Calculations on Strings (5) Turing Machines (6)

Theory of Computation

Prof. Michael Mascagni

Florida State University Department of Computer Science

A Programming Language for String Computations

We introduce, for each n > 0, a programming language \mathscr{S}_n , which is specifically designed for string calculations on an alphabet $A = \{s_1, s_2, \ldots, s_n\}$ of *n* symbols.

- Language S_n has the same input, output, and local variables as S, except that we now think of them as having values in the set A*.
- ► Variables not initialized are set to 0, the empty string.

Instructions of \mathscr{S}_n

- $V \leftarrow \sigma V$ Place the symbol σ to the left of the string which is the value of V. (For each symbol $\sigma \in A$, there is such an instruction.)
- $V \leftarrow V^-$ Delete the final symbol of the string which is the value of V. If V = 0, leave it unchanged.
- IF V ENDS σ GOTO L If the value of V ends in the symbol σ , execute next the first instruction labeled L; otherwise proceed to the next instruction.

An *m*-ary partial function on A^* which is computed by a program in \mathscr{S}_n is said to be *partially computable* in \mathscr{S}_n . If the function is total and partially computable in \mathscr{S}_n , it is called *computable* in \mathscr{S}_n .

Macros in \mathscr{S}_n

IF $V \neq 0$ GOTO L has the expansion IF V ENDS σ_1 GOTO L IF V ENDS σ_2 GOTO L . . . IF V ENDS σ_n GOTO L $V \leftarrow 0$ has the expansion [A] $V \leftarrow V^-$ IF $V \neq 0$ GOTO A GOTO L has the expansion $Z \leftarrow 0$ $Z \leftarrow s_1 Z$ IF Z ENDS S1 GOTO L

Calculations on Strings (5) Turing Machines (6) A Programming Language for String Computations (5.2) The Languages and (6.3) Post-Turing Programs (6.4)

Macro $V \leftarrow V'$ has the expansion . . .

```
Z \leftarrow 0
      V' \leftarrow 0
[A] IF V ENDS \sigma_1 GOTO B_1
      IF V ENDS \sigma_n GOTO B_n
      GOTO C
[B_i] V \leftarrow V^-
      V' \leftarrow s_i V'
     Z \leftarrow s_i Z
      GOTO A
[C] IF Z ENDS \sigma_1 GOTO D_1
      IF V ENDS \sigma_n GOTO D_n
      GOTO E
[D_i] Z \leftarrow Z^-
      V \leftarrow s_i V
      GOTO C
```

Two Theorems

Theorem 3.1. A function is partially computable if and only if it is partially computable in \mathscr{S}_1 .

Theorem 3.2. If a function is partially computable, then it is also partially computable in \mathscr{S}_n for each *n*.

Post-Turing Programs

The Post-Turing language ${\mathscr T}$ is yet another programming language for string manipulation.

- ► Unlike S_n, the language S has no variables. All of the information being processed is placed on one linear tape.
- The tape is thought of as infinite in both directions. Each step of a computation is sensitive to just one symbol on the tape, the symbol on the square being "scanned".

Instructions of ${\mathscr T}$

PRINT σ Replace the symbol on the square being scanned by σ .

- IF σ GOTO *L* GOTO the first instruction labeled *L* if the symbol currently scanned is σ ; otherwise, continue to the next instruction.
 - RIGHT Scan the square immediately to the right of the square presently scanned.
 - LEFT Scan the square immediately to the left of the square presently scanned.

Blanks

When dealing with string functions on the alphabet

 $A = \{s_1, s_2, \ldots, s_n\}$, an additional symbol, written s_0 and called the *blank*, is used as a punctuation mark. Often we write *B* for the blank instead of s_0 .

To compute a partial function $f(x_1, \ldots, x_m)$ of *m* variables on A^* , we place the *m* strings x_1, \ldots, x_m on the tape initially; they are separated by single blanks.

$$\stackrel{\downarrow}{B} x_1 B x_2 \dots B x_m B$$

Computability in ${\mathscr T}$

Let $f(x_1, \ldots, x_m)$ be an *m*-ary partial function on the alphabet $A = \{s_1, \ldots, s_m\}$. The program \mathscr{P} in the Post-Turing language \mathscr{T} is said to *compute* f if when started in the tape configuration

$\stackrel{\downarrow}{B}$ x₁ B x₂ ... B x_m B

it eventually halts if and only if $f(x_1, \ldots, x_m)$ is defined and if, on halting, the string $f(x_1, \ldots, x_m)$ can be read off the tape by ignoring all symbols other than s_1, \ldots, s_n . The program \mathscr{R} is said to compute f strictly if in addition

The program \mathcal{P} is said to compute f strictly if, in addition,

1. no instruction in ${\mathscr P}$ mentions any symbol other than

 $s_0, s_1, \ldots, s_m;$

2. whenever \mathscr{P} halts, the tape configuration is of the form

where the string y contains no blanks.

Calculations on Strings (5) Turing Machines (6) A Programming Language for String Computations (5.2) The Languages and (6.3) Post-Turing Programs (6.4)

Simulation of \mathscr{S}_n in \mathscr{T} and simulation of \mathscr{T} in \mathscr{S}

Theorem 5.1. If $f(x_1, \ldots, x_m)$ is partially computable in \mathscr{S}_n , then there is a Post-Turing program that computes f strictly.

Theorem 6.1. If there is a Post-Turing program that computes the partial function $f(x_1, \ldots, x_m)$, then f is partially computable. \Box

Turing Machines

Informally, a Turing consists of a finite set of internal states q_1, q_2, \ldots , an finite set of symbols s_0, s_1, s_2, \ldots that can appear on the tape (where $s_0 = B$ is the "blank"), and and a finite set of quadruples representing all possible transitions operating on a linear tape. The quadruple is in one of the following three forms:

- 1. $q_i s_j s_k q_l$
- 2. $q_i s_j R q_l$
- 3. $q_i s_j L q_l$

with the intended meaning that,

- when in state q_i scanning symbol s_j, the device will print s_j and go into state q_i;
- when in state q_i scanning symbol s_j, the device will move one square to the right and then go into state q_l;
- 3. when in state q_i scanning symbol s_j , the device will move one square to the left and then go into state q_i .

Turing Machines, Continued

A deterministic Turing machine satisfies the additional "consistency" condition that no two quadruples begin with the same pair $q_i s_j$.

The alphabet of a given Turing machine \mathscr{M} consists of all of the symbols s_i which occur in quadruples of \mathscr{M} except s_0 .

A Turning machine always begins in state q_1 . It halts if it is in state q_i scanning s_j and there is no quadruple that begins with $q_i s_j$.

Computations by Turing Machines

Using the same convention with Post-Turing programs, it should be clear what it means to say that some given Turing machine \mathcal{M} computes a partial function f on A^* for a given alphabet A.

We further say that \mathcal{M} computes a function f strictly if

- 1. the alphabet of \mathcal{M} is a subset of A;
- 2. starting with the initial configuration $\stackrel{q_1}{B} \times$, whenever \mathscr{M} halts, the finial configuration has the form $\stackrel{q_i}{B} y$, where y contains no blanks.

Turing Machines, Examples

Writing $s_0 = B$, $s_1 = 1$, and considering the Turning machine \mathcal{M} with alphabet $\{1\}$ and the following transitions:

What does *M* compute?

Three Theorems

Theorem 1.1. Any partial function that can be computed by a Post-Turing program can be computed by a Turing machine using the same alphabet.

Theorem 1.2. Let f be an m-ary partially computable function on A^* for a given alphabet A. Then there is a Turing machine \mathcal{M} that computes f strictly.

Theorem 1.4 Any partial function that can be computed by a Turing machine can be computed by a Post-Turing program using the same alphabet.