Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-Free Languages (10)

A, A Context-free Grammar

Now let A be the grammar whose variables, start symbol, and
terminals are those of [and whose productions are as follows:
1. all productions V' — a from [with a € T,
2. all productions X; — (; Y, i=1,2,...,n,
3. all productions V — a); Z;, i = 1,2,...,n, for which V — a
is a production of ' with a € T.

N

34

Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-Free Languages (10)

Lemma 2

Lemma 2. L(A) is regular.

Proof. A is right-linear. By Theorem 2.5, it is regular. O

Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-Free Languages (10)

Lemma 3

Lemma 3. L(I5) C L(A).

Proof. We show that if X =t v € (T UP)" then X =7 u. The
proof is by an induction on the length of a derivation of u from X
inls. Let

X=Xi=r, i Yi)iZi=r,(iv)iw=u,

where the induction hypothesis applies to Y; = v and Z; = w.
Thus Y; = v and Z; = w. By Exercise 3. (p. 308 of the
textbook), we can show that v =z a,a € T. We conclude

Yi=pAzV=pnza=yv,
where V' — a is a production of I'. But then we have
Xi =na (,Y, :>*A (,'Z\/ =A (,-za),-Z,- =>*A (,‘V),‘WZU.
O

Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-Free Languages (10)

Lemma 4
Lemma 4. L(A)NPAR,(T) C L(Ts).

Proof. Let X =7, u, where u € PAR,(T). We shall prove that

X = u. The proof is by an induction on the total number of
pairs of the brackets (;,); in u. If there is no such pair, then u € T
and production X — v is in A hence in ['s. Thus X = u.

Suppose there are pairs of brackets in u. By observing all the
available productions in A, we conclude that v = (; z for some z
and i. As u € PAR,(T), we further conclude that u = (; v); w,
where v, w € PAR,(T).

As the symbol); can only arises from the use of some production
V — a); Ziin A. So v must end in a terminal a, so we can write
v = va, where

Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-Free Languages (10)

Lemma 4, Continued

Proof (Continued).
X:X,':>A(,' Y,:>*A(, \7V:>A (,‘ \73),’ Z,':>*A(,' V),' w
and
Z; é*A w.
Moreover, since v — a is a production of [, hence of A, we also
have in A
Y,éz vV =aAva=v.
Since v and w must each contain fewer pairs of brackets than v,
we have by induction hypothesis

Y; :>FS Vv, Z; :>Fs w.
Hence,

Xi=r, i Vi)iZi=r, (iv)iw=u

6 /34

Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-Free Languages (10)

A Main Theorem

Theorem 7.3. Let I' be a grammar in Chomsky normal form with
terminals T. Then there is a regular language R such that

L(Ts) = RN PAR,(T).

Proof. Let A be defined as above and let R = L(A). The results
follows from Lemmas 1-4. O

Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-Free Languages (10)

Chomsky-Schiitzenberger Representation Theorem

Theorem 7.4. A languages L C T* is context-free if and only if
there is a regular language R and a number n such that

L = Erp(R N PAR,(T))

where P = {(;,)i | i=1,2,...,n}.
Proof. By Theorem 7.1, 7.2, and 7.3. O
We will see that the Chomsky-Schiitzenberger Representation

Theorem is instructional in the design of a class of machines —
the Pushdown Automata — to recognize context-free languages.

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Automata That Accept Context-free Languages?

What kind of automaton is needed for accepting context-free
languages?

For a Chomsky normal form context-free grammar I" with terminals
T, and additional bracket symbols P,

» Theorem 7.2 says Erp(L(I's)) = L(T).

» Theorem 7.3 says L(['s) = RN PAR,L(T).

> We shall first try to construct an appropriate automaton for
recognizing L(Is).

> R is accepted by a finite automaton; we need additional
facilities to check if some given words belong to PAR,(T).

P> A first-in-last-out “pushdown stack” is needed to recognize
PAR,(T).

Context-Free Languages (10) Sledat Langieges (1.0

Pushdown Automata (10.8)

Pushdown Stack

At each step, one or both of the following operations can be
perform:
1. The symbol at the “top” of the stack may be read and
discarded. This operation is called “popping the stack”.
2. A new symbol may be “pushed” onto the stack.
A stack can be used to identify a string as belonging to PAR,(T)
as follows:
» A special symbol J; is introduced for each pair
(,‘,),’,I': 1,2,...,[7.
> As the automaton moves from left to right over a string, it
pushes J; onto the stack whenever it sees (;, and it pops the
stack, eliminating a J;, whenever it sees);.
» In case the string belongs to PAR,(T), the automaton will
terminate with an empty stack after moving to the right end
of the string.

10/34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Notations

Let T be a given alphabet and let P = {(;,); | i =1,2,...,n}.
Let Q = {J1, Jo, ..., n}, where we have introduced a single
symbol J; for each pair (;,);,1 < i< n. Let u € (T UP)*, say,
U=cicy...Ck, Where c1,c,...,cx € TUP.

We define a sequence 7;(u) of elements of Q* to characterize the

content of the pushdown stack as follows:

mn(u) = 0
vi(u)y if geT
() = 9 Jile) i oG =(
« if Gj :),' and ’yj(u) = J,'(M

for j=1,2,..., k. Note that if ¢; =);, 7j+1(u) will be undefined
unless 7; begins with the symbol J; for the very same value of .
Furthermore, if a particular 7, (u) is undefined, all ;(u) with j > r

will also be undefined.
11/34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Words in PAR,(T) Are Balanced

Definition. We say that the words u € (T U P)* is balanced if
7j(u) is defined for 1 < j < [u| + 1 and 41 (u) = 0. O

Theorem 8.1. Let T be an alphabet and let
P:{(’.7)f’i:1727-~.7n}7 TﬂP:@

Let u € (TUP)*. Then u e PAR,(T) if and only if u is balanced.
O

The proof of Theorem 8.1 is via a series of easy lemmas.

12 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Lemmas
Lemma 1. If v € T*, then u is balanced. O
Lemma 2. If v and v are balanced, so us uv. O

Lemma 3. Let v = (; u);. Then v is balanced if and only if v
balanced. O

Lemma 4. If v is balanced and uv is balanced, then v is balanced.

O
Lemma 5. If u € PAR,(T), then v is balanced. O
Lemma 6. If v is balanced, the u € PAR,(T). O

13 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Pushdown Automata

A pushdown automaton .# consists of

state, and F C Q@ is the set of finél, or accepting, states,
a tape alphabet A,

a pushdown alphabet €,

a symbol 0 not in A nor in 2, and

> a finite set of states Q = {q1,..., Gm}, where g; is the initial

a finite set of transitions which each is a quintuple of the form
giaU : Vg;
where ac A= AU {0}, U,V € Q=Qu{0}.

Intuitively, if a € A and U, V € €, the quintuple reads: “In state g;
scanning a, with U on top of the stack, move one square to the
right, ‘pop’ the stack removing U, ‘push’ V onto the stack, and
enter state g;."

14 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Pushdown Automata, Continued

For the quintuple
gial : Vq;
where either a, U, V is 0, the transition is defined as the following.
» If a =0, motion to the right does not take place and the
stack action can occur regardless of what the symbol is
actually being scanned.
» If U =0, then nothing is to be popped.
» If V =0, then nothing is to be pushed.
Furthermore, the distinct transitions g;aU : Vq;, q;bW : Xqy are
called incompatible if one of the following is the case:
1. a=b,and U= W;
2. a=b,and Uor W is 0;
3. U=W,and aor bis 0;
4. aorbis0, and U or W is 0.
A pushdown automaton is deterministic if it has no pair of

incompatible transitions. o

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Configurations of Pushdown Automata

Let v € A* and let .Z be a pushdown automaton. Then a
u-configuration for .7 is a triple A = (k, g;,), where
1<k<|ul+1, q;is a state of .Z, and o € Q*.

Intuitively, the u-configuration (k, g;,) stands for the situation in
which v is written on .#'s tape, .# is scanning the kth symbol of
U —or, if k = |u| + 1, has completed scanning v — and « is the
string of symbols on the pushdown stack.

We speak of g; as the state of configuration A, and of « as the
stack contents at configuration A. If a = 0, we say the stack is
empty at A.

16 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Configurations of Pushdown Automata, Continued

For a pair of u-configurations, we write

u:(k,qi,a) = (1,95, 8)
if .7/ contains a transition g;aU : Vq;, where oo = Uy, 3 = V' for
some v € Q% and either
1. /l=kanda =0, or
2. | = k+ 1 and the kth symbol of u is a.

Note that the equation o = U~ is to be read simply o = v in case
U = 0; likewise for 5 = V7.

17 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Computation by Pushdown Automata

A sequence A1, Ao, ..., A, of u-configurations is called a
u-computation by . if

1. Ay =(1,q,0) for some g € Q,
2. Ay =(|u]l +1,p,7) for some p € Q and v € Q*, and
3. urAjk y Ajyg, forl < i< m.

This u-computation is called accepting if the state at A; is the
initial state g1, the state p at A, is in F, and the stack at A, is
empty.

We say that .# accepts the string u € A* if there is an accepting

u-computation by .#. We write L(.#) for the set of strings
accepted by .7, and we call L(.Z') the language accepted by ./ .

18 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Pushdown Automata, Examples

See Examples .#1, .75, and .73 at page 312 in the textbook.

19/34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Separators and Deterministic Pushdown Automata

Theorem 8.2. Let I' be a Chomsky normal form grammar with

separator ['s. Then there is a deterministic pushdown automaton
A such that L(.Z') = L(Ts).

Proof Outline. By Theorem 7.3, for suitable n,
L(Ts) = RNPAR,L(T),

where R is a regular language, and T is the set of terminals of I'.
Let P={(;,)i | i=1,2,...,n}, and .Z, be a dfa with alphabet
T U P that accepts R. Let Q = {qg1,92,...,qm} be the states of
Mo, q1 the initial states, F C Q the accepting states, and 0 the
transition function.

We construct a pushdown automaton .# with tape alphabet
T U P and the same states, initial state, and accepting states as
Aoy. A is to have the pushdown alphabet Q = {J1,...,J,}.

20 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Separators and Deterministic Pushdown Automata,
Continued

Proof Outline (Continued). The transitions of .# are as follows for
all a € Q:

1. foreach a € T, qa0 : Op, where p = d(q, a);

2. fori=1,2,...,n, q(;0: Jip;, where p; = (q, (;);

3. fori=1,2,...,n, q)iJi : 0p;, where p; = d(q,))
Note that, by definition, .# is deterministic.

It remains to be proved that, for any u € L(I's), there is an

accepting u-computation by .# (=-). Conversely, we need to prove
that, if . accepts v € (T U P)*, then there is a derivation of u in
s (). O

21/34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Separators and Deterministic Pushdown Automata,
Continued

Proof Outline (Continued). (=) Let u = cico....cx € L(Ts),
where ¢1, ¢, ..., cx € (T UP). Then there is a sequence of states

P1, P2, .-, Pr+1 € Q such that p1 = g1, pky1 € F, and
o(pisci) = piv1, i =1,2,..., K.

Since u € PAR,(T), by Theorem 8.1, u is balanced, so that ~;(u)
is defined for j = 1,2,..., K + 1 and yk1(u) = 0. We let

Al:(_/apj*’}/j(u))* Jj=12,...,K+ 1L
It follows that
UZAJ'}—j/AJ'le, J:12/K

Thus A1, Ay, ..., Aky1 is an accepting u-computation by .7 .

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Separators and Deterministic Pushdown Automata,
Continued

Proof Outline (Continued). (<) Conversely, let .# accept

U=cic...cx. Thus Ay, Ay, ..., Ak is an accepting
u-computation by 7. Let A; = (j, pj,7j),J =1,2,....K + 1.
Since

u:Djk g Djyr, j=1,2,....K

and 71 = 0, we see that ~; satisfies the defining recursion for ~;(u)
and hence, v; = 7;(u) for j =1,2,..., K+ 1. Since k41 =0, u'is
balanced and hence u € PAR,(T). Finally, we have p; = g1,

prk+1 € F, and 0(p;j, ¢j) = pj+1. Therefore the dfa .7, accepts u,
and u € R. We conclude that v € L(Is). O

23 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Atomic Pushdown Automata

A pushdown automaton is called atomic (whether or not it is
deterministic) if all of its transition are one of the following forms:

1. pa0: 0gq,
2. p0U : 0gq,
3. p00: Vq.

Thus, at each step in a computation an atomic pushdown
automaton can read the tape and move right, or pop a symbol off
the stack or push a symbol on the stack. But, unlike pushdown
automata in general, it cannot perform more than one of these
actions in a single step.

We will later show that for any pushdown automata .7, there is
an atomic pushdown automata .# such that L(.Z) = L(.Z).

24 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Computation Records of Atomic Pushdown Automata

Let .# be a given atomic pushdown automata with tape alphabet
T and pushdown alphabet Q = {J;, J, ..., J,}. We set

P={(,)i|i=1,2,...,n}

and show how to use the “brackets” to define a kind of “records”
of a computation by .Z .

Let Ay, Ao, ..., A, be a v-computation by .7, where
v=cc....,cxk and ¢, € T, k=1,2,...,K, and where
Aj= (i, pi,vi), i =1,2,...,m. We set
wp = 0
wic, it yit1 =i
Wipr1 = W,'(j if Yi+1 = Jjvi 1<i<m
wi)j if i = Jpvia

25 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Computation Records of Atomic Pushdown Automata,
Continued

Now let w = w,, so that Erp(w) = v and m = |w| + 1. This word
w is called the record of the given v-computation Ay,..., A, by

From w we can read off not only the word v but also the sequence

of “pushes” and “pops” as they occur. In particular,
w;, 1 < i < m, indicates how .#Z goes from A; 1 to A;.

26 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

An Atomic Automaton for L(I')

We now modify the pushdown automaton .# of Theorem 8.2 so
that it will accept L(I") instead of L(I's). The idea is to use
nondeterminism to “guess” the location of the “brackets” (;,);.

Continuing to use the notation of the proof of Theorem 8.2, We
define a pushdown automaton .# with the same states, initial
state, accepting states, the pushdown alphabet as .#. However,
the tape alphabet of . will be T (rather than T U P). The

transitions of .# are, for all g € Q:

1. foreach a € T, qa0 : Op, where p = d(q, a);

2. for i =1,2,....n,q00 : J;ip;, where p; = d(q, (;);

3. fori=1,2,...,n,q0J; : Op;, where p; = i(q,);).
Depending on the transition function §, .# can certainly be
non-deterministic. Note that ./ is atomic (though .# is not). It

remains to be proved that L(.Z) = L(T).

27 /34

Context-Free Languages (10) Bracket Languages (10.7)

vel(l=vel(A)
Let v € L(I"). Then, since Erp(L(I's)) = L(I), there is a word
w € L(I's) such that Erp(w) = v. By Theorem 8.2, w € L(.Z).
Let

Pushdown Automata (10.8)

Ai:(ll7pi7fyi)7 1:12/m
be an accepting w-computation by .7 (with m = |w| + 1).
Let nj =1if w:A; b 4 Ajiq is via transition ga0 : 0p (with
p =0(q,a)); otherwise n; = 0,1 </ < m. Let
L= 1,
liyi = li+n, 1<i<m.

Finally let

Ai:(ll'vpivfy/): 1<i<m.
Now, it can be checked that
VZA,' F////‘ AH—L 1<i<m.

Since A, = (|v| +1,9,0) with g € F, we conclude v € L(.Z).

28 /34

Context-Free Languages (10) Bracket Languages (10.7)

veLl#)=vell)

Pushdown Automata (10.8)

Let v € L(.Z). Let
Ai:(/ispivﬁ/i)a ir=12,....,m

be an accepting v-computation by .#. Using the fact that ./ is
atomic, we can let w be the record of this computation as defined
earlier so that Erp(w) = v and m = |w| + 1. Let

A= (i,pi,7vi),i =1,2,...,m, and we observe that

W:Af'_’///AiJr]_./ i:1,2,..../m.
Since p, € F and v, =0, Ay, Ay, ..., A, is an accepting

w-computation by .#. Thus by Theorem 8.2, w € L(I's). Hence,
v e L(T).

29 /34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Context-free Languages and Pushdown Automata

Theorem 8.3. Let I be a Chomsky normal form context-free
grammar. Then there is a pushdown automaton .# such that

L(A) = L(T). 0

Theorem 8.4. For every context-free grammar L, there is a
pushdown automaton .7 such that L = L(.Z). O

Note that to prove Theorem 8.4, we need to take care of the case
where 0 € L, hence L = L(I') U {0} for a Chomsky normal form
context-free grammar . For such a case, we need to modify the
pushdown automaton ./ that accepts L(I'). Actually we modify
the dfa component .7, of ./ to build an equivalent nonrestarting
dfa. After that, we add the initial state of this new dfa to the set
of accepting states so that 0 will be recognized.

30/34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Atomic Pushdown Automata, Reuvisited

Theorem 8.5. Let .7 be a pushdown automaton. Then there is
an atomic pushdown automaton .7 such that L(.Z) = L(.#).
Proof. For each transition paU : Vq of . for which a, U,v # 0,
we introduce two new states r, s and let .# have the transitions
pa0 : Or
rOU : 0s
s00: Vg
If exactly one of a, U, V is 0, the only two transitions are needed

for .Z/. For each transition p00 : 0qg, we introduce a new state t
and replace p00 : 0g with the transitions

p00 : Jt

t0J : Og
where J is an arbitrary symbol of the pushdown alphabet.
Otherwise, .7 is exactly like .7 . Clearly, L(.#') = L(.). O

31/34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Context-free Languages and Pushdown Automata

Theorem 8.6. For every pushdown automaton .7, L(.Z) is a
context-free language.

Proof Outline. Without loss of generality, we assume . is atomic.
The plan is to prove that for the language L consisting exactly of
the records of all accepting u-computation by .7, where

ue L(), we will have L = RN PAR,(T). R will be a regular
language accepted by a ndfa .#; devised from .#, and T is tape
alphabet of .#. As L(.#) = Erp(L), it follows that L(.Z) is a
context-free language.

To prove L = RN PAR,(T), we need to show both
L C RNPAR,(T) and RN PAR,(T) C L.

32/34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Context-free Languages and Pushdown Automata

Proof Outline of Theorem 8.6, Continued. Let .# have states

Q =1{q1,92,...,qm}, initial state g1, final states F, tape alphabet
T, and pushdown alphabet Q = {J;, ..., Jn}.

To devise ndfa .7, we need P = {(;,); | i =1,...,m}. .#5 has
the same states, initial state, and accepting states as .#/, and
transition function § defined as follows. For each g € Q,

0(g,a) = {p€ Q| A has the transition ga0 : Op} forae T
3(q,(;) = {p€ Q| A has the transition ¢0J; : Op}, i=1,...,n,
5(q,)i) = {p€ Q| A has the transition g00 : Jip}, i=1,...,n.

Let w € L be the record of an accepting u-computation

Ao Ay, where Aj = (15, pi,7vi), i = 1,...,m. By an induction,
we can show that p,, € §*(q1, w). As p,, € F, we have w € R. By
another induction, we can show that v;(w) =~;,i =1,...,m. As
Yw|+1(W) = Yw|+1 = 0, we know w is balanced. We conclude
that w € RN PAR,L(T).

33/34

Context-Free Languages (10) Bracket Languages (10.7)

Pushdown Automata (10.8)

Context-free Languages and Pushdown Automata

Proof Outline of Theorem 8.6, Continued. Conversely, let
w=c...cc € RNPAR,(T), and let u = Erp(w) = di, ... ds.
Let p1,...,pr+1 be some sequence of states such that p; = qi,
pri1 € 0(pi,ci) for i =1,...,r. We claim that

(/1,p1,“,/1(W)), (/2./p27’}/2(W)), .--,(/r+1-/pr+1,'\/r+1(W))
where o= 1
L [+l ifGeT
AR I; otherwise

is an accepting u-computation by .# and w is its record. That is,
we need to show that

u: Iy prsvr(w)) B (1 Prsas Yr1(w))

fori=1,...,r. This is done by an induction / and based on the
transitions that are used. We then conclude w € L, the language

of the records of all accepting u-computation by .7 . O
34 /34

	Context-Free Languages (10)
	Bracket Languages (10.7)
	Pushdown Automata (10.8)

