
Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

1 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Syntax of Language S

I Variables:
I Input variables: X1,X2,X3, . . .
I Output variable: Y
I Local variables: Z1,Z2,Z3, . . .

I Labels: A1,B1,C1,D1,E1,A2,B2,C2,D2,E2,A3, . . .
I A statement is one of the following:

I V ← V + 1
I V ← V − 1
I V ← V
I IF V 6= 0 GOTO L

where V may be any variable and L may be any label.

Note: X1 is a shorthand for X , Z1 is a shorthand for Z , and A is a
shorthand for A1, etc.
V ← V are harmless “dummy” commands (more on these
statements later).

2 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Program

I An instruction is either a statement or [L] followed by a
statement.

I A program is a list (i.e., a finite sequence) of instructions.
The length of this list is called the length of the program. The
empty program is of length 0.

3 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

State

I A state of a program P is a list of equations of the form

V = m

where V is a variable and m is a number, including an
equation for each variable that occurs in P and including no
two equations with the same variable.

I Let σ be a state of P and let V be a variable that occurs in
σ. The value of V at σ is the (unique) number q such that
the equation V = q is one of the equations making up σ.

Note: An number is a nonnegative integer.

4 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A State of A Program: Examples

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

Given program P above, each of the following is a state of P:

I X = 4,Y = 3,Z = 3
I X1 = 4,X2 = 5,Y = 4,Z = 4

but each of the following is not a state of P
I X = 3,Z = 3
I X = 3,X = 4,Y = 2,Z = 2

5 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Snapshot

Let P be a program of length n. Then,

I A snapshot, or instantaneous description, of program P is a
pair (i , σ) where 1 ≤ i ≤ n + 1, and σ is a state of P.

I The value of a variable V at a snapshot (i , σ) just means the
value of V at σ.

I Intuitively the number i indicates that it is the ith instruction
which is about to be executed; i = n + 1 corresponds to a
“stop” instruction. A snapshot with i = n + 1 is called
terminal.

6 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

The Successor of A Snapshot

Let (i , σ) be a nonterminal snapshot of program P, then its
successor (j , τ) will depend on the ith instruction of P. If the ith
instruction is

V ← V + 1 then j = i + 1, and τ is σ with equation V = m
replaced by V = m + 1;

V ← V − 1 then j = i + 1, and τ is σ with equation V = m
replaced by V = m − 1;

V ← V then j = i + 1, and τ = σ;

IF V 6= 0 GOTO L then j = i + 1, and τ = σ if the value of V
at σ is 0; otherwise τ = σ and j is the least number
such that the jth instruction of P is labeled L (in
case no instruction in P is labeled L, let j = n + 1).

7 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

The Successor of A Snapshot: Examples

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

Given program P above, then

I the successor of (1, {X = 4,Y = 0,Z = 0}) is
(4, {X = 4,Y = 0,Z = 0});

I the successor of (2, {X = 4,Y = 0,Z = 0}) is
(3, {X = 4,Y = 0,Z = 1});

I the successor of (7, {X = 4,Y = 0,Z = 0}) is
(8, {X = 4,Y = 0,Z = 0}) which is a terminal snapshot.

8 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computation

A computation of a program P is defined to be a sequence (i.e., a
list) s1, s2, . . . , sk of snapshots of P such that si+1 is the successor
of si for i = 1, 2, . . . , k − 1 and sk is terminal.

9 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computation from An Initial State

Let P be a program, and let r1, r2, . . . , rm be m given numbers.
The state σ of P is defined to consist of the equations

X1 = r1, X2 = r2, . . . , Xm = rm, Y = 0

together with the equation V = 0 for each variable V in P other
than X1,X2, . . . ,Xm,Y . This state is called the initial state, and
the snapshot (1, σ) the initial snapshot.
Starting from the initial snapshot s1 = (1, σ), there can be either

I a computation s1, s2, . . . , sk of P, or

I no such computation (i.e., there is an infinite sequence
s1, s2, s3, . . . where each sk+1 is the successor of sk).

We write Ψ
(m)
P (r1, r2, . . . , rm) for the value of Y at the terminal

snapshot. In the case where there is no computation,

Ψ
(m)
P (r1, r2, . . . , rm) is undefined.

10 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Function f (x) = x , Revisited

[A] IF X 6= 0 GOTO B (1)
Z ← Z + 1 (2)
IF Z 6= 0 GOTO E (3)

[B] X ← X − 1 (4)
Y ← Y + 1 (5)
Z ← Z + 1 (6)
IF Z 6= 0 GOTO A (7)

Given program P above (line numbers added), then

Ψ
(1)
P (x) = x

for all x .

11 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A Computation of Program P

Assuming r 6= 0, the snapshots are

(1, {X = r , Y = 0, Z = 0}),
(4, {X = r , Y = 0, Z = 0}),
(5, {X = r − 1, Y = 0, Z = 0}),
(6, {X = r − 1, Y = 1, Z = 0}),
(7, {X = r − 1, Y = 1, Z = 1}),
(1, {X = r − 1, Y = 1, Z = 1}),
. . . ,
(1, {X = 0, Y = r , Z = r}),
(2, {X = 0, Y = r , Z = r}),
(3, {X = 0, Y = r , Z = r + 1}),
(8, {X = 0, Y = r , Z = r + 1})

12 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Partially Computable Functions and Computable Functions

I A given partial function g is said to be partially computable if
it is computed by some program. That is, g is partially
computable if there is a program P such that

g(r1, . . . , rm) = Ψ
(m)
P (r1, . . . , rm)

for all r1, . . . , rm. The above equation is understood to mean
not only that both sides agree to the same value when they
are defined, but also that when either side is undefined, the
other is also undefined.

I A function is computable if it is both partially computable and
total.

I Partially computable functions are also called partial recursive,
and computable functions are called recursive.

13 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A Nowhere Defined Function

[A] X ← X + 1
IF X 6= 0 GOTO A

I For the above program P, Ψ
(1)
P (x) is undefined for all x .

I The function
f (x) ↑, for all x

is partially computable because f (x) = Ψ
(1)
P (x).

14 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computability Theory

I Computability theory (also called recursion theory) studies the
class of partially computable functions.

I A function can be claimed to be “computable” only when
there really is a program of language S which computes it.

I Is this justified? Isn’t the language S too simplistic and too
ad hoc?

I More evidence will be developed as we go along! We will show
language S is as powerful as we can get!

15 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Wanted: Macro Expansion without Headache

Let f (x1, . . . , xn) be some partially computable function computed
by the program P. How are we able to use macros like

W ← f (V1, . . . ,Vn)

in our programs, where V1, . . . ,Vn,W can be any variables
whatsoever? In particular, W might be one of V1, . . . ,Vn.

16 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A Program Form

I Assume that the variables that occur in P are all included in
the list Y ,X1, . . . ,Xn,Z1, . . . ,Zk and that the labels that
occur in P are all included in the list E ,A1, . . . ,Al .

I We also assume that for each instruction of P of the form
IF V 6= 0 GOTO Ai

there is in P an instruction labeled Ai . In other words, E is
the only “exit” label.

I Any program P can be made to meet the above conditions
after minor changes in notation.

17 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Renaming in A Program Form

I We now write

P = P(Y ,X1, . . . ,Xn,Z1, . . . ,Zk ;E ,A1, . . . ,Al)

and write

Qm = P (Zm,Zm+1, . . . ,Zm+n,Zm+n+1, . . . ,Zm+n+k ;

Em,Am+1, . . . ,Am+l)

for each given value of m.

I The number m is chosen such that all variables and labels in
Qm are new.

18 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

W ← f (V1, . . . ,Vn), Macro Expanded

Zm ← 0
Zm+1 ← V1

Zm+2 ← V2

. . .
Zm+n ← Vn

Zm+n+1 ← 0
Zm+n+2 ← 0
. . .
Zm+n+k ← 0
Qm

[Em] W ← Zm

Note: If f (V1, . . . ,Vn) is undefined, the program Qm will never
terminate.

19 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

General Conditional Branch Statement

I Function P(x1, . . . , xn) is a computable predicate if it is a
computable function returning either 1 (interpreted as TRUE)
or 0 (interpreted as FALSE).

I Let P(x1, . . . , xn) be any computable predicate. Then the
appropriate macro expansion of

IF P(x1, . . . , xn) GOTO L

is simply

Z ← P(x1, . . . , xn)
IF Z 6= 0 GOTO L

where variable Z is new.

20 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

Composition

Let f be a function of k variables and let g1, . . . , gk be functions of
n variables. Let

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)).

The h is said to be obtained from f and g1, . . . , gk by composition.

21 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

Composition of (Partially) Computable Functions

Theorem 1.1. If h is obtained from the (partially) computable
functions f , g1, . . . , gk by composition, then h is (partially)
computable.

Proof. The following program computes h:

Z1 ← g1(X1, . . . ,Xn)
. . .
Zk ← gk(X1, . . . ,Xn)
Y ← f (Z1, . . . ,Zk)

If
f , g1, . . . , gk are total, so is h. 2

22 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

Recursion

Suppose k is some fixed number and

h(0) = k ,

h(t + 1) = g(t, h(t)),

where g is some given total function of two variables. Then h is
said to be obtained from g by primitive recursion, or simply
recursion.

23 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

Recursion of Computable Functions

Theorem 2.1. If h is obtained from g as in the previous slide and
let g be computable. Then then h is also computable.

Proof. The following program computes h:

Y ← k
[A] IF X = 0 GOTO E

Y ← g(Z ,Y )
Z ← Z + 1
X ← X − 1
GOTO A

where Y ← k is expanded to k lines of Y ← Y + 1. 2

24 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

More Recursion

h(x1, . . . , xn, 0) = f (x1, . . . , xn)

h(x1, . . . , xn, t + 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn),

where f is a total function of n variables, and g is a total function
of n + 2 variables. Function h of n + 1 variable is said to be
obtained from g by primitive recursion, or simply recursion, from f
and g .

25 / 26



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

More Recursion of Computable Functions

Theorem 2.2. If h is obtained from g as in the previous slide and
let g be computable. Then then h is also computable.

Proof. The following program computes h(x1, . . . , xn, xn+1):

Y ← f (X1, . . . ,Xn)
[A] IF Xn+1 = 0 GOTO E

Y ← g(Z ,Y ,X1, . . . ,Xn)
Z ← Z + 1
Xn+1 ← Xn+1 − 1
GOTO A

2

26 / 26


	Programs and Computable Functions (2)
	Syntax (2.3)
	Computable Functions (2.4)
	More about Macros (2.5)

	Primitive Recursive Functions (3)
	Composition (3.1)
	Recursion (3.2)


