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Enumeration Theorem

Definition. We write

Wn = {x ∈ N | Φ(x , n) ↓}.

Then we have

Theorem 4.6. A set B is r.e. if and only if there is an n for which
B = Wn.
Proof. This is simply by the definition of Φ(x , n). 2

Note that
W0,W1,W2, . . .

is an enumeration of all r.e. sets.
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The Set K

Let
K = {n ∈ N | n ∈Wn}.

Now
n ∈ K ⇔ Φ(n, n) ↓ ⇔ HALT(n, n)

This, K is the set of all numbers n such that program number n
eventually halts on input n.
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K Is r.e. but Not Recursive

Theorem 4.7. K is r.e. but not recursive.
Proof. By the universality theorem, Φ(n, n) is partially computable,
hence K is r.e.

If K̄ were also r.e., then by the enumeration theorem,

K̄ = Wi

for some i . We then arrive at

i ∈ K ⇔ i ∈Wi ⇔ i ∈ K̄

which is a contradiction. We conclude that K is not recursive. 2
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r.e. Sets and Primitive Recursive Predicates

Theorem 4.8. Let B be an r.e. set. Then there is a primitive
recursive predicate R(x , t) such that

B = {x ∈ N | (∃t)R(x , t)}.

Proof. Let B = Wn. Then

B = {x ∈ N | (∃t)STP(1)(x , n, t)}.

By Theorem 3.2, STP(1) is primitive recursive. 2
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A r.e. Set Is the Range of A Primitive Recursive Function
Theorem 4.9. Let S be a nonempty r.e. set. Then there is a
primitive recursive function f (u) such that

S = {f (x) | x ∈ N} = {f (0), f (1), f (2), . . .}
That is, S is the range of f .
Proof. By Theorem 4.8

S = {x ∈ N | (∃t)R(x , t)}
where R is primitive recursive. Let x0 be some fixed member of S
(say, the smallest), and let

f (u) =

{
l(u) if R(l(u), r(u))
x0 otherwise.

Clearly f is primitive recursive. It follows that the range of f is a
subset of S . Conversely, if x ∈ S , then R(x , t0) is true for some t0.
Then f (〈x , t0〉) = l(〈x , t0〉) = x . That is, S is a subset of the range
of f . We conclude S = {f (n) | x ∈ N}. 2
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The Range of A Partially Computable Function Is r.e.
Theorem 4.10. Let f (x) be a partially computable function and
let S = {f (x) | f (x) ↓}. Then S is r.e.
Proof. Let

g(x) =

{
0 if x ∈ S
↑ otherwise.

Clearly S = {x | g(x) ↓}. It suffices to show that g is partially
computable. Let P be a program that computes f and let
#(P) = p. Then the following program computes g(x):

[A] IF ∼ STP(1)(Z , p,T ) GOTO B
V ← f (Z )
IF V = X GOTO E

[B] Z ← Z + 1
IF Z ≤ T GOTO A
T ← T + 1
Z ← 0
GOTO A

2
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Recursively Enumerable Sets, Revisited

Theorem 4.11. Suppose that S 6= ∅. Then the following
statements are all equivalent:

1. S is r.e.

2. S is the range of a primitive recursive function;

3. S is the range of a recursive function;

4. S is the range of a partially recursive function.

Proof. By Theorem 4.9, 1. implies 2. Obviously, 2. implies 3., and
3. implies 4. By Theorem 4.10, 4. implies 1. Hence all four
statements are equivalent. 2
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The Parameter Theorem

The Parameter theorem (which has also been called the s −m − n
theorem) relates the various functions Φ(n)(x1, x2, . . . , xn, y) for
different values of n.

Theorem 5.1. For each n,m > 0, there is a primitive recursive
function Sn

m(u1, u2, . . . , un, y) such that

Φ(m+n)(x1, . . . , xm, u1, . . . , un, y) = Φ(m)(x1, . . . , xm, S
n
m(u1, . . . , un, y))
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The Parameter Theorem, Continued

Φ(m+n)(x1, . . . , xm, u1, . . . , un, y) = Φ(m)(x1, . . . , xm, S
n
m(u1, . . . , un, y))

Suppose the values for variables u1, . . . , un are fixed and we have in
mind some particular value of y . Then left hand side of the above
equation is a partially computable function f of m arguments
x1, . . . , xm.
Let q be the number of a program that computes this function of
m variables, we have

Φ(m+n)(x1, . . . , xm, u1, . . . , un, y) = Φ(m)(x1, . . . , xm, q)

The parameter theorem tells us that not only does there exist such
a number q, but it can be obtained from u1, . . . , un, y by using a
primitive recursive function Sn

m.
10 / 33



A Universal Program (4)
Recursively Enumerable Sets (4.4)
The Parameter Theorem (4.5)
Diagonalization, Reducibility, and Rice’s Theorem (4.6, 4.7)

The Parameter Theorem, Proof

The proof is by a mathematical induction on n. For n = 1, we
need to show that there is a primitive recursive function S1

m(u, y)
such that

Φ(m+1)(x1, . . . , xm, u, y) = Φ(m)(x1, . . . , xm, S
1
m(u, y))

Let P be the program such that #(P) = y . Then S1
m(u, y) can

be taken to the number of the program which first gives variable
Xm+1 the value u and then proceeds to carry out P.
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The Parameter Theorem, Proof

Xm+1 will be given the value u by the program:

Xm+1 ← Xm+1 + 1
...
Xm+1 ← Xm+1 + 1

 u

The number of the instruction Xm+1 ← Xm+1 + 1 is

〈0, 〈1, 2m + 1〉〉 = 16m + 10. So we may take

S1
m(u, y) = [(

u∏
i=1

pi )
16m+10 · (

Lt(y+1)∏
j=1

p
(y+1)j
u+j )]−̇1

as the primitive recursive function.
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The Parameter Theorem, Proof

To complete the proof, suppose the result is known for n = k .
Then we have

Φ(m+k+1)(x1, . . . , xm, u1, . . . , uk , uk+1, y)

= Φ(m+k)(x1, . . . , xm, u1, . . . , uk , S
1
m+k(uk+1, y))

= Φ(m)(x1, . . . , xm,S
k
m(u1, . . . , uk , S

1
m+k(uk+1, y)))

using first the result for n = 1 and then the induction hypothesis.
By now, if we define

Sk+1
m (u1, . . . , uk , uk+1, y) = Sk

m(u1, . . . , uk , S
1
m+k(uk+1, y))

we have the desired result.
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The Parameter Theorem, Examples

Is there a computable function g(u, v) such that

Φu(Φv (x)) = Φg(u,v)(x)

for all u, v , x?
Yes! Note that

Φu(Φv (x)) = Φ(Φ(x , v), u)

is a partially computable function of x , u, v . Hence, we have

Φ(Φ(x , v), u) = Φ(3)(x , u, v , z0)

for some number z0. By the parameter theorem,

Φ(3)(x , u, v , z0) = Φ(x ,S2
1 (u, v , z0)) = ΦS2

1 (u,v ,z0)(x).
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Diagonalization and Reducibility

I Diagonalization and reducibility are two general techniques for
proving that given sets are not recursive or even that they are
not r.e.

I Diagonalization shows an object b 6∈ A by

1. first demonstrating that the set A can be enumerated in a
suitable way,

2. then, with the help of the enumeration, defining an object b
that is different from every object in the enumeration of A.

I Reducibility transforms the membership problem of a set A to
the membership problem of another set B, hence showing
that testing membership in A is “no harder than” testing
membership in B.
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Diagonalization

I Diagonalization shows an object b 6∈ A by

1. first demonstrating that the set A can be enumerated in a
suitable way,

2. then, with the help of the enumeration, defining an object b
that is different from every object in the enumeration of A.

I We say that b is defined by diagonalizing over A.

I Often there is an additional twist: The definition of b is such
that b must belong to A, contradicting the assertion that we
began with an enumeration of all elements in A.

I We then draw some conclusion from this contradiction.
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Diagonalization, Example 1

The predicate HALT(x , y) is not computable.

Proof. Assume the predicate HALT(x , y) is computable. Then we
can write a program P in language S as follows:

[A] IF HALT(X ,X ) GOTO A

We now show by diagonalization the following contradiction.

1. There is an enumeration of all the programs expressible in S :
P0,P1, . . . , ...

2. Function Ψ
(1)
P differs from each function Ψ

(1)
P0

,Ψ
(1)
P1

, . . . on at
least one input value: For each program Pn, n ∈ N,

Ψ
(1)
Pn

(n) ↑ if and only if Ψ
(1)
P (n) ↓

There shows that P is not in the enumeration, which is a
contradiction. We conclude that HALT(x , y) is not computable. 2
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Diagonalization, Example 1 Continued

Given the following program P:

[A] IF HALT(X ,X ) GOTO A

Function Ψ
(1)
P differs from each function Ψ

(1)
P0

,Ψ
(1)
P1

, . . . along the
diagonal of the following array representation of all the functions
expressible by programs in language S :

Ψ
(1)
P0

(0) Ψ
(1)
P0

(1) Ψ
(1)
P0

(2) . . .

Ψ
(1)
P1

(0) Ψ
(1)
P1

(1) Ψ
(1)
P1

(2) . . .

Ψ
(1)
P2

(0) Ψ
(1)
P2

(1) Ψ
(1)
P2

(2) . . .

...
...

...
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Diagonalization, Example 2

Let TOT be the set of all numbers p such that p is the number of
a program that computes a total function f (x) of one variable.
That is,

TOT = {z ∈ N | (∀x)Φ(x , z) ↓}
Theorem 6.1. TOT is not r.e.
Proof. Assume TOT is r.e. By Theorem 4.9, there is a computable
function g(x) such that TOT = {g(0), g(1), g(2), . . .}. Let

h(x) = Φ(x , g(x)) + 1

As for each x , Φ(x , g(x)) ↓, function h is itself computable. Let h
be computed by a program P, and let p = #(P). Then
p ∈ TOT, so that p = g(i) for some i . However,

h(i) = Φ(i , g(i)) + 1 = Φ(i , p) + 1 = h(i) + 1

which is a contradiction. We conclude that TOT is not r.e. 2
19 / 33



A Universal Program (4)
Recursively Enumerable Sets (4.4)
The Parameter Theorem (4.5)
Diagonalization, Reducibility, and Rice’s Theorem (4.6, 4.7)

Many-one Reducibility

Definition. Let A,B be sets. A is many-one reducible to B,
written A ≤m B, if there is a computable function f such that

A = {x ∈ N | f (x) ∈ B}

That is, x ∈ A if and only if f (x) ∈ B. Note that f need not be
one-one.

If A ≤m B, then in a sense testing membership in A is “no harder
than” testing membership in B. In particular, to test x ∈ A, we
can compute f (x) and then test f (x) ∈ B.
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Main Theorem of Reducibility

Theorem 6.2. Suppose A ≤m B.

1. If B is recursive, then A is recursive.

2. If B is r.e., then A is r.e.

Proof.

1. Let A = {x ∈ N | f (x) ∈ B}, where f is computable, and let
PB(x) be the characteristic function over B. Then

A = {x ∈ N | PB(f (x))},

Since PB(x) is recursive, the characteristic function of A,
PB(f (x)), is also recursive.

2. Now suppose that B is r.e.. Then B = {x ∈ N | g(x) ↓} for
some partially computable function g , and
A = {x ∈ N | g(f (x)) ↓}. But g(f (x)) is partially
computable, so A is r.e.

2
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Applying Reducibility

If A ≤m B, then

1. If A is not recursive, the B is not recursive.

2. If A is not r.e., then B is not r.e.

That is, to show that a set B is not recursive (r.e.), we find a set A
that is not recursive (r.e.) and proceed to show that A ≤m B.
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Applying Reducibility, Example: K ≤m K0

In order to show that K0, defined by

K0 = {x ∈ N | Φr(x)(l(x)) ↓} = {〈u, v〉 | Φv (u) ↓}, x = 〈u, v〉

is not recursive. We need only to show that K ≤m K0, where

K = {n ∈ N | n ∈Wn}.

is known to be not recursive.

Let function f (x) = 〈x , x〉. Clearly f (x) is computable. Then
K ≤m K0 because x ∈ K if and only if 〈x , x〉 ∈ K0. As K is not
recursive, neither is K0.
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m-completeness

Definition A set A is m-complete if

1. A is r.e., and

2. for every r.e. set B, B ≤m A.

Example: K0 is m-complete. That is because if a set B is r.e., then

B = {x ∈ N | g(x) ↓} for some partially computable g
= {x ∈ N | Φ(x , z0) ↓} for some z0

= {x ∈ N | 〈x , z0〉 ∈ K0}

That is, B ≤m K0, so by definition K0 is m-complete.
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More Theorems of Reducibility

Theorem 6.3. If A ≤m B and B ≤m C , then A ≤m C .

Proof. Let A = {x ∈ N | f (x) ∈ B} and B = {x ∈ N | g(x) ∈ C}.
Then A = {x ∈ N | g(f (x)) ∈ C}, and g(f (x)) is computable. 2

Corollary 6.4. If A is m-complete, B is r.e., and A ≤m B, then B
is m-complete.

Proof. If C is r.e. then by assumption C ≤m A, and A ≤m B. It
follows that C ≤m B, hence B is m-complete. 2

Definition A ≡m B means that A ≤m B and B ≤m A.
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K0 ≤m K
To prove K0 ≤m K , we need to find a computable function f such
that f (〈n, q〉) is the number of a program with the following
property

Φq(n) ↓ ⇔ Φf (〈n,q〉)(f (〈n, q〉)) ↓
Let P be the program

Y ← Φ(1)(l(X2), r(X2))

and let p = #(P). Therefore,

Φq(n) = ΨP(x1, 〈n, q〉) = Φ(2)(x1, 〈n, q〉, p)

= Φ(1)(x1, S
1
1 (〈n, q〉, p)) = ΦS1

1 (〈n,q〉,p)(x1)

for all x1. In particular, when x1 = S1
1 (〈n, q〉, p) we arrive at

Φq(n) = ΦS1
1 (〈n,q〉,p)(S1

1 (〈n, q〉, p))

That is, 〈n, q〉 ∈ K0 if and only if S1
1 (〈n, q〉, p) ∈ K . As

f (〈n, q〉) = S1
1 (〈n, q〉, p) is computable, we conclude K0 ≤m K .
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K0 ≡m K

Theorem 6.5.

1. K and K0 are m-complete.

2. K ≡m K0.
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Reducibility, Another Example
Theorem 6.6. The set EMPTY = {x ∈ N | Wx = ∅} is not r.e.
Proof. We will show K̄ ≤m EMPTY. As K̄ is not r.e., so neither is
EMPTY. Let P be the program Y ← Φ(X2,X2) and let

p = #(P). As P ignores its first argument, so for a given z ,

(∀x)(Ψ
(2)
P (x , z) ↓) if and only if Φ(z , z) ↓

By the parameter theorem

Ψ
(2)
P (x1, x2) = Φ(2)(x1, x2, p) = Φ(1)(x1,S

1
1 (x2, p))

Therefore, for any z ,

z ∈ K̄ if and only if Φ(z , z) ↑
if and only if Φ(1)(x ,S1

1 (z , p)) ↑ for all x

if and only if WS1
1 (z,p) = ∅

if and only if S1
1 (z , p) ∈ EMPTY

As f (z) = S1
1 (z , p) is computable, so we have K̄ ≤m EMPTY. 28 / 33
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Are There Many Not Recursive Sets?

Let Γ be some collection of partially computable functions of one
variable. We may associate with Γ the set (usually called an index
set)

RΓ = {t ∈ N | Φt ∈ Γ}.

R is a recursive set just in case the predicate g(t), defined as
g(t)⇔ Φt ∈ Γ, is computable.

Invoking Church’s thesis, we can say that RΓ is a recursive set just
in case there is an algorithm that accepts programs P as input
and returns the value TRUE or FALSE depending on whether or

not the function Ψ
(1)
P does or does not belong to Γ.

We will show that RΓ is almost always not recursive.
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Rice’s Theorem

Theorem 7.1. Let Γ be a collection of partially computable
functions of one variable. Let there be partially computable
functions f (x) and g(x) such that f (x) belongs to Γ but g(x) does
not. Then RΓ is not recursive.
Proof. Let h(x) be the function such that h(x) ↑ for all x . We
assume first that h(x) does not belong to Γ. Let q be the number
of

Z ← Φ(X2,X2)
Y ← f (X1)

Then, for any i , S1
1 (i , q) is the number of

X2 ← i
Z ← Φ(X2,X2)
Y ← f (X1)
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Rice’s Theorem, Proof Continued
Proof. (Continued) Now

i ∈ K ⇒ Φ(i , i) ↓ ⇒ ΦS1
1 (i ,q)(x) = f (x) for all x

⇒ ΦS1
1 (i ,q)(x) ∈ Γ

⇒ S1
1 (i , q) ∈ RΓ,

and

i 6∈ K ⇒ Φ(i , i) ↑ ⇒ ΦS1
1 (i ,q)(x) ↑ for all x

⇒ ΦS1
1 (i ,q)(x) = h 6∈ Γ

⇒ S1
1 (i , q) 6∈ RΓ,

so K ≤m RΓ. By theorem 6.2, RΓ is not recursive.
If h(x) does belongs to Γ, then the same argument with Γ and
f (x) replaced by Γ̄ and g(x) shows that RΓ̄ is not recursive. But
RΓ̄ = R̄Γ, so, by Theorem 4.1, RΓ is not recursive in this case
either. 2
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Rice’s Theorem, Examples

Consider the following collections of partially computable
functions:

1. Γ is the set of computable functions;

2. Γ is the set of primitive recursive functions;

3. Γ is the set of partially computable functions that are defined
for all but a finite number of values of x .

Is the set RΓ recursive in each of the above three cases?

None of them is recursive.

To see why, for example, simply let f (x) = u1
1(x) and g(x) = 1− x

and invoke the Rice’s theorem. (Note that g(x) is defined only for
x = 0, 1.)
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Rice’s Theorem, Implications

We often wish to develop algorithms — that is, programs — that
will accept a program as input and will return as output some
useful property of the partial function computed by that program.
Of course, for the algorithms (programs) to be useful, they must
terminate for all input.

However, when this property is sufficiently interesting — that is,
some function has this property but some has not — then by
Rice’s Theorem, there exists no such algorithm (program) to tell
whether the input program has such property or not.
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