Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Coding Programs by Numbers

For each program & in language ., we will devise a method
> to associate a unique number, #(.7), to the program &, and
P> to retrieve a program from its number.

In addition, for each number n € N, we will retrieve from n a
program.

)

29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Arranging Variables and Labels

» The variables are arranged in the following order

Y, X1, 241, X2, 22, X3, 23, . ..

P The labels are arranged in the following order

A1, B1, Ci, Dy, E1, Az, By, Go, Do, B, As,

» (V) is the position of variable V/ in the ordering. So is #(L)
for label L.

» Thus,
#(Xo) =4, #(Z) =#(2) =3, #(E) =5, #(B) =17,

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Coding Instructions by Numbers

Let / be an instruction of language .. We write

#(1) = (a, (b, c))

where
1. if | is unlabeled, then a = 0; if / is labeled L, then a = #(L);
2. if variable V is mentioned in /, then ¢ = #(V) — 1,
3. if the statement in [is

V&Vor V&V+1or VV-1

then b =0 or 1 or 2, respectively;

4. if the statement in / is
IFV #0 GOTO I’

then b = #(L") + 2.

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Coding Instructions by Numbers, Examples

» The number of the unlabeled instruction
X+ X+1

(0,(1,1)) = (0,5) = 10.

» The number of the labeled instruction
[A] X + X +1

(1,(1,1)) = (1,5) = 21.

5/29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Retrieving The Instruction from A Number

For any given number g, there is a unique instruction / with
#(l) = q. How?
» First we compute /(q). If /(g) =0, | is unlabeled; otherwise /
has the /(g)th label L in our list.

» Then we compute i = r(r(q)) + 1 to locate the ith variable V/
in our list as the variable mentioned in /.

» Then the statement in / will be

V<V if I(r(q)) =0
VV+1 if I(r(q)) =1
V—V-1 if I(r(q)) =2

IF V£ 0GOTO L' if j=I(r(q)) —2 >0
and L is the jth label in the list.

6/29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Coding Programs by Numbers, Finally

Let a program & consists of the instructions /1, b, ..., l,. Then
we set

#(2) = [#(h), #(k), ..., #(l)] — 1

We call #(27) the number of program %7. Note that the empty
program has number O.

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Coding Programs by Numbers, Examples

Consider the following “nowhere defined” program &

[A] X +— X +1
IF X #0 GOTO A

Let /; and /, respectively, be the first and the second instruction
in &, then

#(h) = (L) =15 =21
#(h) = (0,(3,1)) =(0,23) =46

Therefore
#(0}) _ 221 . 346 -1

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Coding Programs by Numbers, Examples

What is the program whose number is 1997
We first compute

199 +1 =200 = 2%-3°.5%2 = [3,0,2]
Thus, if #(2) =199, then & consists of 3 instructions whose
numbers are 3, 0, and 2. As
3 = (2,0)=(2,(0,0))
2 = (0,1) =(0,(1,0))
We conclude that &7 is the following program
[B]Y <+ Y
Y<«+Y
Y+ Y+1

This is not a very interesting program, as it just computes
f(x)=1.

29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

A Problem with Number 0

» The number of the unlabeled instruction Y < Y is

(0, (0,0)) = (0,0) =0

» By the definition of Godel number, the number of a program
will be unchanged if an unlabeled Y <+ Y is appended to its
end. Note that this does not change the output of the
program.

» However, we remove even this ambiguity by requiring that the
final instruction in a program is not permitted to be the
unlabeled statement Y < Y.

» Now, each number determines a unique program (just as each
program determines a unique number)!

10/29

Coding Programs by Numbers (4.1)

A Universal Program (4) The Halting Problem (4.2)

Universality (4.3

HALT(x, y): A Predicate on Programs and Their Inputs

We define predicate HALT(x, y) such that
HALT(x, y) < program number y eventually halts on input x.

Let & be the program such that #(%?) = y. Then

1 if W(x) is defined,

HALT(x,y) =
bey) { 0 if \US,)(X) is undefined.

Note that HALT(x, y) is a total function.

But, is HALT(x, y) computable?

11/29

Coding Programs by Numbers (4.1)

A Universal Program (4) The Halting Problem (4.2)

Universality (4.3

HALT (x, y) Is Not Computable

Theorem 2.1. HALT(x, y) is not a computable predicate.
Proof. Suppose HALT(x, y) were computable. Then we could
construct the following program #:

[A] IF HALT(X, X) GOTO A
It is clear that

1 undefined if HALT (x, x
v >(X)_{ (x, x)

0 if ~ HALT(x, x).
Let #(2?) = yo. Then, for all x,
HALT(x, y0) < W0(x)is defined < 2 halts on x <~ HALT(x, x)
Let x = yp, we arrive at
HALT (yo,y0) < ~ HALT(yo0,)

which is a contradiction. O
12/29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

“HALT(x, y) Is Not Computable.” What's that?

Let's be precise on what have be proved.

» HALT(x, y) is a predicate on programs in language .. It is a
predicate on the computational behavior of the programs, i.e.,
whether a program y of language . will halt on input x.

» It is shown there exists no program in language . that
computes HALT (x, y).

» As HALT(x, y) is a total function, we now have as an example
a total function that cannot be expressed as a program in ..

» But can HALT(x, y) be expressed in languages other than .77
Will HALT(x, y) become “computable” if other (more
powerful) formalisms of computation are used?

13 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

The Unsolvability of Halting Problem

There is no algorithm that, given a program of . and an
input to the program, can determine whether or not the
given program will eventually halt on the given input.

» In this form, the result is called the unsolvability of halting
problem.

P> The statement above is stronger than the statement “there
exists no program in language . that computes HALT(x, y)
as an algorithm can refer to a method in any formalism of
computation.

» However, language .# can be been shown to be as powerful as
any known computational formalism. Therefore, we reason
that if no program in . can solve it, no algorithm can.

14 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Church’s Thesis

Any algorithm for computing on numbers can be carried
out by a program of ..

» This assertion is called Church’s Thesis.

» As the word algorithm has no general definition separated
from a particular language, Church's thesis cannot be proved
as a mathematical theorem.

» We will use Church's thesis freely in asserting the
nonexistence of algorithms whenever we have shown that the
problem cannot be solved by a program of ..

15/29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Why The Halting Problem Is So Hard? (Unsolvable!)

v

This shall not be too surprising, as it is easy to construction
short programs of . such that it is very difficult to tell
whether they will ever halt.

Example: Fermat's last theorem.
Example: Goldbach’s conjecture.

Actually it is always hard to prove whether programs of .%
will exhibit specific computational behaviors (which are of
sufficient interest).

16 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Fermat's Last Theorem

The equation x" + y" = z" has no solution in positive
X,y,z and n > 2.

> |t is easy to write a program & of language . that will
search all positive integers x, y, z and numbers n > 2 for a
solution to the equation x" + y" = z".

» Program 2 never halts if only if Fermat's last theorem is true.

» That is, if we can solve the halting problem, then we can
easily prove (or dis-prove) the Fermat's last theorem!

» (Fermat's last theorem was finally proved in 1995 by Andrew
Wiles with help from Richard Taylor.)

17 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Goldbach’s Conjecture

vvyyvyy

Every even number > 4 is the sum of two prime numbers.

Check: 4=2+4+2,6=3+3,8=3+5,...

Is there a counterexample?

Let's write a program &7 in . to search for a counterexample!
Note that the test that a given even number n is an
counterexample only requires checking the primitive recursive
predicate:

~ (3x)<n(3y)<n[Prime(x) & Prime(y) & x+y = n]

The statement that % never halts is equivalent to Goldbach's
conjecture.

The conjecture is still open; nobody knows yet whether &
will eventually halt.

18 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Compute with Numbers of Programs

» Programs taking programs as input: Compilers, interpreters,
evaluators, Web browsers,

» Can we write a program in language . to accept the number

of another program 7, as well as the input x to &, then
compute \US—)(X) as output?

» Yes, we can! The program above is called a universal program.

19/29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Universality

For each n > 0, we define
CD(”)(xl, Ce Xy Y) = Wg;)(x17 ...y Xn), Where #(2) =y.

Theorem 3.1. For each n > 0, the function ®(")(x, ..., x,,y) is

partially computable. O

We shall prove this theorem by showing how to construct, for each
n > 0, a program %, which computes &1 That is,

1
\IJ(/Z:_)(Xl, ey Xpy Xng1) = CD(”)(xl, ey Xny Xpg1)-

The programs %, are called universal.

20/29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

“Computer Organization” of %,

» Program 7%/, accepts n + 1 input variables of which X, is a
number of a program &, and Xi, ..., X, are provided to &
as input variables.

» All variables used by & are arranged in the following order

Y, X1, Z1, X0, Zo, . ..

and their state is coded by the Godel number
[y, x1, 21, %2, 22, .. .].

» Let variable S in program 7%, store the current state of
program & coded in the above manner.

» Let variable K in program %, store the number such that the
Kth instruction of program &7 is about to be executed.

» Let variable Z in program %, store the instruction sequence of
program & coded as a Godel number.

21/29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Setting Up

As program %, computes CD(”)(Xl, ooy Xny Xng1), we begin %, by
setting up the initial environment for program (number) X1 to
execute:

7+ Xop1+1

S+ [T721(p2i)
K<+1

» If X111 = #(Z), where & consists of instructions /1, ..., I,
then Z gets the value [#(/1), ..., #(Im)].

» S is initialized as [0, X1,0, X2, ..., 0, X,] which gives the first
n input variables their appropriate values and gives all other
variables the value 0.

> K, the instruction counter, is given the initial value 1.

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Decoding Instruction

We first see if the execution of program & shall halt. If not, we
fetch the Kth instruction and decode the instruction.

[C] IFK=1L{Z)+1Vv K=0GOTO F
U<+ r((2)k)
P < pr(u)+1

» If the computation has ended, GOTO F, where the proper
value will be output. (The case for K = 0 will be explained
later.)

» (Z)x = (a,(b,c)) is the number of the Kth instruction. Thus
U = (b, c) is the code of the statement to be executed.

» The variable mentioned in the statement is the (r(U) + 1)th
in our list S, and its current value is stored as the exponent to
which P divides S.

23 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Instruction Execution

IF /(U) =0 GOTO N
IF /(U) = 1 GOTO A
IF ~ (P|S) GOTO N
IF /(U) =2 GOTO M

» If /(U) = 0, the instruction is a dummy and the

computation does nothing. Hence, it goes to NV (for Nothing).

» If /(U) = 1, the instruction is . The computation
goes to A (for Add) to add 1 to the exponent on P in the
prime power factorization of S.

» If /(U) # 0,1, the instruction is either , or
[IF V0 GOTO L| In both cases, if V =0, the
computation does nothing so goes to V. This happens when
P is not a divisor of S.

» If P|S and /(U) = 2, the computation goes to M (for Minus).

24 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Branching

K + mi”ith(Z)[/((Z)i) +2=1I(VU)]
GOTO C

» If /(U) > 2 and P|S, the current instruction is of the form
’IF V #£0GOTO L ‘ where V' has a nonzero value and L is
the label whose position in our label list is /(U) — 2.

The next instruction should be the first with this label.

» That is, K should get as its value the least / for which
I((Z)i) = I(U) — 2. If there is no instruction with the
appropriate label, K gets the 0, which will lead to termination
the next time through the main loop.

v

» Once the instruction counter K is adjusted, the execution

enters the main loop by |GOTO C|.

25 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Subtraction and Addition

[M] S« |S/P]

GOTO N
[A] S« S-P
[N] K+ K+1
GOTO C

» 1 is subtracted from the variable by dividing S by P.
» 1 is added to the variable by multiplying S by P.

» The instruction counter is increased by 1 and the computation
returns to the main loop to fetch the next instruction.

26 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Finalizing

» One termination, the value of Y for the program being
simulated is stored at the exponent on p; in S.

27/29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

U,, Finally

(€]

[(M]

[A]
(V]

[F]

Z <+ Xpy1+1

S < [T (p2i)X

K+1

IFK=Lt(Z)+1 Vv K=0GOTO F
U+ r((Z))

P < pruy1

IF I(U) =0 GOTO N

IF /(U)=1GOTO A

IF ~ (P|S) GOTO N

IF I(U)=2 GOTO M

K+ mi“ith(Z)[’((Z)i) +2=1(U)]
GOTO C

S+ |S/P]

GOTO N

S«<~S-P

K+~ K+1

GOTO C

Y «+ (5)1

28 /29

Coding Programs by Numbers (4.1)
A Universal Program (4) The Halting Problem (4.2)

Universality (4.3)

Notations

For each n > 0, the sequence
&M (xy,. .., xn, 0),) (x1,. .., X0, 1), ...

’

enumerates all partially computable functions of n variables. When
we want to emphasize this aspect we write

qu/n)(X]_7 - 7)(n) — ¢(n)(xl7 L 7)(r”‘y)
It is often convenient to omit the superscript when n = 1, writing

CDY(X) - (D(X?y) - ¢(l)(X7y)'

29/29

	A Universal Program (4)
	Coding Programs by Numbers (4.1)
	The Halting Problem (4.2)
	Universality (4.3)

