma 3. $L(\mathcal{M}) = L(\tilde{\mathcal{M}})$.

Proof. $u \in L(\tilde{\mathscr{M}})$ if and only if $\tilde{\delta}^*(Q_1, u) \in \mathscr{F}$. But, by Lemma 2,

$$\tilde{\delta}^*(Q_1, u) = \tilde{\delta}^*(\{q_1\}, u) = \delta^*(q_1, u).$$

Hence,

$$u \in L(\widetilde{\mathcal{M}})$$
 if and only if $\delta^*(q_1, u) \in \mathscr{F}$ if and only if $\delta^*(q_1, u) \cap F \neq \emptyset$ if and only if $u \in L(\mathcal{M})$

Note that Theorem 2.1 is an immediate consequence of Lemma 3.

Additional Examples

► Construct a dfa that accepts the language:

$$\{(11)^{[n]} \mid n \ge 0\}$$

- ▶ The vendor machine example. (Fig. 3.2 in textbook, p. 248)
- Construct an ndfa that accepts all and only strings which end in bab or aaba.
- Construct an ndfa that accepts the language:

$${a^{[n_1]}b^{[m_1]}\dots a^{[n_k]}b^{[m_k]}\mid n_1,m_1,\dots,n_k,m_k>0}.$$

Closure properties

- ► To show that the class of regular languages is closed under a large number of operations.
- ► To use deterministic or nondeterministic finite automata whenever necessary, as the two classes of automata are equivalent in expressiveness (Theorem 2.1).

Nonrestarting dfa

Definition. A dfa is called *nonrestarting* if there is no pair q, s for which

$$\delta(q,s)=q_1$$

where q_1 is the initial state.

Theorem 4.1. There is an algorithm that will transform a given dfa \mathscr{M} into a nonrestarting dfa $\widetilde{\mathscr{M}}$ such that $L(\widetilde{\mathscr{M}}) = L(\mathscr{M})$.

Constructing a nonrestarting dfa from a dfa

Proof of Theorem 4.1. From a dfa \mathcal{M} , we can construct an equivalent nonrestarting dfa $\tilde{\mathcal{M}}$ by adding a new "returning initial" state q_{n+1} , and by redefining the transition function accordingly. That is, for $\tilde{\mathcal{M}}$, we define

- ▶ the set of states $\tilde{Q} = Q \cup \{q_{n+1}\}$
- \blacktriangleright the transition function $\tilde{\delta}$ by

$$ilde{\delta}(q,s) = \left\{egin{array}{ll} \delta(q,s) & ext{if} & q \in Q ext{ and } \delta(q,s)
eq q_1 \ q_{n+1} & ext{if} & q \in Q ext{ and } \delta(q,s) = q_1 \ ilde{\delta}(q_{n+1},s) & = & ilde{\delta}(q_1,s) \end{array}
ight.$$

▶ the set of final states $\tilde{F} = \left\{ egin{array}{ll} F & ext{if} & q_1
otin F \\ F \cup \{q_{n+1}\} & ext{if} & q_1 \in F \end{array} \right.$

To see that $L(\mathcal{M}) = L(\tilde{\mathcal{M}})$ we observe that $\tilde{\mathcal{M}}$ follows the same transitions as \mathcal{M} except whenever \mathcal{M} reenters q_1 , $\tilde{\mathcal{M}}$ enters q_{n+1} .

$L \cup \tilde{L}$

Theorem 4.2. If L and \tilde{L} are regular languages, then so is $L \cup \tilde{L}$. *Proof.* Let \mathscr{M} and $\mathscr{\tilde{M}}$ be nonrestarting dfas that accept L and \tilde{L} respectively. We now construct a ndfa $\mathscr{\tilde{M}}$ by "merging" \mathscr{M} and $\mathscr{\tilde{M}}$ but with a new initial state \check{q}_1 . That is, we define $\mathscr{\tilde{M}}$ by

- lackbox the set of states $reve{Q} = Q \cup ilde{Q} \cup \{ reve{q}_1 \} \{ q_1, ilde{q}_1 \}$
- ightharpoonup the transition function δ by

$$\check{\delta}(q,s) = \begin{cases}
\{\delta(q,s)\} & \text{if } q \in Q - \{q_1\} \\
\{\tilde{\delta}(q,s)\} & \text{if } q \in \tilde{Q} - \{\tilde{q}_1\} \\
\check{\delta}(\tilde{q}_1,s) = \{\delta(q_1,s)\} \cup \{\tilde{\delta}(\tilde{q}_1,s)\}
\end{cases}$$

the set of final states

$$\check{F} = \left\{ egin{array}{ll} F \cup \widetilde{F} \cup \{\check{q}_1\} - \{q_1, \widetilde{q}_1\} & ext{if } q_1 \in F ext{ or } \widetilde{q}_1 \in \widetilde{F} \\ F \cup \widetilde{F} & ext{otherwise} \end{array}
ight.$$

Note that once a first transition has been selected, $\tilde{\mathcal{M}}$ is locked into either $\tilde{\mathcal{M}}$ or $\tilde{\mathcal{M}}$. Hence $L(\tilde{\mathcal{M}}) = L \cup \tilde{L}$.

$$A^* - L$$

Theorem 4.3. Let $L \subseteq A^*$ be a regular language. Then $A^* - L$ is regular.

Proof. Let \mathscr{M} be a dfa that accept L. Let dfa $\overline{\mathscr{M}}$ be exactly like \mathscr{M} except that it accepts precisely when \mathscr{M} rejects. That is, the set of accepting states of $\overline{\mathscr{M}}$ is Q - F. Then $L(\overline{\mathscr{M}}) = A^* - L$. \square

$$L_1 \cap L_2$$

Theorem 4.4. If L_1 and L_2 are regular languages, then so is $L_1 \cap L_2$.

Proof. Let $L_1, L_2 \subseteq A^*$. Then, by the De Morgan identity, we have

$$L_1 \cap L_2 = A^* - ((A^* - L_1) \cup (A^* - L_2))$$

Theorem 4.2 and 4.3 then give the result.

\emptyset and $\{0\}$

Theorem 4.5. \emptyset and $\{0\}$ are regular languages.

Proof. \emptyset is clearly the language accepted by any automaton whose set of accepting states is empty.

For $\{0\}$, we can construct a two-state dfa such that $F = \{q_1\}$ and $\delta(q_1, a) = \delta(q_2, a) = q_2$ for every symbol $a \in A$, the alphabet. Clearly this dfa accepts $\{0\}$.

Every finite subset of A^* is regular

Theorem 4.5. Let $u \in A^*$. Then $\{u\}$ is a regular language.

Proof. Theorem 4.4 proves the case for u=0. For the other case, let $u=a_1a_2\ldots a_l$ where $l\geq 1,a_1,a_2,\ldots a_l\in A$. We now construct a (l+1)-state ndfa \mathscr{M} with initial state q_1 , accepting state q_{l+1} , and the transition function δ given by

$$\delta(q_i, a_i) = \{q_{i+1}\}, \quad i = 1, ..., I$$

 $\delta(q_i, a) = \emptyset \text{ for } a \in A - \{a_i\}, \quad i = 1, ..., I$

Clearly
$$L(\mathcal{M}) = \{u\}.$$

Corollary 4.7. Every finite subset of A^* is regular.