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A Programming Language for String Computations

We introduce, for each n > 0, a programming language Sn, which
is specifically designed for string calculations on an alphabet
A = {s1, s2, . . . , sn} of n symbols.

I Language Sn has the same input, output, and local variables
as S , except that we now think of them as having values in
the set A∗.

I Variables not initialized are set to 0, the empty string.
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Instructions of Sn

V ← σV Place the symbol σ to the left of the string which is
the value of V . (For each symbol σ ∈ A, there is
such an instruction.)

V ← V− Delete the final symbol of the string which is the
value of V . If V = 0, leave it unchanged.

IF V ENDS σ GOTO L If the value of V ends in the symbol σ,
execute next the first instruction labeled L; otherwise
proceed to the next instruction.

An m-ary partial function on A∗ which is computed by a program
in Sn is said to be partially computable in Sn. If the function is
total and partially computable in Sn, it is called computable in Sn.
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Macros in Sn

IF V 6= 0 GOTO L has the expansion

IF V ENDS σ1 GOTO L
IF V ENDS σ2 GOTO L
. . .
IF V ENDS σn GOTO L

V ← 0 has the expansion

[A] V ← V−

IF V 6= 0 GOTO A

GOTO L has the expansion

Z ← 0
Z ← s1Z
IF Z ENDS s1 GOTO L
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Macro V ← V ′ has the expansion . . .

Z ← 0
V ′ ← 0

[A] IF V ENDS σ1 GOTO B1

...
IF V ENDS σn GOTO Bn

GOTO C
[Bi ] V ← V−

V ′ ← siV
′

Z ← siZ
GOTO A

[C ] IF Z ENDS σ1 GOTO D1

...
IF V ENDS σn GOTO Dn

GOTO E
[Di ] Z ← Z−

V ← siV
GOTO C 5 / 16
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Two Theorems

Theorem 3.1. A function is partially computable if and only if it
is partially computable in S1. 2

Theorem 3.2. If a function is partially computable, then it is also
partially computable in Sn for each n. 2
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Post-Turing Programs

The Post-Turing language T is yet another programming language
for string manipulation.

I Unlike Sn, the language T has no variables. All of the
information being processed is placed on one linear tape.

I The tape is thought of as infinite in both directions. Each
step of a computation is sensitive to just one symbol on the
tape, the symbol on the square being “scanned”.
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Instructions of T

PRINT σ Replace the symbol on the square being scanned by
σ.

IF σ GOTO L GOTO the first instruction labeled L if the symbol
currently scanned is σ; otherwise, continue to the
next instruction.

RIGHT Scan the square immediately to the right of the
square presently scanned.

LEFT Scan the square immediately to the left of the square
presently scanned.
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Blanks

When dealing with string functions on the alphabet
A = {s1, s2, . . . , sn}, an additional symbol, written s0 and called
the blank, is used as a punctuation mark. Often we write B for the
blank instead of s0.
To compute a partial function f (x1, . . . , xm) of m variables on A∗,
we place the m strings x1, . . . , xm on the tape initially; they are
separated by single blanks.

↓
B x1 B x2 . . . B xm B
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Computability in T

Let f (x1, . . . , xm) be an m-ary partial function on the alphabet
A = {s1, . . . , sm}. The program P in the Post-Turing language T
is said to compute f if when started in the tape configuration

↓
B x1 B x2 . . . B xm B

it eventually halts if and only if f (x1, . . . , xm) is defined and if, on
halting, the string f (x1, . . . , xm) can be read off the tape by
ignoring all symbols other than s1, . . . , sn.
The program P is said to compute f strictly if, in addition,

1. no instruction in P mentions any symbol other than
s0, s1, . . . , sm;

2. whenever P halts, the tape configuration is of the form

. . . B B B
↓
B y B B . . .

where the string y contains no blanks.
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Simulation of Sn in T and simulation of T in S

Theorem 5.1. If f (x1, . . . , xm) is partially computable in Sn, then
there is a Post-Turing program that computes f strictly. 2

Theorem 6.1. If there is a Post-Turing program that computes the
partial function f (x1, . . . , xm), then f is partially computable. 2
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Turing Machines

Informally, a Turing consists of a finite set of internal states
q1, q2, . . ., an finite set of symbols s0, s1, s2, . . . that can appear on
the tape (where s0 = B is the “blank”), and and a finite set of
quadruples representing all possible transitions operating on a
linear tape. The quadruple is in one of the following three forms:

1. qi sj sk ql
2. qi sj R ql
3. qi sj L ql

with the intended meaning that,

1. when in state qi scanning symbol sj , the device will print sj
and go into state ql ;

2. when in state qi scanning symbol sj , the device will move one
square to the right and then go into state ql ;

3. when in state qi scanning symbol sj , the device will move one
square to the left and then go into state ql .
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Turing Machines, Continued

A deterministic Turing machine satisfies the additional
“consistency” condition that no two quadruples begin with the
same pair qi sj .

The alphabet of a given Turing machine M consists of all of the
symbols si which occur in quadruples of M except s0.

A Turning machine always begins in state q1. It halts if it is in
state qi scanning sj and there is no quadruple that begins with
qi sj .
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Computations by Turing Machines

Using the same convention with Post-Turing programs, it should
be clear what it means to say that some given Turing machine M
computes a partial function f on A∗ for a given alphabet A.

We further say that M computes a function f strictly if

1. the alphabet of M is a subset of A;

2. starting with the initial configuration
q1
B x , whenever M

halts, the finial configuration has the form
qi
B y , where y

contains no blanks.
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Turing Machines, Examples

Writing s0 = B, s1 = 1, and considering the Turning machine M
with alphabet { 1 } and the following transitions:

q1 B R q2

q2 1 R q2

q2 B 1 q3

q3 1 R q3

q3 B 1 q1

What does M compute?
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Three Theorems

Theorem 1.1. Any partial function that can be computed by a
Post-Turing program can be computed by a Turing machine using
the same alphabet. 2

Theorem 1.2. Let f be an m-ary partially computable function on
A∗ for a given alphabet A. Then there is a Turing machine M
that computes f strictly. 2

Theorem 1.4 Any partial function that can be computed by a
Turing machine can be computed by a Post-Turing program using
the same alphabet. 2
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