
A Universal Program (4)

Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

1 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Coding Programs by Numbers

For each program P in language S , we will devise a method

I to associate a unique number, #(P), to the program P, and

I to retrieve a program from its number.

In addition, for each number n ∈ N, we will retrieve from n a
program.

2 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Arranging Variables and Labels

I The variables are arranged in the following order

Y ,X1,Z1,X2,Z2,X3,Z3, . . .

I The labels are arranged in the following order

A1,B1,C1,D1,E1,A2,B2,C2,D2,E2,A3, . . .

I #(V) is the position of variable V in the ordering. So is #(L)
for label L.

I Thus,
#(X2) = 4, #(Z1) = #(Z) = 3, #(E) = 5, #(B2) = 7,

3 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Coding Instructions by Numbers

Let I be an instruction of language S . We write

#(I) = 〈a, 〈b, c〉〉

where

1. if I is unlabeled, then a = 0; if I is labeled L, then a = #(L);

2. if variable V is mentioned in I , then c = #(V)− 1;

3. if the statement in I is

V ← V or V ← V + 1 or V ← V − 1

then b = 0 or 1 or 2, respectively;

4. if the statement in I is

IF V 6= 0 GOTO L′

then b = #(L′) + 2.
4 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Coding Instructions by Numbers, Examples

I The number of the unlabeled instruction

X ← X + 1

is
〈0, 〈1, 1〉〉 = 〈0, 5〉 = 10.

I The number of the labeled instruction

[A] X ← X + 1

is
〈1, 〈1, 1〉〉 = 〈1, 5〉 = 21.

5 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Retrieving The Instruction from A Number

For any given number q, there is a unique instruction I with
#(I) = q. How?

I First we compute l(q). If l(q) = 0, I is unlabeled; otherwise I
has the l(q)th label L in our list.

I Then we compute i = r(r(q)) + 1 to locate the ith variable V
in our list as the variable mentioned in I .

I Then the statement in I will be

V ← V if l(r(q)) = 0
V ← V + 1 if l(r(q)) = 1
V ← V − 1 if l(r(q)) = 2
IF V 6= 0 GOTO L′ if j = l(r(q))− 2 > 0

and L′ is the jth label in the list.

6 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Coding Programs by Numbers, Finally

Let a program P consists of the instructions I1, I2, . . . , Ik . Then
we set

#(P) = [#(I1),#(I2), . . . ,#(Ik)]− 1

We call #(P) the number of program P. Note that the empty
program has number 0.

7 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Coding Programs by Numbers, Examples

Consider the following “nowhere defined” program P

[A] X ← X + 1
IF X 6= 0 GOTO A

Let I1 and I2, respectively, be the first and the second instruction
in P, then

#(I1) = 〈1, 〈1, 1〉〉 = 〈1, 5〉 = 21

#(I2) = 〈0, 〈3, 1〉〉 = 〈0, 23〉 = 46

Therefore
#(P) = 221 · 346 − 1

8 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Coding Programs by Numbers, Examples

What is the program whose number is 199?
We first compute

199 + 1 = 200 = 23 · 30 · 52 = [3, 0, 2]

Thus, if #(P) = 199, then P consists of 3 instructions whose
numbers are 3, 0, and 2. As

3 = 〈2, 0〉 = 〈2, 〈0, 0〉〉
2 = 〈0, 1〉 = 〈0, 〈1, 0〉〉

We conclude that P is the following program

[B] Y ← Y
Y ← Y
Y ← Y + 1

This is not a very interesting program, as it just computes
f (x) = 1.

9 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

A Problem with Number 0

I The number of the unlabeled instruction Y ← Y is

〈0, 〈0, 0〉〉 = 〈0, 0〉 = 0

I By the definition of Gödel number, the number of a program
will be unchanged if an unlabeled Y ← Y is appended to its
end. Note that this does not change the output of the
program.

I However, we remove even this ambiguity by requiring that the
final instruction in a program is not permitted to be the
unlabeled statement Y ← Y .

I Now, each number determines a unique program (just as each
program determines a unique number)!

10 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

HALT(x , y): A Predicate on Programs and Their Inputs

We define predicate HALT(x , y) such that

HALT(x , y)⇔ program number y eventually halts on input x .

Let P be the program such that #(P) = y . Then

HALT(x , y) =

{
1 if Ψ

(1)
P (x) is defined,

0 if Ψ
(1)
P (x) is undefined.

Note that HALT(x , y) is a total function.

But, is HALT(x , y) computable?

11 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

HALT(x , y) Is Not Computable

Theorem 2.1. HALT(x , y) is not a computable predicate.
Proof. Suppose HALT(x , y) were computable. Then we could
construct the following program P:

[A] IF HALT(X ,X) GOTO A

It is clear that

Ψ
(1)
P (x) =

{
undefined if HALT(x , x)
0 if ∼ HALT(x , x).

Let #(P) = y0. Then, for all x ,

HALT(x , y0) ⇔ Ψ
(1)
P (x) is defined ⇔ P halts on x ⇔ ∼ HALT(x , x)

Let x = y0, we arrive at

HALT(y0, y0) ⇔ ∼ HALT(y0, y0)

which is a contradiction. 2
12 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

“HALT(x , y) Is Not Computable.” What’s that?

Let’s be precise on what have be proved.

I HALT(x , y) is a predicate on programs in language S . It is a
predicate on the computational behavior of the programs, i.e.,
whether a program y of language S will halt on input x .

I It is shown there exists no program in language S that
computes HALT(x , y).

I As HALT(x , y) is a total function, we now have as an example
a total function that cannot be expressed as a program in S .

I But can HALT(x , y) be expressed in languages other than S ?
Will HALT(x , y) become “computable” if other (more
powerful) formalisms of computation are used?

13 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

The Unsolvability of Halting Problem

There is no algorithm that, given a program of S and an
input to the program, can determine whether or not the
given program will eventually halt on the given input.

I In this form, the result is called the unsolvability of halting
problem.

I The statement above is stronger than the statement “there
exists no program in language S that computes HALT(x , y),”
as an algorithm can refer to a method in any formalism of
computation.

I However, language S can be been shown to be as powerful as
any known computational formalism. Therefore, we reason
that if no program in S can solve it, no algorithm can.

14 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Church’s Thesis

Any algorithm for computing on numbers can be carried
out by a program of S .

I This assertion is called Church’s Thesis.

I As the word algorithm has no general definition separated
from a particular language, Church’s thesis cannot be proved
as a mathematical theorem.

I We will use Church’s thesis freely in asserting the
nonexistence of algorithms whenever we have shown that the
problem cannot be solved by a program of S .

15 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Why The Halting Problem Is So Hard? (Unsolvable!)

I This shall not be too surprising, as it is easy to construction
short programs of S such that it is very difficult to tell
whether they will ever halt.

I Example: Fermat’s last theorem.

I Example: Goldbach’s conjecture.

I Actually it is always hard to prove whether programs of S
will exhibit specific computational behaviors (which are of
sufficient interest).

16 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Fermat’s Last Theorem

The equation xn + yn = zn has no solution in positive
x , y , z and n > 2.

I It is easy to write a program P of language S that will
search all positive integers x , y , z and numbers n > 2 for a
solution to the equation xn + yn = zn.

I Program P never halts if only if Fermat’s last theorem is true.

I That is, if we can solve the halting problem, then we can
easily prove (or dis-prove) the Fermat’s last theorem!

I (Fermat’s last theorem was finally proved in 1995 by Andrew
Wiles with help from Richard Taylor.)

17 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Goldbach’s Conjecture

Every even number ≥ 4 is the sum of two prime numbers.

I Check: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, . . .
I Is there a counterexample?
I Let’s write a program P in S to search for a counterexample!
I Note that the test that a given even number n is an

counterexample only requires checking the primitive recursive
predicate:

∼ (∃x)≤n(∃y)≤n[Prime(x) & Prime(y) & x + y = n]

I The statement that P never halts is equivalent to Goldbach’s
conjecture.

I The conjecture is still open; nobody knows yet whether P
will eventually halt.

18 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Compute with Numbers of Programs

I Programs taking programs as input: Compilers, interpreters,
evaluators, Web browsers,

I Can we write a program in language S to accept the number
of another program P, as well as the input x to P, then

compute Ψ
(1)
P (x) as output?

I Yes, we can! The program above is called a universal program.

19 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Universality

For each n > 0, we define

Φ(n)(x1, . . . , xn, y) = Ψ
(n)
P (x1, . . . , xn), where #(P) = y .

Theorem 3.1. For each n > 0, the function Φ(n)(x1, . . . , xn, y) is
partially computable. 2

We shall prove this theorem by showing how to construct, for each
n > 0, a program Un which computes Φ(n). That is,

Ψ
(n+1)
Un

(x1, . . . , xn, xn+1) = Φ(n)(x1, . . . , xn, xn+1).

The programs Un are called universal.

20 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

“Computer Organization” of Un

I Program Un accepts n + 1 input variables of which Xn+1 is a
number of a program P, and X1, . . . ,Xn are provided to P
as input variables.

I All variables used by P are arranged in the following order

Y ,X1,Z1,X2,Z2, . . .

and their state is coded by the Gödel number
[y , x1, z1, x2, z2, . . .].

I Let variable S in program Un store the current state of
program P coded in the above manner.

I Let variable K in program Un store the number such that the
K th instruction of program P is about to be executed.

I Let variable Z in program Un store the instruction sequence of
program P coded as a Gödel number.

21 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Setting Up

As program Un computes Φ(n)(X1, . . . ,Xn,Xn+1), we begin Un by
setting up the initial environment for program (number) Xn+1 to
execute:

Z ← Xn+1 + 1
S ←

∏n
i=1(p2i)

Xi

K ← 1

I If Xn+1 = #(P), where P consists of instructions I1, . . . , Im,
then Z gets the value [#(I1), . . . ,#(Im)].

I S is initialized as [0,X1, 0,X2, . . . , 0,Xn] which gives the first
n input variables their appropriate values and gives all other
variables the value 0.

I K , the instruction counter, is given the initial value 1.

22 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Decoding Instruction

We first see if the execution of program P shall halt. If not, we
fetch the K th instruction and decode the instruction.

[C] IF K = Lt(Z) + 1 ∨ K = 0 GOTO F
U ← r((Z)k)
P ← pr(U)+1

I If the computation has ended, GOTO F , where the proper
value will be output. (The case for K = 0 will be explained
later.)

I (Z)k = 〈a, 〈b, c〉〉 is the number of the K th instruction. Thus
U = 〈b, c〉 is the code of the statement to be executed.

I The variable mentioned in the statement is the (r(U) + 1)th
in our list S , and its current value is stored as the exponent to
which P divides S .

23 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Instruction Execution

IF l(U) = 0 GOTO N
IF l(U) = 1 GOTO A
IF ∼ (P|S) GOTO N
IF l(U) = 2 GOTO M

I If l(U) = 0, the instruction is a dummy V ← V and the
computation does nothing. Hence, it goes to N (for Nothing).

I If l(U) = 1, the instruction is V ← V + 1 . The computation
goes to A (for Add) to add 1 to the exponent on P in the
prime power factorization of S .

I If l(U) 6= 0, 1, the instruction is either V ← V − 1 , or

IF V 6= 0 GOTO L . In both cases, if V = 0, the
computation does nothing so goes to N. This happens when
P is not a divisor of S .

I If P|S and l(U) = 2, the computation goes to M (for Minus).
24 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Branching

K ← mini≤Lt(Z)[l((Z)i) + 2 = l(U)]

GOTO C

I If l(U) > 2 and P|S , the current instruction is of the form

IF V 6= 0 GOTO L where V has a nonzero value and L is

the label whose position in our label list is l(U)− 2.

I The next instruction should be the first with this label.

I That is, K should get as its value the least i for which
l((Z)i) = l(U)− 2. If there is no instruction with the
appropriate label, K gets the 0, which will lead to termination
the next time through the main loop.

I Once the instruction counter K is adjusted, the execution
enters the main loop by GOTO C .

25 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Subtraction and Addition

[M] S ← bS/Pc
GOTO N

[A] S ← S · P
[N] K ← K + 1

GOTO C

I 1 is subtracted from the variable by dividing S by P.

I 1 is added to the variable by multiplying S by P.

I The instruction counter is increased by 1 and the computation
returns to the main loop to fetch the next instruction.

26 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Finalizing

[F] Y ← (S)1

I One termination, the value of Y for the program being
simulated is stored at the exponent on p1 in S .

27 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Un, Finally

Z ← Xn+1 + 1
S ←

∏n
i=1(p2i)

Xi

K ← 1
[C] IF K = Lt(Z) + 1 ∨ K = 0 GOTO F

U ← r((Z)k)
P ← pr(U)+1

IF l(U) = 0 GOTO N
IF l(U) = 1 GOTO A
IF ∼ (P|S) GOTO N
IF l(U) = 2 GOTO M
K ← mini≤Lt(Z)[l((Z)i) + 2 = l(U)]

GOTO C
[M] S ← bS/Pc

GOTO N
[A] S ← S · P
[N] K ← K + 1

GOTO C
[F] Y ← (S)1

28 / 29

A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Notations

For each n > 0, the sequence

Φ(n)(x1, . . . , xn, 0),Φ(n)(x1, . . . , xn, 1), . . .

enumerates all partially computable functions of n variables. When
we want to emphasize this aspect we write

Φ
(n)
y (x1, . . . , xn) = Φ(n)(x1, . . . , xn, y)

It is often convenient to omit the superscript when n = 1, writing

Φy (x) = Φ(x , y) = Φ(1)(x , y).

29 / 29

	A Universal Program (4)
	Coding Programs by Numbers (4.1)
	The Halting Problem (4.2)
	Universality (4.3)

