Theory of Computation

Prof. Michael Mascagni

Florida State University Department of Computer Science

Recursive Theorem

Theorem 8.1. Let $g(z, x_1, ..., x_m)$ be a partially computable function of m + 1 variables. Then there is a number e such that

$$\Phi_e^{(m)}(x_1,\ldots,x_m)=g(e,x_1,\ldots,x_m)$$

Proof. Consider the partially computable function

 $g(S_m^1(v,v),x_1,\ldots,x_m)$

where S_m^1 is the function that occurs in the parameter theorem. Then we have some number z_0 such that

$$g(S_m^1(v,v), x_1, \dots, x_m) = \Phi^{(m+1)}(x_1, \dots, x_m, v, z_0) = \Phi^{(m)}(x_1, \dots, x_m, S_m^1(v, z_0)).$$

Setting $v = z_0$ and $e = S_m^1(z_0, z_0)$, we have

$$g(e, x_1, \ldots, x_m) = \Phi^{(m)}(x_1, \ldots, x_m, e) = \Phi^{(m)}_e(x_1, \ldots, x_m)$$

A Self-Reproducing Program

Corollary 8.2. There is a number *e* such that for all *x*

 $\Phi_e(x) = e$

Proof. We consider the computable function

 $g(z,x) = u_1^2(z,x) = z$

Applying the recursive theorem we obtain a number e such that

 $\Phi_e(x) = g(e, x) = e$

Note: The program with number e "consumes' its input x and outputs a "copy" of itself. It is a "self-reproducing" organism!

Recursive Theorem, Examples

By using the recursive theorem, we can show that the functions obtained from primitive recursion over other computable functions are also computable. To see this, first consider

$$f(x,t) = \left\{ egin{array}{cc} k & ext{if } t = 0 \ g(t-1, \Phi_x(t-1)) & ext{otherwise} \end{array}
ight.$$

where g(x, y) is computable. By the recursion theorem there is a number e such that

$$\Phi_e(t)=f(e,t)=\left\{egin{array}{cc}k& ext{if }t=0\g(t-1,\Phi_e(t-1))& ext{otherwise}\end{array}
ight.$$

An induction on t shows that Φ_e is a total, and therefore computable, function. Now Φ_e satisfies the equations

$$\begin{array}{rcl} \Phi_e(0) &=& k \\ \Phi_e(t+1) &=& g(t, \Phi_e(t)) \end{array}$$

That is, Φ_e is obtained from g by primitive recursion.

Fixed Point Theorem

Theorem 8.3. Let f(z) be a computable function. Then there is a number *e* such that, for all *x*,

$$\Phi_{f(e)}(x) = \Phi_e(x)$$

Proof. Let $g(z, x) = \Phi_{f(z)}(x)$, a partially computable function. By the recursion theorem, there is a number *e* such that

$$\Phi_e(x) = g(e, x) = \Phi_{f(e)}(x)$$

Note that

- A number *n* is a fixed point of a function f(x) if f(n) = n.
- However, there are computable functions that have no fixed point in this sense, e.g., s(x).
- The fixed point theorem says that for every computable function f(x), there is a number e of a program that computes the same function as the program with the number f(e).

A Computable Function That is Not primitive Recursive

The Plan for A Proof:

- Construct a computable function \u03c6(t, \u03c8) that enumerates all of the unary primitive recursive functions. That is,
 - 1. for each fixed value $t = t_0$, the function $\phi(t_0, x)$ will be primitive recursive;
 - 2. for each unary primitive recursive function f(x), there will be a number t_0 such that $f(x) = \phi(t_0, x)$.
- Show by diagonalization that the unary computable function φ(x, x) + 1 is different from all primitive functions.
- ► Note that for the enumeration function φ(t, x) to work, we must show all primitive functions can be represented in an unary manner.

Reduce the Parameter Count in Primitive Recursion

From a total *n*-ary function f and a total n + 2-ary function g, one derives by primitive recursion a total n + 1-ary function h by

 $h(x_1,...,x_n,0) = f(x_1,...,x_n)$ $h(x_1,...,x_n,t+1) = g(t,h(x_1,...,x_n,t),x_1,...,x_n).$

If n > 1 we can reduce the number of parameters needed from n to n-1 by using the pairing functions. That is, let

$$\begin{aligned} \tilde{f}(x_1, \dots, x_{n-1}) &= f(x_1, \dots, x_{n-2}, l(x_{n-1}), r(x_{n-1})) \\ \tilde{g}(t, u, x_1, \dots, x_{n-1}) &= g(t, u, x_1, \dots, x_{n-2}, l(x_{n-1}), r(x_{n-1})) \\ \tilde{h}(x_1, \dots, x_{n-1}, t) &= h(x_1, \dots, x_{n-2}, l(x_{n-1}), r(x_{n-1}), t) \end{aligned}$$

Reduce the Parameter Count in Primitive Recursion, Continued

Then we have

$$\tilde{h}(x_1, \dots, x_{n-1}, 0) = \tilde{f}(x_1, \dots, x_{n-1})$$

$$\tilde{h}(x_1, \dots, x_{n-1}, t+1) = \tilde{g}(t, \tilde{h}(x_1, \dots, x_{n-1}, t), x_1, \dots, x_{n-1})$$

Note that the original function h can be retrieved by

$$h(x_1,\ldots,x_n,t)=\tilde{h}(x_1,\ldots,x_{n-2},\langle x_{n-1},x_n\rangle,t)$$

Primitive Recursion, Reduced Form

By iterating this process we can reduce the number of parameters to 1, that is, to recursions of the form

$$h(x,0) = f(x)$$

 $h(x,t+1) = g(t,h(x,t),x)$

Recursions with no parameters can also be put in the above form. Namely, for recursion

$$\psi(0) = k$$

 $\psi(t+1) = \theta(t,\psi(t))$

we simply set

$$f(x) = k$$

$$g(x_1, x_2, x_3) = \theta(u_1^3(x_1, x_2, x_3), u_2^3(x_1, x_2, x_3))$$

Then $\psi(t) = h(x, t)$ for all x.

Primitive Recursion, Further Reduced

$$h(x,0) = f(x)$$

 $h(x,t+1) = g(t,h(x,t),x)$

The above can be further reduced by using the pairing function to combine arguments. Namely, we set

$$\tilde{h}(x,t) = \langle h(x,t), \langle x,t \rangle \rangle$$

Then, we have

$$egin{array}{rcl} ilde{h}(x,0) &=& \langle f(x),\langle x,0
angle
angle\ ilde{h}(x,t+1) &=& \langle g(t,h(x,t),x),\langle x,t+1
angle
angle = ilde{g}(ilde{h}(x,t)) \end{array}$$

where

 $\tilde{g}(u) = \langle g(r(r(u)), l(u), l(r(u))), \langle l(r(u)), r(r(u)) + 1 \rangle \rangle$ Again, the original function *h* can be retrieved by $h(x, t) = l(\tilde{h}(x, t)).$

Taking Pairing Function as Initial Function

Theorem 9.1. The primitive recursive functions are precisely the functions obtainable from the initial functions

 $s(x), n(x), l(z), r(z), \langle x, y \rangle$, and $u_i^n, 1 \le i \le n$

using the operations of composition and primitive recursion of the particular form

$$h(x,0) = f(x)$$

 $h(x,t+1) = g(h(x,t))$

Unary Primitive Recursive Function

Theorem 9.2. The unary primitive recursive functions are precisely those obtainable from the initial functions

s(x), n(x), l(z), r(z)

by applying the following three operations on unary functions:

- 1. to go from f(x) and g(x) to f(g(x)),
- 2. to go from f(x) and g(x) to $\langle f(x), g(x) \rangle$,
- 3. to go from f(x) and g(x) to the function defined by the recursion

$$h(0) = 0$$

$$h(t+1) = \begin{cases} f(\frac{t}{2}) & \text{if } t+1 \text{ is odd,} \\ g(h(\frac{t+1}{2})) & \text{if } t+1 \text{ is even} \end{cases}$$

Unary Primitive Recursive Function, Proof Outline

Proof Outline. Let **PR** be the set of all functions obtained from the initials listed in the theorem using operations 1 to 3. We show that **PR** is precisely the set of unary primitive recursive functions by proving the following:

1. show all functions in **PR** are primitive recursive,

2. show every unary primitive recursive function belongs to **PR**. Because an unary primitive recursive function may be composed from primitive recursive functions that are not unary, e.g. h(t) defined by h'(t, ..., t), where

$$h'(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n))$$

Proving 2. above will need additional care.

Functions in **PR** Are Primitive Recursive

We need only show that functions obtained from operation 3 are primitive recursive; the other cases are already known. Making use of Gödel numbering, we set

$$ec{h}(0) = 0,$$

 $ec{h}(n) = [h(0), \dots, h(n-1)]$ if $n > 0.$

We will show that $\vec{h}(n)$ is primitive recursive and then $h(n) = (\vec{h}(n+1))_{n+1}$ is primitive recursive as well.

 $\vec{h}(n)$ is primitive recursive because

$$\vec{h}(n+1) = \vec{h}(n) \cdot p_{n+1}^{h(n)}$$

$$= \begin{cases} \vec{h}(n) \cdot p_{n+1}^{f(\lfloor n/2 \rfloor)} & \text{if } n \text{ is odd,} \\ \vec{h}(n) \cdot p_{n+1}^{g((\vec{h}(n))_{\lfloor n/2 \rfloor})} & \text{if } n \text{ is even} \end{cases}$$

Recall that p_n is the *n*-th prime number.

Every Unary Primitive Recursive Function Is in **PR**, Proof Outline

- ► A function g(x₁,..., x_n) is called *satisfactory* if it has the property that for any unary function h₁(t),..., h_n(t) that belongs to **PR**, the unary function g(h₁(t),..., h_n(t)) also belongs to **PR**.
- Note that an unary function g(t) that is satisfactory must belong to PR because g(t) = g(u₁¹(t)) and u₁¹(t) = ⟨I(t), r(t)⟩ belongs to PR.
- We proceed to show that all primitive recursive functions are satisfactory, hence prove that every unary primitive recursive function is in **PR**.
- ▶ We shall use the characterization of the primitive recursive functions of Theorem 9.1

All Primitive Recursive Functions Are Satisfactory, 1/3

- ▶ Initial functions: We need consider only the pairing function $\langle x_1, x_2 \rangle$ and the projection function u_i^n where $1 \le i \le n$.
 - 1. By definition, $\langle h_1(t), h_2(t) \rangle$ is in **PR** if both $h_1(t)$ and $h_2(t)$ are in **PR**.
 - 2. If $h_1(t), \ldots, h_n(t)$ are in **PR**, then $u_i^n(h_1(t), \ldots, h_n(t)) = h_i(t)$ of course is in **PR**.
- Function composition: Let

$$h(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n))$$

where g_1, \ldots, g_k and f are satisfactory. Let $h_1(t), \ldots, h_n(t)$ be given functions that belong to **PR**. Then, setting

$$\tilde{g}_i(t) = g_i(h_1(t), \ldots, h_n(t))$$

for $1 \le i \le k$ we see that each \tilde{g}_i is in **PR**. Now, the unary function

$$h(h_1(t),\ldots,h_n(t))=f(\tilde{g}_1(t),\ldots,\tilde{g}_k(t))$$

also belongs to **PR**, hence $h(x_1, \ldots, x_n)$ is satisfactory.

All Primitive Recursive Functions Are Satisfactory, 2/3

Primitive recursion: Let

$$h(x,0) = f(x)$$

 $h(x,t+1) = g(h(x,t))$

where f and g are satisfactory. We want to encode the binary function h(b, a) by an unary function $\psi(\langle a, b \rangle + 1) = h(b, a)$. Note that $\psi(0) = 0$ and $\psi(t + 1) = h(r(t), l(t))$. Recall that $\langle a, b \rangle = 2^a(2b + 1) - 1$

1. If t + 1 is even, then $2^{a}(2b + 1)$ is even; hence a > 0 and $\psi(t + 1) = h(b, a) = g(h(b, a - 1))$ $= g(\psi(2^{a-1}(2b + 1))) = g(\psi((t + 1)/2)).$

2. If t + 1 is odd, then $2^{a}(2b + 1)$ is odd; hence a = 0 and $\psi(t + 1) = h(b, 0) = f(b) = f(t/2).$ All Primitive Recursive Functions Are Satisfactory, 3/3

Primitive recursion (continued): In other words,

$$\begin{array}{rcl} \psi(0) &=& 0\\ \psi(t+1) &=& \left\{ \begin{array}{ll} f(\frac{t}{2}) & \text{if } t+1 \text{ is odd,} \\ g(\psi(\frac{t+1}{2})) & \text{if } t+1 \text{ is even.} \end{array} \right. \end{array}$$

Now f and g are satisfactory, and being unary, belongs to **PR**. By the definitions of **PR**, ψ belongs to **PR** as well.

► To retrieve *h* from *ψ* we simply use *h*(*b*, *a*) = *ψ*(⟨*a*, *b*⟩ + 1). Therefore,

$$h(h_2(t), h_1(t)) = \psi(s(\langle h_1(t), h_2(t) \rangle))$$

from which we see that if both h_1 and h_2 are in **PR** then so is $h(h_2(t), h_1(t))$. Hence *h* is satisfactory.

Enumerating All Unary Primitive Recursive Functions

We now define the function $\phi(t, x)$, also written as $\phi_t(x)$, to enumerate all unary primitive recursive functions:

$$\phi_t(x) = \begin{cases} x+1 & \text{if } t = 0\\ 0 & \text{if } t = 1\\ l(x) & \text{if } t = 2\\ r(x) & \text{if } t = 3\\ \phi_{l(n)}(\phi_{r(n)}(x)) & \text{if } t = 3n+4, n \ge 0\\ \langle \phi_{l(n)}(x), \phi_{r(n)}(x) \rangle & \text{if } t = 3n+5, n \ge 0\\ 0 & \text{if } t = 3n+6, n \ge 0 \text{ and } x = 0\\ \phi_{l(x)}((x-1)/2) & \text{if } t = 3n+6, n \ge 0 \text{ and } x \text{ is odd}\\ \phi_{r(x)}(\phi_t(x/2)) & \text{if } t = 3n+6, n \ge 0 \text{ and } x \text{ is even} \end{cases}$$

A Closer Look at $\phi(t, x)$

- $\phi_0, \phi_1, \phi_2, \phi_3$ are the four initial functions.
- For t > 3, t is represented as 3n + i where n ≥ 0 and i = 4, 5, 6. The three operations of Theorem 9.2 are then dealt with for the corresponding value of i.
- The pairing functions are used to guarantee all functions obtained for any value of t are eventually used in all possible applications of the three operations.
- ► It is clear from the definition that φ(t, x) is a total function and that it does enumerate all the unary primitive recursive functions.
- It is clear that the definition of φ(t, x) also provides an algorithm for computing the values of φ for any given inputs.

$\phi(t, x)$ Is Computable

We prove $\phi(t, x)$ is computable by using the recursive theorem. Let function g(z, t, x) be defined as

g(z,t,x) =

$$\begin{cases} x+1 & \text{if } t=0 \\ 0 & \text{if } t=1 \\ l(x) & \text{if } t=2 \\ r(x) & \text{if } t=3 \\ \Phi_z^{(2)}(l(n), \Phi_z^{(2)}(r(n), x)) & \text{if } t=3n+4, n \ge 0 \\ \langle \Phi_z^{(2)}(l(n), x), \Phi_z^{(2)}(r(n), x) \rangle & \text{if } t=3n+5, n \ge 0 \\ 0 & \text{if } t=3n+6, n \ge 0 \text{ and } x=0 \\ \Phi_z^{(2)}(l(n), \lfloor x/2 \rfloor) & \text{if } t=3n+6, n \ge 0 \text{ and } x \text{ is odd} \\ \Phi_z^{(2)}(r(n), \Phi_z^{(2)}(t, \lfloor x/2 \rfloor) & \text{if } t=3n+6, n \ge 0 \text{ and } x \text{ is even} \end{cases}$$

$\phi(t, x)$ Is Computable, Continued

Then g(z, t, x) is partially computable, and by the recursion theorem, there is a number e such that

 $g(e,t,x) = \Phi_e(t,x)$

As g(e, t, x) satisfy the definition of $\phi(t, x)$ and that definition determines ϕ uniquely as a total function, we must have

 $\phi(t,x) = g(e,t,x)$

Hence, $\phi(t, x)$ is computable.

$\phi(x, x) + 1$ Is Not Primitive Recursive

Theorem 9.3. The function $\phi(x, x) + 1$ is a computable function that is not primitive recursive.