
Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

1 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)
Functions (1.2)

One-One Functions

I A function is one-one if, for all x , y in the domain of f ,
f (x) = f (y) implies x = y .

I That is, if x 6= y , then f (x) 6= f (y).

I Function f (n) = n2 is one-one.

I Function u2
1(x1, x2) = x1 is not one-one as, for example, both

u2
1(0, 0) and u2

1(0, 1) map to 0.

2 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)
Functions (1.2)

Onto Functions

I If the range of f is the set S , then we say f is an onto
function with respect to S , or simply that f is onto S .

I Function f (n) = n2 is onto the set of perfect squares
{n2 | n ∈ N}, but is not onto N.

I Let S1 × S2 be domain of function u2
1(x1, x2) = x1, then

function u2
1(x1, x2) is onto S1.

3 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)
Computable Functions (2.4)

Programs Accepting Any Number of Inputs

I We permit each program to be used with any number of
inputs.

I If the program has n input variables, but only m < n are
specified, the remaining n−m input variables are assigned the
value 0 and the computation proceeds.

I On the other hand, if m > n values are specified, then the
extra input values are ignored.

4 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)
Computable Functions (2.4)

Programs Accepting Any Number of Inputs, Examples

I Consider the following program P that computes x1 + x2,

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

I We have

Ψ
(1)
P (r1) = r1 + 0 = r1

Ψ
(3)
P (r1, r2, r3) = r1 + r2

5 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Initial Functions

The following functions are called initial functions:

s(x) = x + 1,

n(x) = 0,

uni (x1, . . . , xn) = xi , 1 ≤ i ≤ n.

Note: Function uni is called the projection function. For example,
u4

3(x1, x2, x3, x4) = x3.

6 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursively Closed (PRC)

A class of total functions C is called a PRC class if

I the initial functions belong to C ,

I a function obtained from functions belonging to C by either
composition or recursion also belongs to C .

7 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Computable Functions are Primitive Recursively Closed

Theorem 3.1. The class of computable functions is a PRC class.

Proof. We have shown computable functions are closed under
composition and recursion (Theorem 1.1 & 2.2). We need only
verify the initial functions are computable. They are computed by
the following programs.

s(x) = x + 1 Y ← X + 1;

n(x) the empty program;

uni (x1, . . . , xn) Y ← Xi .

2

8 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions

A function is called primitive recursive if it can be obtained from
the initial functions by a finite number of applications of
composition and recursion.

Note that, by the above definition and the definition of Primitive
Recursively Closed (PRC), it follows that:

Corollary 3.2. The class of primitive recursive functions is a PRC
class.

9 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions & PRC Classes

Theorem 3.3. A function is primitive recursive if and only if it
belongs to every PRC class.
Proof. (⇐) If a function belongs to every PRC class, then by
Corollary 3.2, it belongs to the class of primitive recursive
functions.
(⇒) If f is primitive recursive, then there is a list of functions
f1, f2, . . . , fn such that fn = f and for each fi , 1 ≤ i < n, either
I fi is an initial function, or
I fi can be obtained from the preceding functions in the list by

composition or recursion.

However, the initial functions belong to any PRC class C .
Furthermore, all functions obtained from functions in C by
composition or recursion also belong to C . It follows that each
function f1, f2, . . . , fn = f in the above list is in C . 2

10 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions Are Computable

Corollary 3.4. Every primitive recursive function is computable.
Proof. By Theorem 3.4, every primitive recursive function belongs
to the PRC class of computable functions so is computable. 2

Note that,

I If a function f is shown to be primitive recursive, by the above
Corollary, f can be expressed as a program in language S .

I Not only we know there is program in S for f , by Theorem
3.1 (1.1 & 2.2), we also know how to write this program.

I Furthermore, the program so written will always terminate.

However, if a function f is computable (that is, it is total and
expressible in S), it is not necessarily that f is primitive recursive.
(A counter example will be shown later in this course.)

11 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function f (x , y) = x + y Is Primitive Recursive

Function f can be defined by the recursion equations:

f (x , 0) = x ,

f (x , y + 1) = f (x , y) + 1.

The above can be rewritten as

f (x , 0) = u1
1(x),

f (x , y + 1) = g(y , f (x , y), x),

where
g(x1, x2, x3) = s(u3

2(x1, x2, x3)).

12 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function h(x , y) = x · y Is Primitive Recursive

Function h can be defined by the recursion equations:

h(x , 0) = 0,

h(x , y + 1) = h(x , y) + x .

The above can be rewritten as

h(x , 0) = n(x),

h(x , y + 1) = g(y , h(x , y), x),

where

g(x1, x2, x3) = f (u3
2(x1, x2, x3), u3

3(x1, x2, x3)),

f (x , y) = x + y .

13 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function h(x) = x! Is Primitive Recursive

Function h(x) can be defined by

h(0) = 1,

h(t + 1) = g(t, h(t)),

where
g(x1, x2) = s(x1) · x2.

Note that g is primitive recursive because

g(x1, x2) = s(u2
1(x1, x2)) · u2

2(x1, x2).

14 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function power(x , y) = xy Is Primitive Recursive

Function power can be defined by

power(x , 0) = 1,

power(x , y + 1) = power(x , y) · x .

Note that these equations assign the value 1 to the
“indeterminate” 00.

The above definition can be further rewritten into

15 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

The Predecessor Function Is Primitive Recursive

The predecessor function pred(x) is defined as follows:

pred(x) =

{
x − 1 if x 6= 0
0 if x = 0.

Note that function pred corresponds to the instruction X ← X − 1
in programming language S .

The above definition can be further rewritten into

16 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function x−̇y Is Primitive Recursive

Function x−̇y is defined as follows:

x−̇y =

{
x − y if x ≥ y
0 if x < y .

Note that function x−̇y is different from function x − y , which is
undefined if x < y . In particular, x−̇y is total while x − y is not.

Function x−̇y is primitive recursive because

x−̇0 = x ,

x−̇(t + 1) = pred(x−̇t).

The above definition can be further rewritten into

17 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function |x − y | Is Primitive Recursive

Function |x − y | can be defined as follows:

|x − y | = (x−̇y) + (y−̇x)

It is primitive recursive because the above definition can be further
rewritten into

18 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is Function α(x) below Primitive Recursive?

Function α(x) is defined as:

α(x) =

{
1 if x = 0
0 if x 6= 0.

It is primitive recursive because

19 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

x = y Is Primitive Recursive

Is the function d(x , y) below primitive recursive?

d(x , y) =

{
1 if x = y
0 if x 6= y

It is because d(x , y) = α(|x − y |).

20 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is x ≤ y Primitive Recursive?

It is primitive recursive because x ≤ y = α(x−̇y).

21 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursively Closed

Theorem 5.1. Let C be a PRC class. If P, Q are predicates that
belong to C , then so are ∼ P, P ∨ Q, and P&Q.

Proof. We define ∼ P, P ∨ Q, and P&Q as follows:

∼ P = α(P)

P &Q = P · Q
P ∨ Q = ∼ (∼ P & ∼ Q)

We conclude that ∼ P, P ∨ Q, and P&Q all belong to C . 2

22 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursive and Computable

Corollary 5.2. If P, Q are primitive recursive predicates, then so
are ∼ P, P ∨ Q, and P&Q.

Corollary 5.3. If P, Q are computable predicates, then so are
∼ P, P ∨ Q, and P&Q.

23 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is x < y Primitive Recursive?

It is primitive recursive because

x < y ⇔ ∼ (y ≤ x).

24 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Definition by Cases

Theorem 5.4. Let C be a PRC class. Let functions g , h and
predicate P belong to C . Let function

f (x1, . . . , xn) =

{
g(x1, . . . , xn) if P(x1, . . . , xn)
h(x1, . . . , xn) otherwise.

Then f belongs to C .

Proof. Function f belongs to C because

f (x1, . . . , xn) = g(x1, . . . , xn) · P(x1, . . . , xn)

+ h(x1, . . . , xn) · α(P(x1, . . . , xn)).

2

25 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Definition by Cases, More

Corollary 5.5. Let C be a PRC class. Let n-ary functions
g1, . . . , gm, h and predicates P1, . . . ,Pm belong to C , and let

Pi (x1, . . . , xn) & Pj(x1, . . . , xn) = 0

for all 1 ≤ i < j ≤ m and all x1, . . . , xn. If

f (x1, . . . , xn) =

g1(x1, . . . , xn) if P1(x1, . . . , xn)
...

...
gm(x1, . . . , xn) if Pm(x1, . . . , xn)
h(x1, . . . , xn) otherwise.

then f also belongs to C .

Proof. Proved by a mathematical induction on m. 2
26 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Iterated Operations

Theorem 6.1. Let C be a PRC class. If function f (t, x1, . . . , xn)
belongs to C , then so do the functions g and h

g(y , x1, . . . , xn) =

y∑
t=0

f (t, x1, . . . , xn)

h(y , x1, . . . , xn) =

y∏
t=0

f (t, x1, . . . , xn)

Proof. Functions g and h each can be recursively defined as

g(0, x1, . . . , xn) = f (0, x1, . . . , xn),

g(t + 1, x1, . . . , xn) = g(t, x1, . . . , xn) + f (t + 1, x1, . . . , xn),

h(0, x1, . . . , xn) = f (0, x1, . . . , xn),

h(t + 1, x1, . . . , xn) = h(t, x1, . . . , xn) · f (t + 1, x1, . . . , xn).

2 27 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Iterated Operations, More

Corollary 6.2. Let C be a PRC class. If function f (t, x1, . . . , xn)
belongs to C , then so do the functions

g(y , x1, . . . , xn) =

y∑
t=1

f (t, x1, . . . , xn)

and

h(y , x1, . . . , xn) =

y∏
t=1

f (t, x1, . . . , xn).

In the above, we assume that

g(0, x1, . . . , xn) = 0,

h(0, x1, . . . , xn) = 1.

28 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Bounded Quantifiers

Theorem 6.3. If predicate P(t, x1, . . . , xn) belongs to some PRC
class C , then so do the predicates

(∀t)≤yP(t, x1, . . . , xn)

and
(∃t)≤yP(t, x1, . . . , xn)

Proof. We need only observe that

(∀t)≤yP(t, x1, . . . , xn) ⇔
y∏

t=0

P(t, x1, . . . , xn) = 1

and

(∃t)≤yP(t, x1, . . . , xn) ⇔
y∑

t=0

P(t, x1, . . . , xn) 6= 0

2 29 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Bounded Quantifiers, More

Note that

(∀t)<yP(t, x1, . . . , xn) ⇔ (∀t)≤y [t = y ∨ P(t, x1, . . . , xn)],

and

(∃t)<yP(t, x1, . . . , xn) ⇔ (∃t)≤y [t 6= y & P(t, x1, . . . , xn)].

Therefore, both the quantifiers (∀t)<y and (∃t)<y are primitive
recursively closed.

30 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

y |x Is Primitive Recursive

The “y is a divisor of x” predicate y |x is primitive recursive
because

y |x ⇔ (∃t)≤x(y · t = x).

31 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Prime(x) Is Primitive Recursive

The “x is a prime” predicate Prime(x) is primitive recursive
because

Prime(x) ⇔ x > 1 & (∀t)≤x [t = 1 ∨ t = x ∨ ∼ (t|x)].

32 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Bounded Minimalization

What does the following function g do?

g(y , x1, . . . , xn) =

y∑
u=0

u∏
t=0

α(P(t, x1, . . . , xn))

It computes the least value t ≤ y for which P(t, x1, . . . , xn) is true!
To see why, let t0 ≤ y such that

P(t, x1, . . . , xn) = 0 for all t < t0,

but
P(t0, x1, . . . , xn) = 1

Then
u∏

t=0

α(P(t, x1, . . . , xn) =

{
1 if u < t0,
0 if u ≥ t0.

Hence g(y , x1, . . . , xn) =
∑

u<t0
1 = t0.

33 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Bounded Minimalization, Continued

Define

min
t≤y

P(t, x1, . . . , xn) =

{
g(y , x1, . . . , xn) if (∃t)≤yP(t, x1, . . . , xn),
0 otherwise.

Thus, mint≤y P(t, x1, . . . , xn), is the least value t ≤ y for which
P(t, x1, . . . , xn) is true, if such exists; otherwise it assumes the
(default) value 0.

Theorem 7.1. mint≤y P(t, x1, . . . , xn) is in PRC class C if
P(t, x1, . . . , xn) is in C .

Proof. By Theorems 5.4 and 6.3. 2

34 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

bx/yc Is Primitive Recursive

bx/yc is the “integer part” of the quotient x/y .

The equation
bx/yc = min

t≤x
[(t + 1) · y > x]

shows that bx/yc is primitive recursive. Note that according to
this definition, bx/0c = 0.

35 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

R(x , y), The Remainder Function, Is Primitive Recursive

R(x , y) is the remainder when x is divided by y . As we can write

R(x , y) = x−̇(y · bx/yc)

so that R(x , y) is primitive recursive. Note that R(x , 0) = x .

36 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

pn, The nth Prime Number, Is Primitive Recursive

Note that p0 = 0, p1 = 2, p2 = 3, p3 = 5, etc.

pn is defined by the following recursive equations

p0 = 0,

pn+1 = min
t≤pn!+1

[Prime(t) & t > pn]

so it is primitive recursive.

Note that pn! + 1 is not divisible by any of the primes
p1, p2, . . . , pn. So, either pn! + 1 is itself a prime or it is divisible by
a prime greater than pn. In either case, there is a prime q such
that pn < q ≤ pn! + 1.

37 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

pn Is Primitive Recursive, Continued

To be precise, we shall first define a primitive recursive function

h(y , z) = min
t≤z

[Prime(t) & t > y].

Then we define another primitive function

k(x) = h(x , x! + 1)

Finally, pn is defined as

p0 = 0,

pn+1 = k(pn),

and it is concluded that pn is primitive recursive.

38 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Minimalization, With No Bound

We write
min
y

P(x1, . . . , xn, y)

for the least value of y for which the predicate P is true if there is
one. If there is no value of y for which P(x1, . . . , xn, y) is true,
then miny P(x1, . . . , xn, y) is undefined.

Note that unbounded minimalization of a predicate can easily
produce function which is not total. For example,

x − y = min
z

[y + z = x]

is undefined for x < y .

39 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Unbounded Minimalization is Partially Computable

Theorem 7.2. If P(x1, . . . , xn, y) is a computable predicate and if

g(x1, . . . , xn) = min
y

P(x1, . . . , xn, y)

then g is a partially computable function.

Proof. The following program computes g :

[A] IF P(X1, . . . ,Xn,Y) GOTO E
Y ← Y + 1
GOTO A

2

40 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Pairing Functions

I There is a one-one and onto function from N × N to N (with
domain N × N and range N). This function is called a pairing
function.

I That is, we can map a pair of numbers to a single number,
and back, without losing information. Likewise, we can
compute from any number a pair of numbers, and back,
without missing anything.

I The primitive recursive function

〈x , y〉 = 2x(2y + 1)−̇1

is a pairing function.

I 〈0, 0〉 = 0, 〈1, 0〉 = 1, 〈0, 1〉 = 2, . . .

41 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

The Pairing Function 〈x , y〉 = 2x(2y + 1)−̇1

I Note that 2x(2y + 1) 6= 0, so

〈x , y〉+ 1 = 2x(2y + 1)

I If z is any given number, then there is a unique solution x , y
to the equation 〈x , y〉 = z .

I Namely, x is the largest number such that 2x |(z + 1), and y is
then the solution of the equation 2y + 1 = (z + 1)/2x .

I The pairing function thus defines two functions l and r such
that x = l(z) and y = r(z).

42 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

The Pairing Function 〈x , y〉 = 2x(2y + 1)−̇1, Continued

If 〈x , y〉 = z , then x , y < z + 1. Hence, l(z) ≤ z , and r(z) ≤ z .

We can write

l(z) = min
x≤z

[(∃y)≤z(z = 〈x , y〉)],

r(z) = min
y≤z

[(∃x)≤z(z = 〈x , y〉)],

so that l(z) and r(z) are primitive recursive functions.

43 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Pairing Function Theorem

Theorem 8.1. The functions 〈x , y〉, l(z), and r(z) have the
following properties:

1. they are primitive recursive;

2. l(〈x , y〉) = x , r(〈x , y〉) = y ;

3. 〈l(z), r(z)〉 = z ;

4. l(z), r(z) ≤ z .

44 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Gödel Number

We define the Gödel Number of the sequence (a1, . . . , an) to be
the number

[a1, . . . , an] =
n∏

i=1

paii

Thus, the the Gödel number of the sequence (3, 1, 5, 4, 6) is

[3, 1, 5, 4, 6] = 23 · 31 · 55 · 74 · 116

For each fixed n, the function [a1, . . . , an] is clearly primitive
recursive. Note that the Gödel numbering method encodes and
decodes arbitrary finite sequences of numbers.

45 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Uniqueness Property of Gödel Numbering

Theorem 8.2. If [a1, . . . , an] = [b1, . . . , bn], then

ai = bi

for all i = 1, . . . , n. 2

This result is an immediate consequence of the uniqueness of the
factorization of integers into primes, sometimes referred to as the
unique factorization theorem. Note that,

1 = 20 = 2030 = 203050 = . . . ,

hence it is natural to regard 1 as the Gödel number of the “empty”
sequence (i.e., the sequence of length 0).

46 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function (x)i

We now define a primitive recursive function (x)i so that if

x = [a1, . . . , an]

then (x)i = ai . We set

(x)i = min
t≤x

(∼ pt+1
i |x)

Note that (x)0 = 0, and (0)i = 0 for all i .

47 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function Lt(x)

We also define the “length” function Lt,

Lt(x) = min
i≤x

[(x)i 6= 0 & (∀j)≤x(j ≤ i ∨ (x)j = 0)]

For example, if x = 20 = 22 · 51 = [2, 0, 1] then
(x)1 = 2, (x)2 = 0, (x)3 = 1, but (x)4 = 0, (x)5 = 0, . . . , (x)i = 0,
for all i ≥ 4. So Lt(20) = 3. Note that Lt(0) = Lt(1) = 0.

If x > 1, and Lt(x) = n, then pn divides x but no prime greater
than pn divides x .

48 / 49

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Sequence Number Theorem

Theorem 8.3.

1.

([a1, . . . , an])i =

{
ai if 1 ≤ i ≤ n
0 otherwise.

2.
[(x)1, . . . , (x)n] = x if n ≥ Lt(x).

2

49 / 49

	Preliminaries (1)
	Functions (1.2)

	Programs and Computable Functions (2)
	Computable Functions (2.4)

	Primitive Recursive Functions (3)
	PRC Classes (3.3)
	Some Primitive Recursive Functions/Predicates (3.4, 3.5)
	Iterated Operations and Bounded Quantifiers (3.6)
	Minimalization (3.7)
	Pairing Functions and Gödel Numbers (3.9)

