Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

Δ, A Context-free Grammar

Now let Δ be the grammar whose variables, start symbol, and terminals are those of Γ_{s} and whose productions are as follows:

1. all productions $V \rightarrow a$ from Γ with $a \in T$,
2. all productions $X_{i} \rightarrow\left(i Y_{i}, i=1,2, \ldots, n\right.$,
3. all productions $V \rightarrow a)_{i} Z_{i}, i=1,2, \ldots, n$, for which $V \rightarrow a$ is a production of Γ with $a \in T$.

Lemma 2

Lemma 2. $L(\Delta)$ is regular.
Proof. Δ is right-linear. By Theorem 2.5, it is regular.

Lemma 3

Lemma 3. $L\left(\Gamma_{s}\right) \subseteq L(\Delta)$.

Proof. We show that if $X \Rightarrow{ }_{\Gamma_{s}}^{*} u \in(T \cup P)^{*}$ then $X \Rightarrow_{\Delta}^{*} u$. The proof is by an induction on the length of a derivation of u from X in Γ_{s}. Let

$$
X=X_{i} \Rightarrow_{\Gamma_{s}}\left(i Y_{i}\right)_{i} Z_{i} \Rightarrow_{\Gamma_{s}}^{*}(i v)_{i} w=u
$$

where the induction hypothesis applies to $Y_{i} \Rightarrow{ }_{\Gamma_{s}}^{*} v$ and $Z_{i} \Rightarrow_{\Gamma_{s}}^{*} w$. Thus $Y_{i} \Rightarrow_{\Delta}^{*} v$ and $Z_{i} \Rightarrow_{\Delta}^{*} w$. By Exercise 3. (p. 308 of the textbook), we can show that $v=z a, a \in T$. We conclude

$$
Y_{i} \Rightarrow_{\Delta}^{*} z V \Rightarrow_{\Delta} z a=v
$$

where $V \rightarrow a$ is a production of Γ. But then we have

$$
X_{i} \Rightarrow_{\Delta} \quad\left(i Y _ { i } \Rightarrow _ { \Delta } ^ { * } \quad \left(i z V \Rightarrow_{\Delta} \quad(i z a)_{i} Z_{i} \Rightarrow_{\Delta}^{*} \quad(i v)_{i} w=u\right.\right.
$$

Lemma 4

Lemma 4. $L(\Delta) \cap \operatorname{PAR}_{n}(T) \subseteq L\left(\Gamma_{s}\right)$.
Proof. Let $X \Rightarrow_{\Delta}^{*} u$, where $u \in \operatorname{PAR}_{n}(T)$. We shall prove that $X \Rightarrow{ }_{\Gamma_{s}}^{*} u$. The proof is by an induction on the total number of pairs of the brackets $(i,)_{i}$ in u. If there is no such pair, then $u \in T$ and production $X \rightarrow u$ is in Δ hence in Γ_{s}. Thus $X \Rightarrow_{\Gamma_{s}}^{*} u$.

Suppose there are pairs of brackets in u. By observing all the available productions in Δ, we conclude that $u=(i z$ for some z and i. As $u \in \operatorname{PAR}_{n}(T)$, we further conclude that $u=(i v)_{i} w$, where $v, w \in \operatorname{PAR}_{n}(T)$.

As the symbol $)_{i}$ can only arises from the use of some production $V \rightarrow a)_{i} Z_{i}$ in Δ. So v must end in a terminal a, so we can write $v=\bar{v} a$, where

Lemma 4, Continued

Proof (Continued).

$$
X=X_{i} \Rightarrow_{\Delta}\left(i Y _ { i } \Rightarrow _ { \Delta } ^ { * } \left(i \bar{v} V \Rightarrow_{\Delta}(i \bar{v} a)_{i} Z_{i} \Rightarrow_{\Delta}^{*}(i v)_{i} w\right.\right.
$$

and

$$
Z_{i} \Rightarrow_{\Delta}^{*} w .
$$

Moreover, since $v \rightarrow a$ is a production of Γ, hence of Δ, we also have in Δ

$$
Y_{i} \Rightarrow_{\Delta}^{*} \bar{v} V \Rightarrow_{\Delta} \bar{v} a=v
$$

Since v and w must each contain fewer pairs of brackets than u, we have by induction hypothesis

$$
Y_{i} \Rightarrow{ }_{\Gamma_{s}}^{*} v, \quad Z_{i} \Rightarrow{ }_{\Gamma_{s}}^{*} w .
$$

Hence,

$$
X_{i} \Rightarrow \Gamma_{s}\left(i Y_{i}\right)_{i} Z_{i} \Rightarrow_{\Gamma_{s}}^{*}(i v)_{i} w=u
$$

A Main Theorem

Theorem 7.3. Let 「 be a grammar in Chomsky normal form with terminals T. Then there is a regular language R such that

$$
L\left(\Gamma_{s}\right)=R \cap \operatorname{PAR}_{n}(T)
$$

Proof. Let Δ be defined as above and let $R=L(\Delta)$. The results follows from Lemmas 1-4.

Chomsky-Schützenberger Representation Theorem

Theorem 7.4. A languages $L \subseteq T^{*}$ is context-free if and only if there is a regular language R and a number n such that

$$
L=\operatorname{Er}_{P}\left(R \cap \operatorname{PAR}_{n}(T)\right)
$$

where $P=\left\{\left({ }_{i},\right)_{i} \mid i=1,2, \ldots, n\right\}$.
Proof. By Theorem 7.1, 7.2, and 7.3.

We will see that the Chomsky-Schützenberger Representation Theorem is instructional in the design of a class of machines the Pushdown Automata - to recognize context-free languages.

Automata That Accept Context-free Languages?

What kind of automaton is needed for accepting context-free languages?

For a Chomsky normal form context-free grammar 「 with terminals T, and additional bracket symbols P,

- Theorem 7.2 says $\operatorname{Er}_{p}\left(L\left(\Gamma_{s}\right)\right)=L(\Gamma)$.
- Theorem 7.3 says $L\left(\Gamma_{s}\right)=R \cap \operatorname{PAR}_{n}(T)$.
- We shall first try to construct an appropriate automaton for recognizing $L\left(\Gamma_{s}\right)$.
- R is accepted by a finite automaton; we need additional facilities to check if some given words belong to $\operatorname{PAR}_{n}(T)$.
- A first-in-last-out "pushdown stack" is needed to recognize $\operatorname{PAR}_{n}(T)$.

Pushdown Stack

At each step, one or both of the following operations can be perform:

1. The symbol at the "top" of the stack may be read and discarded. This operation is called "popping the stack".
2. A new symbol may be "pushed" onto the stack.

A stack can be used to identify a string as belonging to $\operatorname{PAR}_{n}(T)$ as follows:

- A special symbol J_{i} is introduced for each pair $(i,)_{i}, i=1,2, \ldots, n$.
- As the automaton moves from left to right over a string, it pushes J_{i} onto the stack whenever it sees (i, and it pops the stack, eliminating a J_{i}, whenever it sees $)_{i}$.
- In case the string belongs to $\operatorname{PAR}_{n}(T)$, the automaton will terminate with an empty stack after moving to the right end of the string.

Notations

Let T be a given alphabet and let $P=\left\{(i,)_{i} \mid i=1,2, \ldots, n\right\}$. Let $\Omega=\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$, where we have introduced a single symbol J_{i} for each pair $(i,)_{i}, 1 \leq i \leq n$. Let $u \in(T \cup P)^{*}$, say, $u=c_{1} c_{2} \ldots c_{k}$, where $c_{1}, c_{2}, \ldots, c_{k} \in T \cup P$.
We define a sequence $\gamma_{j}(u)$ of elements of Ω^{*} to characterize the content of the pushdown stack as follows:

$$
\begin{aligned}
& \gamma_{1}(u)=0 \\
& \gamma_{j+1}(u)=\left\{\begin{array}{lll}
\gamma_{j}(u) & \text { if } & c_{j} \in T \\
J_{i} \gamma_{j}(u) & \text { if } & c_{j}=(i \\
\alpha & \text { if } & \left.c_{j}=\right)_{i}
\end{array} \text { and } \gamma_{j}(u)=J_{i} \alpha\right.
\end{aligned}
$$

for $j=1,2, \ldots, k$. Note that if $\left.c_{j}=\right)_{i}, \gamma_{j+1}(u)$ will be undefined unless γ_{j} begins with the symbol J_{i} for the very same value of i. Furthermore, if a particular $\gamma_{r}(u)$ is undefined, all $\gamma_{j}(u)$ with $j>r$ will also be undefined.

Words in $\operatorname{PAR}_{n}(T)$ Are Balanced

Definition. We say that the words $u \in(T \cup P)^{*}$ is balanced if $\gamma_{j}(u)$ is defined for $1 \leq j \leq|u|+1$ and $\gamma_{|u|+1}(u)=0$.

Theorem 8.1. Let T be an alphabet and let

$$
P=\left\{(i,)_{i} \mid i=1,2, \ldots, n\right\}, \quad T \cap P=\emptyset .
$$

Let $u \in(T \cup P)^{*}$. Then $u \in \operatorname{PAR}_{n}(T)$ if and only if u is balanced.

The proof of Theorem 8.1 is via a series of easy lemmas.

Lemmas

Lemma 1. If $u \in T^{*}$, then u is balanced.
Lemma 2. If u and v are balanced, so us $u v$.
Lemma 3. Let $v=(i u)_{i}$. Then u is balanced if and only if v balanced.

Lemma 4. If u is balanced and $u v$ is balanced, then v is balanced.

Lemma 5. If $u \in \operatorname{PAR}_{n}(T)$, then u is balanced.
Lemma 6. If u is balanced, the $u \in \operatorname{PAR}_{n}(T)$.

Pushdown Automata

A pushdown automaton \mathscr{M} consists of

- a finite set of states $Q=\left\{q_{1}, \ldots, q_{m}\right\}$, where q_{1} is the initial state, and $F \subseteq Q$ is the set of final, or accepting, states,
- a tape alphabet A,
- a pushdown alphabet Ω,
- a symbol 0 not in A nor in Ω, and
- a finite set of transitions which each is a quintuple of the form

$$
\begin{gathered}
q_{i} a \cup: V q_{j} \\
\text { where } a \in \bar{A}=A \cup\{\mathbf{0}\}, U, V \in \bar{\Omega}=\Omega \cup\{\mathbf{0}\} .
\end{gathered}
$$

Intuitively, if $a \in A$ and $U, V \in \Omega$, the quintuple reads: "In state q_{i} scanning a, with U on top of the stack, move one square to the right, 'pop' the stack removing U, 'push' V onto the stack, and enter state q_{j}."

Pushdown Automata, Continued

For the quintuple

$$
q_{i} a U: V q_{j}
$$

where either a, U, V is 0 , the transition is defined as the following.

- If $a=\mathbf{0}$, motion to the right does not take place and the stack action can occur regardless of what the symbol is actually being scanned.
- If $U=0$, then nothing is to be popped.
- If $V=0$, then nothing is to be pushed.

Furthermore, the distinct transitions $q_{i} a U: V q_{j}, q_{i} b W: X q_{k}$ are called incompatible if one of the following is the case:

1. $a=b$, and $U=W$;
2. $a=b$, and U or W is 0 ;
3. $U=W$, and a or b is 0 ;
4. a or b is 0 , and U or W is 0 .

A pushdown automaton is deterministic if it has no pair of incompatible transitions.

Configurations of Pushdown Automata

Let $u \in A^{*}$ and let \mathscr{M} be a pushdown automaton. Then a u-configuration for \mathscr{M} is a triple $\Delta=\left(k, q_{i}, \alpha\right)$, where $1 \leq k \leq|u|+1, q_{i}$ is a state of \mathscr{M}, and $\alpha \in \Omega^{*}$.

Intuitively, the u-configuration $\left(k, q_{i}, \alpha\right)$ stands for the situation in which u is written on \mathscr{M} 's tape, \mathscr{M} is scanning the k th symbol of U - or, if $k=|u|+1$, has completed scanning u - and α is the string of symbols on the pushdown stack.
We speak of q_{i} as the state of configuration Δ, and of α as the stack contents at configuration Δ. If $\alpha=0$, we say the stack is empty at Δ.

Configurations of Pushdown Automata, Continued

For a pair of u-configurations, we write

$$
u:\left(k, q_{i}, \alpha\right) \vdash_{\mathscr{M}}\left(I, q_{j}, \beta\right)
$$

if \mathscr{M} contains a transition $q_{i} a U: V q_{j}$, where $\alpha=U \gamma, \beta=V_{\gamma}$ for some $\gamma \in \Omega^{*}$, and either

1. $I=k$ and $a=0$, or
2. $I=k+1$ and the k th symbol of u is a.

Note that the equation $\alpha=U_{\gamma}$ is to be read simply $\alpha=\gamma$ in case $U=\mathbf{0}$; likewise for $\beta=V \gamma$.

Computation by Pushdown Automata

A sequence $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}$ of u-configurations is called a u-computation by \mathscr{M} if

$$
\text { 1. } \Delta_{1}=(1, q, 0) \text { for some } q \in Q \text {, }
$$

$$
\text { 2. } \Delta_{m}=(|u|+1, p, \gamma) \text { for some } p \in Q \text { and } \gamma \in \Omega^{*} \text {, and }
$$

3. $u: \Delta_{i} \vdash_{\mathscr{M}} \Delta_{i+1}$, for $1 \leq i<m$.

This u-computation is called accepting if the state at Δ_{1} is the initial state q_{1}, the state p at Δ_{m} is in F, and the stack at Δ_{m} is empty.

We say that \mathscr{M} accepts the string $u \in A^{*}$ if there is an accepting u-computation by \mathscr{M}. We write $L(\mathscr{M})$ for the set of strings accepted by \mathscr{M}, and we call $L(\mathscr{M})$ the language accepted by \mathscr{M}.

Pushdown Automata, Examples

See Examples $\mathscr{M}_{1}, \mathscr{M}_{2}$, and \mathscr{M}_{3} at page 312 in the textbook.

Separators and Deterministic Pushdown Automata

Theorem 8.2. Let Γ be a Chomsky normal form grammar with separator Γ_{s}. Then there is a deterministic pushdown automaton \mathscr{M} such that $L(\mathscr{M})=L\left(\Gamma_{s}\right)$.

Proof Outline. By Theorem 7.3, for suitable n,

$$
L\left(\Gamma_{s}\right)=R \cap \operatorname{PAR}_{n}(T)
$$

where R is a regular language, and T is the set of terminals of Γ. Let $P=\left\{(i,)_{i} \mid i=1,2, \ldots, n\right\}$, and \mathscr{M}_{0} be a dfa with alphabet $T \cup P$ that accepts R. Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$ be the states of \mathscr{M}_{0}, q_{1} the initial states, $F \subseteq Q$ the accepting states, and δ the transition function.

We construct a pushdown automaton \mathscr{M} with tape alphabet $T \cup P$ and the same states, initial state, and accepting states as $\mathscr{M}_{0} . \mathscr{M}$ is to have the pushdown alphabet $\Omega=\left\{J_{1}, \ldots, J_{n}\right\}$.

Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). The transitions of \mathscr{M} are as follows for all $a \in Q$:

1. for each $a \in T, q a 0: \mathbf{0} p$, where $p=\delta(q, a)$;
2. for $i=1,2, \ldots, n, q\left({ }_{i} \mathbf{0}: J_{i} p_{i}\right.$, where $p_{i}=\delta(q,(i)$;
3. for $i=1,2, \ldots, n, q)_{i} J_{i}: \mathbf{0} \bar{p}_{i}$, where $\left.\bar{p}_{i}=\delta(q,)_{i}\right)$

Note that, by definition, \mathscr{M} is deterministic.
It remains to be proved that, for any $u \in L\left(\Gamma_{s}\right)$, there is an accepting u-computation by $\mathscr{M}(\Rightarrow)$. Conversely, we need to prove that, if \mathscr{M} accepts $u \in(T \cup P)^{*}$, then there is a derivation of u in $\Gamma_{s}(\Leftarrow)$.

Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). (\Rightarrow) Let $u=c_{1} c_{2} \ldots c_{K} \in L\left(\Gamma_{s}\right)$, where $c_{1}, c_{2}, \ldots, c_{K} \in(T \cup P)$. Then there is a sequence of states $p_{1}, p_{2}, \ldots, p_{K+1} \in Q$ such that $p_{1}=q_{1}, p_{K+1} \in F$, and $\delta\left(p_{i}, c_{i}\right)=p_{i+1}, i=1,2, \ldots, K$.

Since $u \in \operatorname{PAR}_{n}(T)$, by Theorem 8.1, u is balanced, so that $\gamma_{j}(u)$ is defined for $j=1,2, \ldots, K+1$ and $\gamma_{K+1}(u)=0$. We let

$$
\Delta_{i}=\left(j, p_{j}, \gamma_{j}(u)\right), \quad j=1,2, \ldots, K+1
$$

It follows that

$$
u: \Delta_{j} \vdash_{\mathscr{M}} \Delta_{j+1}, \quad j=1,2, \ldots, K
$$

Thus $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{K+1}$ is an accepting u-computation by \mathscr{M}.

Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). (\Leftarrow) Conversely, let \mathscr{M} accept $u=c_{1} c_{2} \ldots c_{K}$. Thus $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{K+1}$ is an accepting u-computation by \mathscr{M}. Let $\Delta_{j}=\left(j, p_{j}, \gamma_{j}\right), j=1,2, \ldots K+1$.
Since

$$
u: \Delta_{j} \vdash_{\mathscr{M}} \Delta_{j+1}, \quad j=1,2, \ldots, K
$$

and $\gamma_{1}=0$, we see that γ_{j} satisfies the defining recursion for $\gamma_{j}(u)$ and hence, $\gamma_{j}=\gamma_{j}(u)$ for $j=1,2, \ldots, K+1$. Since $\gamma_{K+1}=0, u$ is balanced and hence $u \in \operatorname{PAR}_{n}(T)$. Finally, we have $p_{1}=q_{1}$, $p_{K+1} \in F$, and $\delta\left(p_{j}, c_{j}\right)=p_{j+1}$. Therefore the dfa \mathscr{M}_{0} accepts u, and $u \in R$. We conclude that $u \in L\left(\Gamma_{s}\right)$.

Atomic Pushdown Automata

A pushdown automaton is called atomic (whether or not it is deterministic) if all of its transition are one of the following forms:

1. $p a \mathbf{0}: \mathbf{0 q}$,
2. $p 0 \cup: 0 q$,
3. $p 00: V q$.

Thus, at each step in a computation an atomic pushdown automaton can read the tape and move right, or pop a symbol off the stack or push a symbol on the stack. But, unlike pushdown automata in general, it cannot perform more than one of these actions in a single step.

We will later show that for any pushdown automata \mathscr{M}, there is an atomic pushdown automata $\overline{\mathscr{M}}$ such that $L(\mathscr{M})=L(\overline{\mathscr{M}})$.

Computation Records of Atomic Pushdown Automata

Let \mathscr{M} be a given atomic pushdown automata with tape alphabet T and pushdown alphabet $\Omega=\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$. We set

$$
P=\left\{(i,)_{i} \mid i=1,2, \ldots, n\right\}
$$

and show how to use the "brackets" to define a kind of "records" of a computation by \mathscr{M}.

Let $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}$ be a v-computation by \mathscr{M}, where $v=c_{1} c_{2} \ldots, c_{K}$ and $c_{k} \in T, k=1,2, \ldots, K$, and where $\Delta_{i}=\left(\iota_{i}, p_{i}, \gamma_{i}\right), i=1,2, \ldots, m$. We set

$$
\begin{aligned}
w_{1} & =0 \\
w_{i+1} & =\left\{\begin{array}{lll}
w_{i} c_{l_{i}} & \text { if } & \gamma_{i+1}=\gamma_{i} \\
w_{i}(j & \text { if } & \gamma_{i+1}=J_{j} \gamma_{i} \\
\left.w_{i}\right)_{j} & \text { if } & \gamma_{i}=J_{j} \gamma_{i+1}
\end{array}\right\} \quad 1 \leq i<m
\end{aligned}
$$

Computation Records of Atomic Pushdown Automata, Continued

Now let $w=w_{m}$, so that $\operatorname{Er} p(w)=v$ and $m=|w|+1$. This word w is called the record of the given v-computation $\Delta_{1}, \ldots, \Delta_{m}$ by \mathscr{M}.

From w we can read off not only the word v but also the sequence of "pushes" and "pops" as they occur. In particular, $w_{i}, 1<i \leq m$, indicates how \mathscr{M} goes from Δ_{i-1} to Δ_{i}.

An Atomic Automaton for L(Г)

We now modify the pushdown automaton \mathscr{M} of Theorem 8.2 so that it will accept $L(\Gamma)$ instead of $L\left(\Gamma_{s}\right)$. The idea is to use nondeterminism to "guess" the location of the "brackets" $(i,)_{i}$.

Continuing to use the notation of the proof of Theorem 8.2, We define a pushdown automaton $\overline{\mathscr{M}}$ with the same states, initial state, accepting states, the pushdown alphabet as \mathscr{M}. However, the tape alphabet of $\overline{\mathscr{M}}$ will be T (rather than $T \cup P$). The transitions of $\overline{\mathscr{M}}$ are, for all $q \in Q$:

1. for each $a \in T, q a \mathbf{0}: \mathbf{0} p$, where $p=\delta(q, a)$;
2. for $i=1,2, \ldots, n, q \mathbf{0 0}: J_{i} p_{i}$, where $p_{i}=\delta(q,(i)$;
3. for $i=1,2, \ldots, n, q \mathbf{0} J_{i}: \mathbf{0} p_{i}$, where $\left.p_{i}=\delta(q,)_{i}\right)_{\text {. }}$

Depending on the transition function $\delta, \overline{\mathscr{M}}$ can certainly be non-deterministic. Note that $\overline{\mathscr{M}}$ is atomic (though \mathscr{M} is not). It remains to be proved that $L(\overline{\mathscr{M}})=L(\Gamma)$.
$v \in L(\Gamma) \Rightarrow v \in L(\overline{\mathscr{M}})$
Let $v \in L(\Gamma)$. Then, since $\operatorname{Er}_{p}\left(L\left(\Gamma_{s}\right)\right)=L(\Gamma)$, there is a word $w \in L\left(\Gamma_{s}\right)$ such that $\operatorname{Er}_{p}(w)=v$. By Theorem 8.2, $w \in L(\mathscr{M})$. Let

$$
\Delta_{i}=\left(i, p_{i}, \gamma_{i}\right), \quad i=1,2, \ldots, m
$$

be an accepting w-computation by \mathscr{M} (with $m=|w|+1$). Let $n_{i}=1$ if $w: \Delta_{i} \vdash_{\mathscr{M}} \Delta_{i+1}$ is via transition qa0:0p (with $p=\delta(q, a))$; otherwise $n_{i}=0,1 \leq i<m$. Let

$$
\begin{aligned}
I_{1} & =1 \\
I_{i+1} & =I_{i}+n_{i}, \quad 1 \leq i<m
\end{aligned}
$$

Finally let

$$
\bar{\Delta}_{i}=\left(\ell_{i}, p_{i}, \gamma_{i}\right), \quad 1 \leq i<m .
$$

Now, it can be checked that

$$
v: \bar{\Delta}_{i} \vdash_{\mathscr{M}} \bar{\Delta}_{i+1}, \quad 1 \leq i<m .
$$

Since $\bar{\Delta}_{m}=(|v|+1, q, 0)$ with $q \in F$, we conclude $v \in L(\overline{\mathscr{M}})$.
$v \in L(\overline{\mathscr{M}}) \Rightarrow v \in L(\Gamma)$

Let $v \in L(\overline{\mathscr{M}})$. Let

$$
\bar{\Delta}_{i}=\left(l_{i}, p_{i}, \gamma_{i}\right), \quad i=1,2, \ldots, m
$$

be an accepting v-computation by $\overline{\mathscr{M}}$. Using the fact that $\overline{\mathscr{M}}$ is atomic, we can let w be the record of this computation as defined earlier so that $\operatorname{Er}_{p}(w)=v$ and $m=|w|+1$. Let
$\Delta_{i}=\left(i, p_{i}, \gamma_{i}\right), i=1,2, \ldots, m$, and we observe that

$$
w: \Delta_{i} \vdash_{\mathscr{M}} \Delta_{i+1}, \quad i=1,2, \ldots, m
$$

Since $p_{m} \in F$ and $\gamma_{m}=0, \Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}$ is an accepting w-computation by \mathscr{M}. Thus by Theorem 8.2, $w \in L\left(\Gamma_{s}\right)$. Hence, $v \in L(\Gamma)$.

Context-free Languages and Pushdown Automata

Theorem 8.3. Let Γ be a Chomsky normal form context-free grammar. Then there is a pushdown automaton $\overline{\mathscr{M}}$ such that $L(\overline{\mathscr{M}})=L(\Gamma)$.

Theorem 8.4. For every context-free grammar L, there is a pushdown automaton \mathscr{M} such that $L=L(\mathscr{M})$.

Note that to prove Theorem 8.4, we need to take care of the case where $0 \in L$, hence $L=L(\Gamma) \cup\{0\}$ for a Chomsky normal form context-free grammar Γ. For such a case, we need to modify the pushdown automaton $\overline{\mathscr{M}}$ that accepts $L(\Gamma)$. Actually we modify the dfa component \mathscr{M}_{0} of $\overline{\mathscr{M}}$ to build an equivalent nonrestarting dfa. After that, we add the initial state of this new dfa to the set of accepting states so that 0 will be recognized.

Atomic Pushdown Automata, Revisited

Theorem 8.5. Let \mathscr{M} be a pushdown automaton. Then there is an atomic pushdown automaton $\overline{\mathscr{M}}$ such that $L(\mathscr{M})=L(\overline{\mathscr{M}})$. Proof. For each transition $p a U: V q$ of \mathscr{M} for which $a, U, v \neq \mathbf{0}$, we introduce two new states r, s and let $\overline{\mathscr{M}}$ have the transitions

$$
\begin{aligned}
& p a \mathbf{0}: \mathbf{0 r} \\
& r 0 U: \mathbf{0 s} \\
& s \mathbf{0 0}: V q
\end{aligned}
$$

If exactly one of a, U, V is 0 , the only two transitions are needed for $\overline{\mathscr{M}}$. For each transition $\mathbf{p 0 0 : 0 q}$, we introduce a new state t and replace $p 00: 0 q$ with the transitions

$$
\begin{aligned}
& p 00: J t \\
& t 0 J: \mathbf{O q}
\end{aligned}
$$

where J is an arbitrary symbol of the pushdown alphabet.
Otherwise, $\overline{\mathscr{M}}$ is exactly like \mathscr{M}. Clearly, $L(\overline{\mathscr{M}})=L(\mathscr{M})$.

Context-free Languages and Pushdown Automata

Theorem 8.6. For every pushdown automaton $\mathscr{M}, L(\mathscr{M})$ is a context-free language.

Proof Outline. Without loss of generality, we assume \mathscr{M} is atomic. The plan is to prove that for the language L consisting exactly of the records of all accepting u-computation by \mathscr{M}, where $u \in L(\mathscr{M})$, we will have $L=R \cap \operatorname{PAR}_{n}(T) . R$ will be a regular language accepted by a ndfa \mathscr{M}_{0} devised from \mathscr{M}, and T is tape alphabet of \mathscr{M}. As $L(\mathscr{M})=\operatorname{Er}_{p}(L)$, it follows that $L(\mathscr{M})$ is a context-free language.

To prove $L=R \cap \operatorname{PAR}_{n}(T)$, we need to show both $L \subseteq R \cap \operatorname{PAR}_{n}(T)$ and $R \cap \operatorname{PAR}_{n}(T) \subseteq L$.

Context-free Languages and Pushdown Automata

Proof Outline of Theorem 8.6, Continued. Let \mathscr{M} have states $Q=\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$, initial state q_{1}, final states F, tape alphabet T, and pushdown alphabet $\Omega=\left\{J_{1}, \ldots, J_{m}\right\}$.
To devise ndfa \mathscr{M}_{0}, we need $P=\left\{(i,)_{i} \mid i=1, \ldots, m\right\} . \mathscr{M}_{0}$ has the same states, initial state, and accepting states as \mathscr{M}, and transition function δ defined as follows. For each $q \in Q$,

$$
\begin{aligned}
\delta(q, a) & =\{p \in Q \mid \mathscr{M} \text { has the transition } q a \mathbf{0}: \mathbf{0} p\} \text { for } a \in T \\
\delta(q,(i) & =\left\{p \in Q \mid \mathscr{M} \text { has the transition } q \mathbf{0} J_{i}: \mathbf{0} p\right\}, \quad i=1, \ldots, n, \\
\left.\delta(q,)_{i}\right) & =\left\{p \in Q \mid \mathscr{M} \text { has the transition } q \mathbf{0 0}: J_{i} p\right\}, \quad i=1, \ldots, n .
\end{aligned}
$$

Let $w \in L$ be the record of an accepting u-computation
$\Delta_{i}, \ldots, \Delta_{m}$, where $\Delta_{i}=\left(l_{i}, p_{i}, \gamma_{i}\right), i=1, \ldots, m$. By an induction, we can show that $p_{m} \in \delta^{*}\left(q_{1}, w\right)$. As $p_{m} \in F$, we have $w \in R$. By another induction, we can show that $\gamma_{i}(w)=\gamma_{i}, i=1, \ldots, m$. As $\gamma_{|w|+1}(w)=\gamma_{|w|+1}=0$, we know w is balanced. We conclude that $w \in R \cap \operatorname{PAR}_{n}(T)$.

Context-free Languages and Pushdown Automata

Proof Outline of Theorem 8.6, Continued. Conversely, let $w=c_{1} \ldots c_{r} \in R \cap \operatorname{PAR}_{n}(T)$, and let $u=\operatorname{Er}_{P}(w)=d_{1}, \ldots d_{s}$. Let p_{1}, \ldots, p_{r+1} be some sequence of states such that $p_{1}=q_{1}$, $p_{r+1} \in \delta\left(p_{i}, c_{i}\right)$ for $i=1, \ldots, r$. We claim that

$$
\left(l_{1}, p_{1}, \gamma_{1}(w)\right), \quad\left(l_{2}, p_{2}, \gamma_{2}(w)\right), \quad \ldots,\left(I_{r+1}, p_{r+1}, \gamma_{r+1}(w)\right)
$$

where

$$
\begin{aligned}
I_{1} & =1 \\
l_{i+1} & = \begin{cases}l_{i}+1 & \text { if } c_{i} \in T \\
l_{i} & \text { otherwise }\end{cases}
\end{aligned}
$$

is an accepting u-computation by \mathscr{M} and w is its record. That is, we need to show that

$$
u:\left(I_{r}, p_{r}, \gamma_{r}(w)\right) \vdash_{\mathscr{M}}\left(I_{r+1}, p_{r+1}, \gamma_{r+1}(w)\right)
$$

for $i=1, \ldots, r$. This is done by an induction i and based on the transitions that are used. We then conclude $w \in L$, the language of the records of all accepting u-computation by \mathscr{M}.

