
A Universal Program (4)

Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

1 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

The Stepping Function STP

A simple modification of the program Un would enable us to prove
that following predicate is computable:

STP(x1, . . . , xn, y , t) ⇔ Program number y halts after

t or fewer steps on inputs x1, . . . , xn

⇔ There is a computation of program y

of length ≤ t + 1, beginning with

inputs x1, . . . , xn

We simply need to add a counter to determine when we have
simulated t steps.

However, we can prove a stronger result.

2 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Function STP is Primitive Recursive

Theorem 3.2. For each n > 0, the predicate
STP(n)(x1, . . . , xn, y , t) is primitive recursive. 2

The idea is to provide numeric versions of the notations of
snapshot and successor of snapshot, and to show that the
necessary functions are primitive recursive.

We first define the following functions for extracting the
components of the ith instruction of program number y :

LABEL(i , y) = l((y + 1)i)

VAR(i , y) = r(r((y + 1)i)) + 1

INSTR(i , y) = l(r((y + 1)i))

LABEL′(i , y) = l(r((y + 1)i))−̇2

3 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Function STP is Primitive Recursive, Continued

Next we define some predicates that indicate, for program y and
the snapshot represented by x = 〈i , s〉, where i is the number of
the instruction to be executed and s the current state (i.e., variable
S in Un), what kind of action is to be performed next.

SKIP(x , y) ⇔ [INSTR(l(x), y) = 0 & l(x) ≤ Lt(y + 1)]

∨ [INSTR(l(x), y) ≥ 2 & ∼ (pVAR(l(x),y)|r(x))]

INCR(x , y) ⇔ INSTR(l(x), y) = 1

DECR(x , y) ⇔ INSTR(l(x), y) = 2 & pVAR(l(x),y)|r(x)

BRANCH(x , y) ⇔ INSTR(l(x), y) > 2 & pVAR(l(x),y)|r(x)

& (∃i)≤Lt(y+1)LABEL(i , y) = LABEL′(l(x), y)

4 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Function STP is Primitive Recursive, Continued

Now we can define SUCC(x , y), which for program number y ,
computes the successor to the snapshot represented by x .

SUCC(x , y) =
〈l(x) + 1, r(x)〉 if SKIP(x , y)
〈l(x) + 1, r(x) · pVAR(l(x),y)〉 if INCR(x , y)

〈l(x) + 1, r(x)/pVAR(l(x),y)〉 if DECR(x , y)

〈mini≤Lt(y+1)[LABEL(i , y) = LABEL′(l(x), y)], r(x)〉 if BRANCH(x , y)

〈Lt(y + 1) + 1, r(x)〉 otherwise.

5 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Function STP is Primitive Recursive, Continued

We also need

INIT(n)(x1, . . . , xn) = 〈1,
n∏

i=1

(p2i)
xi 〉

which gives the representation of the initial snapshot for input
x1, . . . , xn, and

TERM(x , y)⇔ l(x) > Lt(y + 1)

which tests whether x represents a terminal snapshot for program
y .

6 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Function STP is Primitive Recursive, Continued

Putting these together we can define a primitive recursive function
that gives the numbers of the successive snapshots produced by a
given program:

SNAP(n)(x1, . . . , xn, y , 0) = INIT(n)(x1, . . . , xn)

SNAP(n)(x1, . . . , xn, y , i + 1) = SUCC(SNAP(n)(x1, . . . , xn, y , i), y)

Thus,

STP(n)(x1, . . . , xn, y , t)⇔ TERM(SNAP(n)(x1, . . . , xn, y , t), y)

It is clear that STP(n)(x1, . . . , xn, y , t) is primitive recursive. 2

7 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

A Normal Form for Partial Computable Functions

Theorem 3.3. Let f (x1, . . . , xn) be a partially computable
function. Then there is a primitive recursive predicate
R(x1, . . . , xn, y) such that

f (x1, . . . , xn) = l(min
z

R(x1, . . . , xn, z))

2

Proof. Let y0 be the number of a program that computes
f (x1, . . . , xn). Let R(x1, . . . , xn, z) be the following predicate

STP(n)(x1, . . . , xn, y0, r(z))

& (r(SNAP(n)(x1, . . . , xn, y0, r(z))))1 = l(z)

If the above predicate is defined, then for any such z , the
computation by program y0 terminates in r(z) or few steps, and
l(z) is the value held in the output variable Y . If on the other
hand, the predicate is undefined, then STP(n)(x1, . . . , xn, y0, t)
must be false for all t. That is, f (x1, . . . , xn) ↑. 2

8 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

A Characterization of Partially Computable Functions

Theorem 3.4. A function is partially computable if and only if it
can be obtained from the initial functions by a finite number of
applications of composition, recursion, and minimalization. 2

Proof. (⇐) That every function which can be so obtained is
partially computable is a consequence of Theorems 1.1, 2.1, 2,2,
3.1, and 7.2 in Chapter 3. That is, there is a program in S for the
function so obtained.
(⇒) Given a partially computable function — a program in
language S — Theorem 3.3 in this Chapter show how to express
this function in the form

l(min
z

R(x1, . . . , xn, z))

where R is a primitive recursive predicate. Finally, R is used in a
minimalization and then composed with the primitive recursive
function l . 2

9 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

A Characterization of Computable Functions

When minz R(x1, . . . , xn, z) is a total function, we say that we are
applying the operation of proper minimalization to R. Now, if

l(min
z

R(x1, . . . , xn, z))

is total, then R(x1, . . . , xn, z) must be total too. Hence we have:

Theorem 3.5. A function is computable if and only if it can be
obtained from the initial functions by a finite number of
applications of composition, recursion, and proper minimalization.
2

10 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Review: Sets and Characteristic Functions

Given a predicate P on a set S , there is a corresponding subset R
of S consisting of all elements a ∈ S for which P(a) = 1. We write

R = {a ∈ S | P(a)}.

Conversely, given a subset R of a given set S , the expression x ∈ R
defines a predicate P on S:

P(x) =

{
1 if x ∈ R
0 if x 6∈ R.

The predicate P is called the characteristic function of the set R.
Note the easy translations between the two notations:

{x ∈ S | P(x) &Q(x)} = {x ∈ S | P(x)} ∩ {x ∈ S | Q(x)},
{x ∈ S | P(x) ∨ Q(x)} = {x ∈ S | P(x)} ∪ {x ∈ S | Q(x)},
{x ∈ S | ∼ P(x)} = S − {x ∈ S | P(x)}.

11 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Sets and Classes of Functions

I The predicate HALT(x , y) is the characteristic function of the
set

{(x , y) ∈ N2 | HALT(x , y)}.

I A set B ⊆ Nm is said to belong to some class of functions
means that the characteristic function P(x1, . . . , xm) of B
belongs to the class in question.

I B is computable or recursive is just to say that P(x1, . . . , xm)
is a computable function.

I B is a primitive recursive set if P(x1, . . . , xm) is primitive
recursive.

Theorem 4.1. Let the sets B,C belong to some PRC class C .
The so do the sets B ∪ C , B ∩ C , and B̄. 2

12 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Need Only Consider Subsets of N

Theorem 4.2. Let C be a PRC class, and let B be a subset of
Nm,m ≥ 1. Then B belongs to C if and only if

B ′ = {[x1, . . . , xm] ∈ N | (x1, . . . , xm) ∈ B}

belongs to C . 2.
Proof. If PB(x1, . . . , xm) is the characteristic function of B, then

PB′(x)⇔ PB((x)1, . . . , (x)m) & Lt(x) = m

is the characteristic function of B ′. Clearly, PB′ belongs to C if PB

belongs to C . On the other hand, if PB′(x) is the characteristic
function of B ′, then

PB(x1, . . . , xm)⇔ PB′([x1, . . . , xm])

is the characteristic function of B. Clearly, PB belongs to C if PB′

belongs to C . 2
13 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Recursively Enumerable

Definition. The set B ⊆ N is called recursively enumerable if
there is a partially computable function g(x) such that

B = {x ∈ N | g(x) ↓}.

2

I A set is recursively enumerable just when it is the domain of a
partially computable function.

I If P is a program that computes function g above, then B is
the set of all inputs to P for which P eventually halts.

I B can be thought of intuitively as a set for which there exists
a semi-decision procedure to solve the membership problem of
B. This algorithm answers “yes” for number n ∈ B, but never
terminates for n 6∈ B.

I The term recursively enumerable is usually abbreviated r.e.
14 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

Recursive Sets

Theorem 4.3. If B is a recursive set, then B is r.e.

Proof. Consider the following program P

[A] IF ∼ (X ∈ B) GOTO A

Since B is recursive, the predicate x ∈ B is computable and P can
be expanded to a program of S . Let us say that P computes the
function h(x). Then, clearly,

B = {x ∈ N | h(x) ↓}.

2

15 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

What If Both B and B̄ Are r.e.?

Theorem 4.4. The set B is recursive if and only if B and B̄ are
both r.e.
Proof. (⇒) If B is recursive, then by Theorem 4.1 so is B̄. By
Theorem 4.3, they are both r.e.
(⇐) If both B and B̄ are r.e., then there are programs P and Q
such that

B = {x ∈ N | Ψ
(1)
P (x) ↓}

B̄ = {x ∈ N | Ψ
(1)
Q (x) ↓}

Then B is recursive as it is computed by the following program:

[A] IF STP(1)(X ,#(P),T) GOTO C

IF STP(1)(X ,#(Q),T) GOTO E
T ← T + 1
GOTO A

[C] Y ← 1

2
16 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

The Intersection of Two r.e. Sets

Theorem 4.5. If B and C are r.e. sets so are B ∩ C and B ∪ C .
Proof. Let

B = {x ∈ N | g(x) ↓}
C = {x ∈ N | h(x) ↓}

where g and h are partially computable. Let f (x) be the function
computed by the program

Y ← g(X)
Y ← h(X)

Hence
B ∩ C = {x ∈ N | f (x) ↓}

hence B ∩ C is r.e.

17 / 18

A Universal Program (4)
Universality (4.3)
Recursively Enumerable Sets (4.4)

The Union of Two r.e. Sets

Proof. (Continued) Let g and h be computed by programs P and
Q, respectively. Let k(x) be the function computed by the
program:

[A] IF STP(1)(X ,#(P),T) GOTO E

IF STP(1)(X ,#(Q),T) GOTO E
T ← T + 1
GOTO A

Then k(x) is defined just in case either g(x) or h(x) is defined.
That is,

B ∪ C = {x ∈ N | k(x) ↓}

so that B ∪ C is also r.e. 2

18 / 18

	A Universal Program (4)
	Universality (4.3)
	Recursively Enumerable Sets (4.4)

