Theory of Computation

Prof. Michael Mascagni

Florida State University Department of Computer Science

Δ , A Context-free Grammar

Now let Δ be the grammar whose variables, start symbol, and terminals are those of Γ_s and whose productions are as follows:

- 1. all productions $V \rightarrow a$ from Γ with $a \in T$,
- 2. all productions $X_i \rightarrow (i \ Y_i, i = 1, 2, \dots, n,$
- 3. all productions $V \to a$)_i Z_i , i = 1, 2, ..., n, for which $V \to a$ is a production of Γ with $a \in T$.

Lemma 2

Lemma 2. $L(\Delta)$ is regular.

Proof. Δ is right-linear. By Theorem 2.5, it is regular.

Bracket Languages (10.7) Pushdown Automata (10.8)

Lemma 3

Lemma 3. $L(\Gamma_s) \subseteq L(\Delta)$.

Proof. We show that if $X \Rightarrow_{\Gamma_s}^* u \in (T \cup P)^*$ then $X \Rightarrow_{\Delta}^* u$. The proof is by an induction on the length of a derivation of u from X in Γ_s . Let

$$X = X_i \Rightarrow_{\Gamma_s} (_i Y_i)_i Z_i \Rightarrow^*_{\Gamma_s} (_i v)_i w = u,$$

where the induction hypothesis applies to $Y_i \Rightarrow^*_{\Gamma_s} v$ and $Z_i \Rightarrow^*_{\Gamma_s} w$. Thus $Y_i \Rightarrow^*_{\Delta} v$ and $Z_i \Rightarrow^*_{\Delta} w$. By Exercise 3. (p. 308 of the textbook), we can show that $v = z \ a, a \in T$. We conclude

$$Y_i \Rightarrow^*_\Delta z \ V \Rightarrow_\Delta z \ a = v,$$

where $V \rightarrow a$ is a production of Γ . But then we have

 $X_i \Rightarrow_\Delta (_i Y_i \Rightarrow^*_\Delta (_i z V \Rightarrow_\Delta (_i z a)_i Z_i \Rightarrow^*_\Delta (_i v)_i w = u.$

Lemma 4

Lemma 4. $L(\Delta) \cap PAR_n(T) \subseteq L(\Gamma_s)$.

Proof. Let $X \Rightarrow_{\Delta}^{*} u$, where $u \in PAR_n(T)$. We shall prove that $X \Rightarrow_{\Gamma_s}^{*} u$. The proof is by an induction on the total number of pairs of the brackets $(i,)_i$ in u. If there is no such pair, then $u \in T$ and production $X \to u$ is in Δ hence in Γ_s . Thus $X \Rightarrow_{\Gamma_s}^{*} u$.

Suppose there are pairs of brackets in u. By observing all the available productions in Δ , we conclude that $u = (i \ z \ \text{for some } z \ \text{and } i$. As $u \in \text{PAR}_n(T)$, we further conclude that $u = (i \ v \)_i \ w$, where $v, w \in \text{PAR}_n(T)$.

As the symbol $)_i$ can only arises from the use of some production $V \rightarrow a$ $)_i$ Z_i in Δ . So v must end in a terminal a, so we can write $v = \bar{v}a$, where

Lemma 4, Continued

Proof (Continued).

 $X = X_i \Rightarrow_{\Delta} (_i Y_i \Rightarrow^*_{\Delta} (_i \bar{v}V \Rightarrow_{\Delta} (_i \bar{v}a)_i Z_i \Rightarrow^*_{\Delta} (_i v)_i w$

and

$Z_i \Rightarrow^*_\Delta w.$

Moreover, since $v \to a$ is a production of Γ , hence of Δ , we also have in Δ

$$Y_i \Rightarrow^*_\Delta \bar{v} V \Rightarrow_\Delta \bar{v} a = v.$$

Since v and w must each contain fewer pairs of brackets than u, we have by induction hypothesis

$$Y_i \Rightarrow^*_{\Gamma_s} v, \quad Z_i \Rightarrow^*_{\Gamma_s} w.$$

Hence,

$$X_i \Rightarrow_{\Gamma_s} (_i Y_i)_i Z_i \Rightarrow^*_{\Gamma_s} (_i v)_i w = u$$

6/34

A Main Theorem

Theorem 7.3. Let Γ be a grammar in Chomsky normal form with terminals T. Then there is a regular language R such that

 $L(\Gamma_s) = R \cap PAR_n(T).$

Proof. Let Δ be defined as above and let $R = L(\Delta)$. The results follows from Lemmas 1-4.

Chomsky-Schützenberger Representation Theorem

Theorem 7.4. A languages $L \subseteq T^*$ is context-free if and only if there is a regular language R and a number n such that

 $L = \operatorname{Er}_{P}(R \cap \operatorname{PAR}_{n}(T))$

where $P = \{(i,)_i \mid i = 1, 2, ..., n\}.$

Proof. By Theorem 7.1, 7.2, and 7.3.

We will see that the Chomsky-Schützenberger Representation Theorem is instructional in the design of a class of machines the Pushdown Automata — to recognize context-free languages.

Automata That Accept Context-free Languages?

What kind of automaton is needed for accepting context-free languages?

For a Chomsky normal form context-free grammar Γ with terminals T, and additional bracket symbols P,

- Theorem 7.2 says $\operatorname{Er}_P(L(\Gamma_s)) = L(\Gamma)$.
- Theorem 7.3 says $L(\Gamma_s) = R \cap PAR_n(T)$.
- We shall first try to construct an appropriate automaton for recognizing $L(\Gamma_s)$.
- R is accepted by a finite automaton; we need additional facilities to check if some given words belong to PAR_n(T).
- ► A first-in-last-out "pushdown stack" is needed to recognize PAR_n(T).

Pushdown Stack

At each step, one or both of the following operations can be perform:

- 1. The symbol at the "top" of the stack may be read and discarded. This operation is called "popping the stack".
- 2. A new symbol may be "pushed" onto the stack.

A stack can be used to identify a string as belonging to $PAR_n(T)$ as follows:

- ► A special symbol J_i is introduced for each pair (i,)i, i = 1, 2, ..., n.
- As the automaton moves from left to right over a string, it pushes J_i onto the stack whenever it sees (i, and it pops the stack, eliminating a J_i, whenever it sees)_i.
- ► In case the string belongs to PAR_n(T), the automaton will terminate with an empty stack after moving to the right end of the string.

Bracket Languages (10.7) Pushdown Automata (10.8)

Notations

Let *T* be a given alphabet and let $P = \{(i,)i \mid i = 1, 2, ..., n\}$. Let $\Omega = \{J_1, J_2, ..., J_n\}$, where we have introduced a single symbol J_i for each pair $(i,)i, 1 \le i \le n$. Let $u \in (T \cup P)^*$, say, $u = c_1 c_2 ... c_k$, where $c_1, c_2, ..., c_k \in T \cup P$. We define a sequence $\gamma_j(u)$ of elements of Ω^* to characterize the content of the pushdown stack as follows:

$$\begin{array}{rcl} \gamma_1(u) &=& 0\\ \gamma_{j+1}(u) &=& \left\{ \begin{array}{ll} \gamma_j(u) & \text{if } c_j \in T\\ J_i \gamma_j(u) & \text{if } c_j = (i\\ \alpha & \text{if } c_j =)_i \text{ and } \gamma_j(u) = J_i \alpha \end{array} \right. \end{array}$$

for j = 1, 2, ..., k. Note that if $c_j = j_i$, $\gamma_{j+1}(u)$ will be undefined unless γ_j begins with the symbol J_i for the very same value of i. Furthermore, if a particular $\gamma_r(u)$ is undefined, all $\gamma_j(u)$ with j > rwill also be undefined.

Words in $PAR_n(T)$ Are Balanced

Definition. We say that the words $u \in (T \cup P)^*$ is balanced if $\gamma_j(u)$ is defined for $1 \le j \le |u| + 1$ and $\gamma_{|u|+1}(u) = 0$.

Theorem 8.1. Let T be an alphabet and let

 $P = \{(i,)i \mid i = 1, 2, \dots, n\}, \quad T \cap P = \emptyset.$

Let $u \in (T \cup P)^*$. Then $u \in PAR_n(T)$ if and only if u is balanced.

The proof of Theorem 8.1 is via a series of easy lemmas.

Lemmas

Lemma 1. If $u \in T^*$, then u is balanced.

Lemma 2. If *u* and *v* are balanced, so us *uv*.

Lemma 3. Let $v = (i \ u)_i$. Then u is balanced if and only if v balanced.

Lemma 4. If u is balanced and uv is balanced, then v is balanced.

Lemma 5. If $u \in PAR_n(T)$, then u is balanced.

Lemma 6. If *u* is balanced, the $u \in PAR_n(T)$.

Pushdown Automata

- A pushdown automaton ${\mathscr{M}}$ consists of
 - a finite set of states Q = {q₁,..., q_m}, where q₁ is the initial state, and F ⊆ Q is the set of final, or accepting, states,
 - a tape alphabet A,
 - a pushdown alphabet Ω ,
 - a symbol **0** not in A nor in Ω , and
 - a finite set of transitions which each is a quintuple of the form

 $q_i a U : V q_i$

where $a \in \overline{A} = A \cup \{\mathbf{0}\}, U, V \in \overline{\Omega} = \Omega \cup \{\mathbf{0}\}.$

Intuitively, if $a \in A$ and $U, V \in \Omega$, the quintuple reads: "In state q_i scanning a, with U on top of the stack, move one square to the right, 'pop' the stack removing U, 'push' V onto the stack, and enter state q_j ."

Pushdown Automata, Continued

For the quintuple

 $q_i a U : V q_j$

where either a, U, V is **0**, the transition is defined as the following.

- If a = 0, motion to the right does not take place and the stack action can occur regardless of what the symbol is actually being scanned.
- If $U = \mathbf{0}$, then nothing is to be popped.
- If V = 0, then nothing is to be pushed.

Furthermore, the *distinct* transitions $q_i a U : Vq_j, q_i bW : Xq_k$ are called *incompatible* if one of the following is the case:

1. a = b, and U = W;

2.
$$a = b$$
, and U or W is **0**;

- 3. U = W, and *a* or *b* is **0**;
- 4. $a \text{ or } b \text{ is } \mathbf{0}$, and $U \text{ or } W \text{ is } \mathbf{0}$.

A pushdown automaton is *deterministic* if it has no pair of incompatible transitions.

Configurations of Pushdown Automata

Let $u \in A^*$ and let \mathscr{M} be a pushdown automaton. Then a *u-configuration for* \mathscr{M} is a triple $\Delta = (k, q_i, \alpha)$, where $1 \le k \le |u| + 1$, q_i is a state of \mathscr{M} , and $\alpha \in \Omega^*$.

Intuitively, the *u*-configuration (k, q_i, α) stands for the situation in which *u* is written on \mathscr{M} 's tape, \mathscr{M} is scanning the *k*th symbol of U — or, if k = |u| + 1, has completed scanning *u* — and α is the string of symbols on the pushdown stack.

We speak of q_i as the state of configuration Δ , and of α as the stack contents at configuration Δ . If $\alpha = 0$, we say the stack is empty at Δ .

Configurations of Pushdown Automata, Continued

For a pair of *u*-configurations, we write

 $u:(k,q_i,\alpha)\vdash_{\mathcal{M}} (I,q_j,\beta)$

if \mathscr{M} contains a transition $q_i a U : Vq_j$, where $\alpha = U\gamma, \beta = V\gamma$ for some $\gamma \in \Omega^*$, and either

1. l = k and a = 0, or

2. l = k + 1 and the *k*th symbol of *u* is *a*.

Note that the equation $\alpha = U\gamma$ is to be read simply $\alpha = \gamma$ in case $U = \mathbf{0}$; likewise for $\beta = V\gamma$.

Computation by Pushdown Automata

A sequence $\Delta_1, \Delta_2, \ldots, \Delta_m$ of *u*-configurations is called a *u*-computation by \mathscr{M} if

1. $\Delta_1=(1,q,0)$ for some $q\in Q$,

2. $\Delta_m = (|u| + 1, p, \gamma)$ for some $p \in Q$ and $\gamma \in \Omega^*$, and

3. $u : \Delta_i \vdash_{\mathscr{M}} \Delta_{i+1}$, for $1 \le i < m$.

This *u*-computation is called *accepting* if the state at Δ_1 is the initial state q_1 , the state *p* at Δ_m is in *F*, and the stack at Δ_m is empty.

We say that \mathscr{M} accepts the string $u \in A^*$ if there is an accepting u-computation by \mathscr{M} . We write $L(\mathscr{M})$ for the set of strings accepted by \mathscr{M} , and we call $L(\mathscr{M})$ the *language accepted by* \mathscr{M} .

Pushdown Automata, Examples

See Examples $\mathcal{M}_1, \mathcal{M}_2$, and \mathcal{M}_3 at page 312 in the textbook.

Separators and Deterministic Pushdown Automata

Theorem 8.2. Let Γ be a Chomsky normal form grammar with separator Γ_s . Then there is a deterministic pushdown automaton \mathcal{M} such that $L(\mathcal{M}) = L(\Gamma_s)$.

Proof Outline. By Theorem 7.3, for suitable n,

 $L(\Gamma_s) = R \cap \mathsf{PAR}_n(T),$

where *R* is a regular language, and *T* is the set of terminals of Γ . Let $P = \{(i,)i \mid i = 1, 2, ..., n\}$, and \mathcal{M}_0 be a dfa with alphabet $T \cup P$ that accepts *R*. Let $Q = \{q_1, q_2, ..., q_m\}$ be the states of \mathcal{M}_0 , q_1 the initial states, $F \subseteq Q$ the accepting states, and δ the transition function.

We construct a pushdown automaton \mathcal{M} with tape alphabet $T \cup P$ and the same states, initial state, and accepting states as \mathcal{M}_0 . \mathcal{M} is to have the pushdown alphabet $\Omega = \{J_1, \ldots, J_n\}$.

Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). The transitions of \mathcal{M} are as follows for all $a \in Q$:

1. for each $a \in T$, $qa\mathbf{0} : \mathbf{0}p$, where $p = \delta(q, a)$;

- 2. for i = 1, 2, ..., n, $q(_i \mathbf{0} : J_i p_i)$, where $p_i = \delta(q, (_i))$;
- 3. for i = 1, 2, ..., n, $q)_i J_i : \mathbf{0}\bar{p}_i$, where $\bar{p}_i = \delta(q, j_i)$

Note that, by definition, \mathcal{M} is deterministic.

It remains to be proved that, for any $u \in L(\Gamma_s)$, there is an accepting *u*-computation by $\mathscr{M} (\Rightarrow)$. Conversely, we need to prove that, if \mathscr{M} accepts $u \in (T \cup P)^*$, then there is a derivation of *u* in $\Gamma_s (\Leftarrow)$.

Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). (\Rightarrow) Let $u = c_1 c_2 \dots c_K \in L(\Gamma_s)$, where $c_1, c_2, \dots, c_K \in (T \cup P)$. Then there is a sequence of states $p_1, p_2, \dots, p_{K+1} \in Q$ such that $p_1 = q_1, p_{K+1} \in F$, and $\delta(p_i, c_i) = p_{i+1}, i = 1, 2, \dots, K$.

Since $u \in PAR_n(T)$, by Theorem 8.1, u is balanced, so that $\gamma_j(u)$ is defined for j = 1, 2, ..., K + 1 and $\gamma_{K+1}(u) = 0$. We let

$$\Delta_i = (j, p_j, \gamma_j(u)), \quad j = 1, 2, \dots, K + 1.$$

It follows that

$$u: \Delta_j \vdash_{\mathscr{M}} \Delta_{j+1}, \quad j = 1, 2, \ldots, K.$$

Thus $\Delta_1, \Delta_2, \ldots, \Delta_{K+1}$ is an accepting *u*-computation by \mathcal{M} .

Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). (\Leftarrow) Conversely, let \mathscr{M} accept $u = c_1 c_2 \dots c_K$. Thus $\Delta_1, \Delta_2, \dots, \Delta_{K+1}$ is an accepting *u*-computation by \mathscr{M} . Let $\Delta_j = (j, p_j, \gamma_j), j = 1, 2, \dots, K+1$. Since

$$u: \Delta_j \vdash_{\mathscr{M}} \Delta_{j+1}, \quad j = 1, 2, \dots, K$$

and $\gamma_1 = 0$, we see that γ_j satisfies the defining recursion for $\gamma_j(u)$ and hence, $\gamma_j = \gamma_j(u)$ for j = 1, 2, ..., K + 1. Since $\gamma_{K+1} = 0$, u is balanced and hence $u \in PAR_n(T)$. Finally, we have $p_1 = q_1$, $p_{K+1} \in F$, and $\delta(p_j, c_j) = p_{j+1}$. Therefore the dfa \mathscr{M}_0 accepts u, and $u \in R$. We conclude that $u \in L(\Gamma_s)$.

Atomic Pushdown Automata

A pushdown automaton is called *atomic* (whether or not it is deterministic) if all of its transition are one of the following forms:

- 1. *pa***0** : **0***q*,
- 2. p**0**U : **0**q,
- 3. p**00** : Vq.

Thus, at each step in a computation an atomic pushdown automaton can read the tape and move right, or pop a symbol off the stack or push a symbol on the stack. But, unlike pushdown automata in general, it cannot perform more than one of these actions in a single step.

We will later show that for any pushdown automata \mathcal{M} , there is an atomic pushdown automata $\overline{\mathcal{M}}$ such that $L(\mathcal{M}) = L(\overline{\mathcal{M}})$.

Computation Records of Atomic Pushdown Automata

Let \mathcal{M} be a given atomic pushdown automata with tape alphabet \mathcal{T} and pushdown alphabet $\Omega = \{J_1, J_2, \ldots, J_n\}$. We set

$$P = \{(i, j) \mid i = 1, 2, \dots, n\}$$

and show how to use the "brackets" to define a kind of "records" of a computation by $\mathscr{M}.$

Let $\Delta_1, \Delta_2, \ldots, \Delta_m$ be a *v*-computation by \mathcal{M} , where $v = c_1 c_2 \ldots, c_K$ and $c_k \in T, k = 1, 2, \ldots, K$, and where $\Delta_i = (l_i, p_i, \gamma_i), i = 1, 2, \ldots, m$. We set

$$w_{1} = 0$$

$$w_{i+1} = \begin{cases} w_{i}c_{l_{i}} & \text{if } \gamma_{i+1} = \gamma_{i} \\ w_{i}(j & \text{if } \gamma_{i+1} = J_{j}\gamma_{i} \\ w_{i})_{j} & \text{if } \gamma_{i} = J_{j}\gamma_{i+1} \end{cases} \quad 1 \le i < m$$

Computation Records of Atomic Pushdown Automata, Continued

Now let $w = w_m$, so that $\operatorname{Er}_P(w) = v$ and m = |w| + 1. This word w is called the record of the given v-computation $\Delta_1, \ldots, \Delta_m$ by \mathcal{M} .

From *w* we can read off not only the word *v* but also the sequence of "pushes" and "pops" as they occur. In particular, $w_i, 1 < i \le m$, indicates how \mathscr{M} goes from Δ_{i-1} to Δ_i .

An Atomic Automaton for $L(\Gamma)$

We now modify the pushdown automaton \mathcal{M} of Theorem 8.2 so that it will accept $L(\Gamma)$ instead of $L(\Gamma_s)$. The idea is to use nondeterminism to "guess" the location of the "brackets" $(i,)_i$.

Continuing to use the notation of the proof of Theorem 8.2, We define a pushdown automaton $\overline{\mathscr{M}}$ with the same states, initial state, accepting states, the pushdown alphabet as \mathscr{M} . However, the tape alphabet of $\overline{\mathscr{M}}$ will be T (rather than $T \cup P$). The transitions of $\overline{\mathscr{M}}$ are, for all $q \in Q$:

1. for each $a \in T$, $qa\mathbf{0} : \mathbf{0}p$, where $p = \delta(q, a)$;

2. for i = 1, 2, ..., n, $q00 : J_i p_i$, where $p_i = \delta(q, (i))$;

3. for i = 1, 2, ..., n, $q\mathbf{0}J_i : \mathbf{0}p_i$, where $p_i = \delta(q, j_i)$.

Depending on the transition function δ , $\overline{\mathscr{M}}$ can certainly be non-deterministic. Note that $\overline{\mathscr{M}}$ is atomic (though \mathscr{M} is not). It remains to be proved that $L(\overline{\mathscr{M}}) = L(\Gamma)$.

$v \in L(\Gamma) \Rightarrow v \in L(\bar{\mathcal{M}})$

Let $v \in L(\Gamma)$. Then, since $\operatorname{Er}_P(L(\Gamma_s)) = L(\Gamma)$, there is a word $w \in L(\Gamma_s)$ such that $\operatorname{Er}_P(w) = v$. By Theorem 8.2, $w \in L(\mathcal{M})$. Let

$$\Delta_i = (i, p_i, \gamma_i), \quad i = 1, 2, \dots, m$$

be an accepting *w*-computation by \mathscr{M} (with m = |w| + 1). Let $n_i = 1$ if $w : \Delta_i \vdash_{\mathscr{M}} \Delta_{i+1}$ is via transition qa0 : 0p (with $p = \delta(q, a)$); otherwise $n_i = 0, 1 \le i < m$. Let

$$l_1 = 1,$$

 $l_{i+1} = l_i + n_i, \quad 1 \le i < m.$

Finally let

$$\bar{\Delta}_i = (I_i, p_i, \gamma_i), \quad 1 \leq i < m.$$

Now, it can be checked that

$$v: ar{\Delta}_i \vdash_{\widetilde{\mathcal{M}}} ar{\Delta}_{i+1}, \quad 1 \leq i < m.$$

Since $ar{\Delta}_m = (|v|+1,q,0)$ with $q \in F$, we conclude $v \in L(\hat{\mathcal{M}})$

$v \in L(\bar{\mathscr{M}}) \Rightarrow v \in L(\Gamma)$

Let $v \in L(\overline{\mathscr{M}})$. Let

$$\bar{\Delta}_i = (l_i, p_i, \gamma_i), \quad i = 1, 2, \dots, m$$

be an accepting *v*-computation by $\overline{\mathcal{M}}$. Using the fact that $\overline{\mathcal{M}}$ is atomic, we can let *w* be the record of this computation as defined earlier so that $\operatorname{Er}_{P}(w) = v$ and m = |w| + 1. Let $\Delta_{i} = (i, p_{i}, \gamma_{i}), i = 1, 2, \dots, m$, and we observe that

$$w: \Delta_i \vdash_{\mathscr{M}} \Delta_{i+1}, \quad i = 1, 2, \ldots, m.$$

Since $p_m \in F$ and $\gamma_m = 0, \Delta_1, \Delta_2, \dots, \Delta_m$ is an accepting *w*-computation by \mathcal{M} . Thus by Theorem 8.2, $w \in L(\Gamma_s)$. Hence, $v \in L(\Gamma)$.

Theorem 8.3. Let Γ be a Chomsky normal form context-free grammar. Then there is a pushdown automaton $\overline{\mathcal{M}}$ such that $L(\overline{\mathcal{M}}) = L(\Gamma)$.

Theorem 8.4. For every context-free grammar *L*, there is a pushdown automaton \mathscr{M} such that $L = L(\mathscr{M})$.

Note that to prove Theorem 8.4, we need to take care of the case where $0 \in L$, hence $L = L(\Gamma) \cup \{0\}$ for a Chomsky normal form context-free grammar Γ . For such a case, we need to modify the pushdown automaton $\tilde{\mathcal{M}}$ that accepts $L(\Gamma)$. Actually we modify the dfa component \mathcal{M}_0 of $\tilde{\mathcal{M}}$ to build an equivalent nonrestarting dfa. After that, we add the initial state of this new dfa to the set of accepting states so that 0 will be recognized.

Atomic Pushdown Automata, Revisited

Theorem 8.5. Let \mathscr{M} be a pushdown automaton. Then there is an atomic pushdown automaton $\widetilde{\mathscr{M}}$ such that $L(\mathscr{M}) = L(\widetilde{\mathscr{M}})$. *Proof.* For each transition paU : Vq of \mathscr{M} for which $a, U, v \neq \mathbf{0}$, we introduce two new states r, s and let $\widetilde{\mathscr{M}}$ have the transitions

> pa**0** : **0**r r**0**U : **0**s s**00** : Vq

If exactly one of a, U, V is 0, the only two transitions are needed for $\overline{\mathcal{M}}$. For each transition p00: 0q, we introduce a new state tand replace p00: 0q with the transitions

> p**00** : Jt t**0**J : **0**q

where J is an arbitrary symbol of the pushdown alphabet. Otherwise, $\overline{\mathcal{M}}$ is exactly like \mathcal{M} . Clearly, $L(\overline{\mathcal{M}}) = L(\mathcal{M})$.

Theorem 8.6. For every pushdown automaton \mathcal{M} , $L(\mathcal{M})$ is a context-free language.

Proof Outline. Without loss of generality, we assume \mathscr{M} is atomic. The plan is to prove that for the language L consisting exactly of the records of all accepting *u*-computation by \mathscr{M} , where $u \in L(\mathscr{M})$, we will have $L = R \cap PAR_n(T)$. R will be a regular language accepted by a ndfa \mathscr{M}_0 devised from \mathscr{M} , and T is tape alphabet of \mathscr{M} . As $L(\mathscr{M}) = \operatorname{Er}_P(L)$, it follows that $L(\mathscr{M})$ is a context-free language.

To prove $L = R \cap PAR_n(T)$, we need to show both $L \subseteq R \cap PAR_n(T)$ and $R \cap PAR_n(T) \subseteq L$.

Proof Outline of Theorem 8.6, Continued. Let \mathscr{M} have states $Q = \{q_1, q_2, \ldots, q_m\}$, initial state q_1 , final states F, tape alphabet T, and pushdown alphabet $\Omega = \{J_1, \ldots, J_m\}$. To devise ndfa \mathscr{M}_0 , we need $P = \{(i,)i \mid i = 1, \ldots, m\}$. \mathscr{M}_0 has the same states, initial state, and accepting states as \mathscr{M} , and transition function δ defined as follows. For each $q \in Q$,

 $\begin{array}{lll} \delta(q,a) &=& \{p \in Q \mid \mathscr{M} \text{ has the transition } qa\mathbf{0} : \mathbf{0}p\} \text{ for } a \in T \\ \delta(q,(i)) &=& \{p \in Q \mid \mathscr{M} \text{ has the transition } q\mathbf{0}J_i : \mathbf{0}p\}, \quad i = 1, \ldots, n, \\ \delta(q,)_i) &=& \{p \in Q \mid \mathscr{M} \text{ has the transition } q\mathbf{0}\mathbf{0} : J_ip\}, \quad i = 1, \ldots, n. \end{array}$

Let $w \in L$ be the record of an accepting *u*-computation $\Delta_i, \ldots, \Delta_m$, where $\Delta_i = (l_i, p_i, \gamma_i), i = 1, \ldots, m$. By an induction, we can show that $p_m \in \delta^*(q_1, w)$. As $p_m \in F$, we have $w \in R$. By another induction, we can show that $\gamma_i(w) = \gamma_i, i = 1, \ldots, m$. As $\gamma_{|w|+1}(w) = \gamma_{|w|+1} = 0$, we know *w* is balanced. We conclude that $w \in R \cap PAR_n(T)$.

Proof Outline of Theorem 8.6, Continued. Conversely, let $w = c_1 \dots c_r \in R \cap PAR_n(T)$, and let $u = Er_P(w) = d_1, \dots d_s$. Let p_1, \dots, p_{r+1} be some sequence of states such that $p_1 = q_1$, $p_{r+1} \in \delta(p_i, c_i)$ for $i = 1, \dots, r$. We claim that

 $(l_1, p_1, \gamma_1(w)), (l_2, p_2, \gamma_2(w)), \dots, (l_{r+1}, p_{r+1}, \gamma_{r+1}(w))$

where

$$egin{array}{rcl} l_1&=&1\ l_{i+1}&=&\left\{egin{array}{ll} l_i+1& ext{if }c_i\in T\ l_i& ext{otherwise}\end{array}
ight.$$

is an accepting *u*-computation by \mathcal{M} and *w* is its record. That is, we need to show that

$$u:(l_r,p_r,\gamma_r(w))\vdash_{\mathcal{M}}(l_{r+1},p_{r+1},\gamma_{r+1}(w))$$

for i = 1, ..., r. This is done by an induction i and based on the transitions that are used. We then conclude $w \in L$, the language of the records of all accepting *u*-computation by \mathcal{M} .