
A Universal Program (4)

Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

1 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Recursive Theorem

Theorem 8.1. Let g(z , x1, . . . , xm) be a partially computable
function of m + 1 variables. Then there is a number e such that

Φ
(m)
e (x1, . . . , xm) = g(e, x1, . . . , xm)

Proof. Consider the partially computable function

g(S1
m(v , v), x1, . . . , xm)

where S1
m is the function that occurs in the parameter theorem.

Then we have some number z0 such that

g(S1
m(v , v), x1, . . . , xm) = Φ(m+1)(x1, . . . , xm, v , z0)

= Φ(m)(x1, . . . , xm, S
1
m(v , z0)).

Setting v = z0 and e = S1
m(z0, z0), we have

g(e, x1, . . . , xm) = Φ(m)(x1, . . . , xm, e) = Φ
(m)
e (x1, . . . , xm)

2
2 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

A Self-Reproducing Program

Corollary 8.2. There is a number e such that for all x

Φe(x) = e

Proof. We consider the computable function

g(z , x) = u21(z , x) = z

Applying the recursive theorem we obtain a number e such that

Φe(x) = g(e, x) = e

2

Note: The program with number e “consumes’ its input x and
outputs a “copy” of itself. It is a “self-reproducing” organism!

3 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Recursive Theorem, Examples

By using the recursive theorem, we can show that the functions
obtained from primitive recursion over other computable functions
are also computable. To see this, first consider

f (x , t) =

{
k if t = 0
g(t−̇1,Φx(t−̇1)) otherwise

where g(x , y) is computable. By the recursion theorem there is a
number e such that

Φe(t) = f (e, t) =

{
k if t = 0
g(t−̇1,Φe(t−̇1)) otherwise

An induction on t shows that Φe is a total, and therefore
computable, function. Now Φe satisfies the equations

Φe(0) = k

Φe(t + 1) = g(t,Φe(t))

That is, Φe is obtained from g by primitive recursion.
4 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Fixed Point Theorem
Theorem 8.3. Let f (z) be a computable function. Then there is a
number e such that, for all x ,

Φf (e)(x) = Φe(x)

Proof. Let g(z , x) = Φf (z)(x), a partially computable function. By
the recursion theorem, there is a number e such that

Φe(x) = g(e, x) = Φf (e)(x)

2

Note that
I A number n is a fixed point of a function f (x) if f (n) = n.
I However, there are computable functions that have no fixed

point in this sense, e.g., s(x).
I The fixed point theorem says that for every computable

function f (x), there is a number e of a program that
computes the same function as the program with the number
f (e). 5 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

A Computable Function That is Not primitive Recursive

The Plan for A Proof:
I Construct a computable function φ(t, x) that enumerates all

of the unary primitive recursive functions. That is,

1. for each fixed value t = t0, the function φ(t0, x) will be
primitive recursive;

2. for each unary primitive recursive function f (x), there will be a
number t0 such that f (x) = φ(t0, x).

I Show by diagonalization that the unary computable function
φ(x , x) + 1 is different from all primitive functions.

I Note that for the enumeration function φ(t, x) to work, we
must show all primitive functions can be represented in an
unary manner.

6 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Reduce the Parameter Count in Primitive Recursion

From a total n-ary function f and a total n + 2-ary function g , one
derives by primitive recursion a total n + 1-ary function h by

h(x1, . . . , xn, 0) = f (x1, . . . , xn)

h(x1, . . . , xn, t + 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn).

If n > 1 we can reduce the number of parameters needed from n to
n − 1 by using the pairing functions. That is, let

f̃ (x1, . . . , xn−1) = f (x1, . . . , xn−2, l(xn−1), r(xn−1))

g̃(t, u, x1, . . . , xn−1) = g(t, u, x1, . . . , xn−2, l(xn−1), r(xn−1))

h̃(x1, . . . , xn−1, t) = h(x1, . . . , xn−2, l(xn−1), r(xn−1), t)

7 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Reduce the Parameter Count in Primitive Recursion,
Continued

Then we have

h̃(x1, . . . , xn−1, 0) = f̃ (x1, . . . , xn−1)

h̃(x1, . . . , xn−1, t + 1) = g̃(t, h̃(x1, . . . , xn−1, t), x1, . . . , xn−1)

Note that the original function h can be retrieved by

h(x1, . . . , xn, t) = h̃(x1, . . . , xn−2, 〈xn−1, xn〉, t)

8 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Primitive Recursion, Reduced Form

By iterating this process we can reduce the number of parameters
to 1, that is, to recursions of the form

h(x , 0) = f (x)

h(x , t + 1) = g(t, h(x , t), x)

Recursions with no parameters can also be put in the above form.
Namely, for recursion

ψ(0) = k

ψ(t + 1) = θ(t, ψ(t))

we simply set

f (x) = k

g(x1, x2, x3) = θ(u31(x1, x2, x3), u32(x1, x2, x3))

Then ψ(t) = h(x , t) for all x .
9 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Primitive Recursion, Further Reduced

h(x , 0) = f (x)

h(x , t + 1) = g(t, h(x , t), x)

The above can be further reduced by using the pairing function to
combine arguments. Namely, we set

h̃(x , t) = 〈h(x , t), 〈x , t〉〉
Then, we have

h̃(x , 0) = 〈f (x), 〈x , 0〉〉
h̃(x , t + 1) = 〈g(t, h(x , t), x), 〈x , t + 1〉〉 = g̃(h̃(x , t))

where

g̃(u) = 〈g(r(r(u)), l(u), l(r(u))), 〈l(r(u)), r(r(u)) + 1〉〉
Again, the original function h can be retrieved by
h(x , t) = l(h̃(x , t)).

10 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Taking Pairing Function as Initial Function

Theorem 9.1. The primitive recursive functions are precisely the
functions obtainable from the initial functions

s(x), n(x), l(z), r(z), 〈x , y〉, and uni , 1 ≤ i ≤ n

using the operations of composition and primitive recursion of the
particular form

h(x , 0) = f (x)

h(x , t + 1) = g(h(x , t))

2

11 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Unary Primitive Recursive Function

Theorem 9.2. The unary primitive recursive functions are
precisely those obtainable from the initial functions

s(x), n(x), l(z), r(z)

by applying the following three operations on unary functions:

1. to go from f (x) and g(x) to f (g(x)),

2. to go from f (x) and g(x) to 〈f (x), g(x)〉,
3. to go from f (x) and g(x) to the function defined by the

recursion

h(0) = 0

h(t + 1) =

{
f ( t

2) if t + 1 is odd,
g(h( t+1

2 )) if t + 1 is even.

2
12 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Unary Primitive Recursive Function, Proof Outline

Proof Outline. Let PR be the set of all functions obtained from
the initials listed in the theorem using operations 1 to 3. We show
that PR is precisely the set of unary primitive recursive functions
by proving the following:

1. show all functions in PR are primitive recursive,

2. show every unary primitive recursive function belongs to PR.

Because an unary primitive recursive function may be composed
from primitive recursive functions that are not unary, e.g. h(t)
defined by h′(t, . . . , t), where

h′(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn))

Proving 2. above will need additional care. 2

13 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Functions in PR Are Primitive Recursive

We need only show that functions obtained from operation 3 are
primitive recursive; the other cases are already known. Making use
of Gödel numbering, we set

~h(0) = 0,
~h(n) = [h(0), . . . , h(n − 1)] if n > 0.

We will show that ~h(n) is primitive recursive and then
h(n) = (~h(n + 1))n+1 is primitive recursive as well.

~h(n) is primitive recursive because

~h(n + 1) = ~h(n) · ph(n)n+1

=

{
~h(n) · pf (bn/2c)n+1 if n is odd,

~h(n) · pg((
~h(n))bn/2c)

n+1 if n is even.

Recall that pn is the n-th prime number.
14 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Every Unary Primitive Recursive Function Is in PR, Proof
Outline

I A function g(x1, . . . , xn) is called satisfactory if it has the
property that for any unary function h1(t), . . . , hn(t) that
belongs to PR, the unary function g(h1(t), . . . , hn(t)) also
belongs to PR.

I Note that an unary function g(t) that is satisfactory must
belong to PR because g(t) = g(u11(t)) and
u11(t) = 〈l(t), r(t)〉 belongs to PR.

I We proceed to show that all primitive recursive functions are
satisfactory, hence prove that every unary primitive recursive
function is in PR.

I We shall use the characterization of the primitive recursive
functions of Theorem 9.1

15 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

All Primitive Recursive Functions Are Satisfactory, 1/3
I Initial functions: We need consider only the pairing function
〈x1, x2〉 and the projection function uni where 1 ≤ i ≤ n.

1. By definition, 〈h1(t), h2(t)〉 is in PR if both h1(t) and h2(t)
are in PR.

2. If h1(t), . . . , hn(t) are in PR, then uni (h1(t), . . . , hn(t)) = hi (t)
of course is in PR.

I Function composition: Let

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn))

where g1, . . . , gk and f are satisfactory. Let h1(t), . . . , hn(t)
be given functions that belong to PR. Then, setting

g̃i (t) = gi (h1(t), . . . , hn(t))

for 1 ≤ i ≤ k we see that each g̃i is in PR. Now, the unary
function

h(h1(t), . . . , hn(t)) = f (g̃1(t), . . . , g̃k(t))

also belongs to PR, hence h(x1, . . . , xn) is satisfactory. 16 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

All Primitive Recursive Functions Are Satisfactory, 2/3

I Primitive recursion: Let

h(x , 0) = f (x)

h(x , t + 1) = g(h(x , t))

where f and g are satisfactory. We want to encode the binary
function h(b, a) by an unary function ψ(〈a, b〉+ 1) = h(b, a).
Note that ψ(0) = 0 and ψ(t + 1) = h(r(t), l(t)). Recall that

〈a, b〉 = 2a(2b + 1)− 1

1. If t + 1 is even, then 2a(2b + 1) is even; hence a > 0 and

ψ(t + 1) = h(b, a) = g(h(b, a− 1))

= g(ψ(2a−1(2b + 1))) = g(ψ((t + 1)/2)).

2. If t + 1 is odd, then 2a(2b + 1) is odd; hence a = 0 and

ψ(t + 1) = h(b, 0) = f (b) = f (t/2). 17 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

All Primitive Recursive Functions Are Satisfactory, 3/3

I Primitive recursion (continued): In other words,

ψ(0) = 0

ψ(t + 1) =

{
f ( t

2) if t + 1 is odd,
g(ψ( t+1

2 )) if t + 1 is even.

Now f and g are satisfactory, and being unary, belongs to PR.
By the definitions of PR, ψ belongs to PR as well.

I To retrieve h from ψ we simply use h(b, a) = ψ(〈a, b〉+ 1).
Therefore,

h(h2(t), h1(t)) = ψ(s(〈h1(t), h2(t)〉))

from which we see that if both h1 and h2 are in PR then so is
h(h2(t), h1(t)). Hence h is satisfactory.

18 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

Enumerating All Unary Primitive Recursive Functions

We now define the function φ(t, x), also written as φt(x), to
enumerate all unary primitive recursive functions:

φt(x) =



x + 1 if t = 0
0 if t = 1
l(x) if t = 2
r(x) if t = 3
φl(n)(φr(n)(x)) if t = 3n + 4, n ≥ 0
〈φl(n)(x), φr(n)(x)〉 if t = 3n + 5, n ≥ 0
0 if t = 3n + 6, n ≥ 0 and x = 0
φl(x)((x − 1)/2) if t = 3n + 6, n ≥ 0 and x is odd
φr(x)(φt(x/2)) if t = 3n + 6, n ≥ 0 and x is even

19 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

A Closer Look at φ(t, x)

I φ0, φ1, φ2, φ3 are the four initial functions.

I For t > 3, t is represented as 3n + i where n ≥ 0 and
i = 4, 5, 6. The three operations of Theorem 9.2 are then
dealt with for the corresponding value of i .

I The pairing functions are used to guarantee all functions
obtained for any value of t are eventually used in all possible
applications of the three operations.

I It is clear from the definition that φ(t, x) is a total function
and that it does enumerate all the unary primitive recursive
functions.

I It is clear that the definition of φ(t, x) also provides an
algorithm for computing the values of φ for any given inputs.

20 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

φ(t, x) Is Computable

We prove φ(t, x) is computable by using the recursive theorem.
Let function g(z , t, x) be defined as

g(z , t, x) =



x + 1 if t = 0
0 if t = 1
l(x) if t = 2
r(x) if t = 3

Φ
(2)
z (l(n),Φ

(2)
z (r(n), x)) if t = 3n + 4, n ≥ 0

〈Φ(2)
z (l(n), x),Φ

(2)
z (r(n), x)〉 if t = 3n + 5, n ≥ 0

0 if t = 3n + 6, n ≥ 0 and x = 0

Φ
(2)
z (l(n), bx/2c) if t = 3n + 6, n ≥ 0 and x is odd

Φ
(2)
z (r(n),Φ

(2)
z (t, bx/2c) if t = 3n + 6, n ≥ 0 and x is even

21 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

φ(t, x) Is Computable, Continued

Then g(z , t, x) is partially computable, and by the recursion
theorem, there is a number e such that

g(e, t, x) = Φe(t, x)

As g(e, t, x) satisfy the definition of φ(t, x) and that definition
determines φ uniquely as a total function, we must have

φ(t, x) = g(e, t, x)

Hence, φ(t, x) is computable.

22 / 23



A Universal Program (4)
The Recursive Theorem (4.8)
A Computable Function That is Not primitive Recursive (4.9)

φ(x , x) + 1 Is Not Primitive Recursive

Theorem 9.3. The function φ(x , x) + 1 is a computable function
that is not primitive recursive. 2

23 / 23


	A Universal Program (4)
	The Recursive Theorem (4.8)
	A Computable Function That is Not primitive Recursive (4.9)


