
Context-Free Languages (10)

Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

1 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

∆, A Context-free Grammar

Now let ∆ be the grammar whose variables, start symbol, and
terminals are those of Γs and whose productions are as follows:

1. all productions V → a from Γ with a ∈ T ,

2. all productions Xi → (i Yi , i = 1, 2, . . . , n,

3. all productions V → a)i Zi , i = 1, 2, . . . , n, for which V → a
is a production of Γ with a ∈ T .

2 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Lemma 2

Lemma 2. L(∆) is regular.

Proof. ∆ is right-linear. By Theorem 2.5, it is regular. 2

3 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Lemma 3

Lemma 3. L(Γs) ⊆ L(∆).

Proof. We show that if X ⇒∗Γs
u ∈ (T ∪ P)∗ then X ⇒∗∆ u. The

proof is by an induction on the length of a derivation of u from X
in Γs . Let

X = Xi ⇒Γs (i Yi)i Zi ⇒∗Γs
(i v)i w = u,

where the induction hypothesis applies to Yi ⇒∗Γs
v and Zi ⇒∗Γs

w .
Thus Yi ⇒∗∆ v and Zi ⇒∗∆ w . By Exercise 3. (p. 308 of the
textbook), we can show that v = z a, a ∈ T . We conclude

Yi ⇒∗∆ z V ⇒∆ z a = v ,

where V → a is a production of Γ. But then we have

Xi ⇒∆ (i Yi ⇒∗∆ (i z V ⇒∆ (i z a)i Zi ⇒∗∆ (i v)i w = u.

2
4 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Lemma 4

Lemma 4. L(∆) ∩ PARn(T) ⊆ L(Γs).

Proof. Let X ⇒∗∆ u, where u ∈ PARn(T). We shall prove that
X ⇒∗Γs

u. The proof is by an induction on the total number of
pairs of the brackets (i ,)i in u. If there is no such pair, then u ∈ T
and production X → u is in ∆ hence in Γs . Thus X ⇒∗Γs

u.

Suppose there are pairs of brackets in u. By observing all the
available productions in ∆, we conclude that u = (i z for some z
and i . As u ∈ PARn(T), we further conclude that u = (i v)i w ,
where v ,w ∈ PARn(T).

As the symbol)i can only arises from the use of some production
V → a)i Zi in ∆. So v must end in a terminal a, so we can write
v = v̄ a, where

5 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Lemma 4, Continued

Proof (Continued).

X = Xi ⇒∆ (i Yi ⇒∗∆ (i v̄V ⇒∆ (i v̄ a)i Zi ⇒∗∆ (i v)i w

and
Zi ⇒∗∆ w .

Moreover, since v → a is a production of Γ, hence of ∆, we also
have in ∆

Yi ⇒∗∆ v̄V ⇒∆ v̄ a = v .

Since v and w must each contain fewer pairs of brackets than u,
we have by induction hypothesis

Yi ⇒∗Γs
v , Zi ⇒∗Γs

w .

Hence,
Xi ⇒Γs (i Yi)i Zi ⇒∗Γs

(i v)i w = u

2
6 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

A Main Theorem

Theorem 7.3. Let Γ be a grammar in Chomsky normal form with
terminals T . Then there is a regular language R such that

L(Γs) = R ∩ PARn(T).

Proof. Let ∆ be defined as above and let R = L(∆). The results
follows from Lemmas 1-4. 2

7 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Chomsky-Schützenberger Representation Theorem

Theorem 7.4. A languages L ⊆ T ∗ is context-free if and only if
there is a regular language R and a number n such that

L = ErP(R ∩ PARn(T))

where P = {(i ,)i | i = 1, 2, . . . , n}.

Proof. By Theorem 7.1, 7.2, and 7.3. 2

We will see that the Chomsky-Schützenberger Representation
Theorem is instructional in the design of a class of machines —
the Pushdown Automata — to recognize context-free languages.

8 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Automata That Accept Context-free Languages?

What kind of automaton is needed for accepting context-free
languages?

For a Chomsky normal form context-free grammar Γ with terminals
T , and additional bracket symbols P,

I Theorem 7.2 says ErP(L(Γs)) = L(Γ).

I Theorem 7.3 says L(Γs) = R ∩ PARn(T).

I We shall first try to construct an appropriate automaton for
recognizing L(Γs).

I R is accepted by a finite automaton; we need additional
facilities to check if some given words belong to PARn(T).

I A first-in-last-out “pushdown stack” is needed to recognize
PARn(T).

9 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Pushdown Stack

At each step, one or both of the following operations can be
perform:

1. The symbol at the “top” of the stack may be read and
discarded. This operation is called “popping the stack”.

2. A new symbol may be “pushed” onto the stack.

A stack can be used to identify a string as belonging to PARn(T)
as follows:
I A special symbol Ji is introduced for each pair

(i ,)i , i = 1, 2, . . . , n.
I As the automaton moves from left to right over a string, it

pushes Ji onto the stack whenever it sees (i , and it pops the
stack, eliminating a Ji , whenever it sees)i .

I In case the string belongs to PARn(T), the automaton will
terminate with an empty stack after moving to the right end
of the string.

10 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Notations

Let T be a given alphabet and let P = {(i ,)i | i = 1, 2, . . . , n}.
Let Ω = {J1, J2, . . . , Jn}, where we have introduced a single
symbol Ji for each pair (i ,)i , 1 ≤ i ≤ n. Let u ∈ (T ∪ P)∗, say,
u = c1c2 . . . ck , where c1, c2, . . . , ck ∈ T ∪ P.
We define a sequence γj(u) of elements of Ω∗ to characterize the
content of the pushdown stack as follows:

γ1(u) = 0

γj+1(u) =

γj(u) if cj ∈ T
Jiγj(u) if cj = (i
α if cj =)i and γj(u) = Jiα

for j = 1, 2, . . . , k . Note that if cj =)i , γj+1(u) will be undefined
unless γj begins with the symbol Ji for the very same value of i .
Furthermore, if a particular γr (u) is undefined, all γj(u) with j > r
will also be undefined.

11 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Words in PARn(T) Are Balanced

Definition. We say that the words u ∈ (T ∪ P)∗ is balanced if
γj(u) is defined for 1 ≤ j ≤ |u|+ 1 and γ|u|+1(u) = 0. 2

Theorem 8.1. Let T be an alphabet and let

P = {(i ,)i | i = 1, 2, . . . , n}, T ∩ P = ∅.

Let u ∈ (T ∪ P)∗. Then u ∈ PARn(T) if and only if u is balanced.
2

The proof of Theorem 8.1 is via a series of easy lemmas.

12 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Lemmas

Lemma 1. If u ∈ T ∗, then u is balanced. 2

Lemma 2. If u and v are balanced, so us uv . 2

Lemma 3. Let v = (i u)i . Then u is balanced if and only if v
balanced. 2

Lemma 4. If u is balanced and uv is balanced, then v is balanced.
2

Lemma 5. If u ∈ PARn(T), then u is balanced. 2

Lemma 6. If u is balanced, the u ∈ PARn(T). 2

13 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Pushdown Automata

A pushdown automaton M consists of
I a finite set of states Q = {q1, . . . , qm}, where q1 is the initial

state, and F ⊆ Q is the set of final, or accepting, states,
I a tape alphabet A,
I a pushdown alphabet Ω,
I a symbol 0 not in A nor in Ω, and
I a finite set of transitions which each is a quintuple of the form

qiaU : Vqj

where a ∈ Ā = A ∪ {0}, U,V ∈ Ω̄ = Ω ∪ {0}.

Intuitively, if a ∈ A and U,V ∈ Ω, the quintuple reads: “In state qi
scanning a, with U on top of the stack, move one square to the
right, ‘pop’ the stack removing U, ‘push’ V onto the stack, and
enter state qj .”

14 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Pushdown Automata, Continued
For the quintuple

qiaU : Vqj

where either a,U,V is 0, the transition is defined as the following.
I If a = 0, motion to the right does not take place and the

stack action can occur regardless of what the symbol is
actually being scanned.

I If U = 0, then nothing is to be popped.
I If V = 0, then nothing is to be pushed.

Furthermore, the distinct transitions qiaU : Vqj , qibW : Xqk are
called incompatible if one of the following is the case:

1. a = b, and U = W ;
2. a = b, and U or W is 0;
3. U = W , and a or b is 0;
4. a or b is 0, and U or W is 0.

A pushdown automaton is deterministic if it has no pair of
incompatible transitions.

15 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Configurations of Pushdown Automata

Let u ∈ A∗ and let M be a pushdown automaton. Then a
u-configuration for M is a triple ∆ = (k , qi , α), where
1 ≤ k ≤ |u|+ 1, qi is a state of M , and α ∈ Ω∗.

Intuitively, the u-configuration (k , qi , α) stands for the situation in
which u is written on M ’s tape, M is scanning the kth symbol of
U — or, if k = |u|+ 1, has completed scanning u — and α is the
string of symbols on the pushdown stack.
We speak of qi as the state of configuration ∆, and of α as the
stack contents at configuration ∆. If α = 0, we say the stack is
empty at ∆.

16 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Configurations of Pushdown Automata, Continued

For a pair of u-configurations, we write

u : (k , qi , α) `M (l , qj , β)

if M contains a transition qiaU : Vqj , where α = Uγ, β = V γ for
some γ ∈ Ω∗, and either

1. l = k and a = 0, or

2. l = k + 1 and the kth symbol of u is a.

Note that the equation α = Uγ is to be read simply α = γ in case
U = 0; likewise for β = V γ.

17 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Computation by Pushdown Automata

A sequence ∆1,∆2, . . . ,∆m of u-configurations is called a
u-computation by M if

1. ∆1 = (1, q, 0) for some q ∈ Q,

2. ∆m = (|u|+ 1, p, γ) for some p ∈ Q and γ ∈ Ω∗, and

3. u : ∆i `M ∆i+1, for 1 ≤ i < m.

This u-computation is called accepting if the state at ∆1 is the
initial state q1, the state p at ∆m is in F , and the stack at ∆m is
empty.

We say that M accepts the string u ∈ A∗ if there is an accepting
u-computation by M . We write L(M) for the set of strings
accepted by M , and we call L(M) the language accepted by M .

18 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Pushdown Automata, Examples

See Examples M1,M2, and M3 at page 312 in the textbook.

19 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Separators and Deterministic Pushdown Automata

Theorem 8.2. Let Γ be a Chomsky normal form grammar with
separator Γs . Then there is a deterministic pushdown automaton
M such that L(M) = L(Γs).

Proof Outline. By Theorem 7.3, for suitable n,

L(Γs) = R ∩ PARn(T),

where R is a regular language, and T is the set of terminals of Γ.
Let P = {(i ,)i | i = 1, 2, . . . , n}, and M0 be a dfa with alphabet
T ∪ P that accepts R. Let Q = {q1, q2, . . . , qm} be the states of
M0, q1 the initial states, F ⊆ Q the accepting states, and δ the
transition function.

We construct a pushdown automaton M with tape alphabet
T ∪ P and the same states, initial state, and accepting states as
M0. M is to have the pushdown alphabet Ω = {J1, . . . , Jn}.

20 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Separators and Deterministic Pushdown Automata,
Continued

Proof Outline (Continued). The transitions of M are as follows for
all a ∈ Q:

1. for each a ∈ T , qa0 : 0p, where p = δ(q, a);

2. for i = 1, 2, . . . , n, q(i0 : Jipi , where pi = δ(q, (i);

3. for i = 1, 2, . . . , n, q)iJi : 0p̄i , where p̄i = δ(q,)i)

Note that, by definition, M is deterministic.

It remains to be proved that, for any u ∈ L(Γs), there is an
accepting u-computation by M (⇒). Conversely, we need to prove
that, if M accepts u ∈ (T ∪ P)∗, then there is a derivation of u in
Γs (⇐). 2

21 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Separators and Deterministic Pushdown Automata,
Continued

Proof Outline (Continued). (⇒) Let u = c1c2cK ∈ L(Γs),
where c1, c2, . . . , cK ∈ (T ∪ P). Then there is a sequence of states
p1, p2, . . . , pK+1 ∈ Q such that p1 = q1, pK+1 ∈ F , and
δ(pi , ci) = pi+1, i = 1, 2, . . . ,K .

Since u ∈ PARn(T), by Theorem 8.1, u is balanced, so that γj(u)
is defined for j = 1, 2, . . . ,K + 1 and γK+1(u) = 0. We let

∆i = (j , pj , γj(u)), j = 1, 2, . . . ,K + 1.

It follows that

u : ∆j `M ∆j+1, j = 1, 2, . . . ,K .

Thus ∆1,∆2, . . . ,∆K+1 is an accepting u-computation by M .
22 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Separators and Deterministic Pushdown Automata,
Continued

Proof Outline (Continued). (⇐) Conversely, let M accept
u = c1c2 . . . cK . Thus ∆1,∆2, . . . ,∆K+1 is an accepting
u-computation by M . Let ∆j = (j , pj , γj), j = 1, 2,K + 1.
Since

u : ∆j `M ∆j+1, j = 1, 2, . . . ,K

and γ1 = 0, we see that γj satisfies the defining recursion for γj(u)
and hence, γj = γj(u) for j = 1, 2, . . . ,K + 1. Since γK+1 = 0, u is
balanced and hence u ∈ PARn(T). Finally, we have p1 = q1,
pK+1 ∈ F , and δ(pj , cj) = pj+1. Therefore the dfa M0 accepts u,
and u ∈ R. We conclude that u ∈ L(Γs). 2

23 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Atomic Pushdown Automata

A pushdown automaton is called atomic (whether or not it is
deterministic) if all of its transition are one of the following forms:

1. pa0 : 0q,

2. p0U : 0q,

3. p00 : Vq.

Thus, at each step in a computation an atomic pushdown
automaton can read the tape and move right, or pop a symbol off
the stack or push a symbol on the stack. But, unlike pushdown
automata in general, it cannot perform more than one of these
actions in a single step.

We will later show that for any pushdown automata M , there is
an atomic pushdown automata M̄ such that L(M) = L(M̄).

24 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Computation Records of Atomic Pushdown Automata

Let M be a given atomic pushdown automata with tape alphabet
T and pushdown alphabet Ω = {J1, J2, . . . , Jn}. We set

P = {(i ,)i | i = 1, 2, . . . , n}

and show how to use the “brackets” to define a kind of “records”
of a computation by M .

Let ∆1,∆2, . . . ,∆m be a v -computation by M , where
v = c1c2 . . . , cK and ck ∈ T , k = 1, 2, . . . ,K , and where
∆i = (li , pi , γi), i = 1, 2, . . . ,m. We set

w1 = 0

wi+1 =

wicli if γi+1 = γi
wi (j if γi+1 = Jjγi
wi)j if γi = Jjγi+1

 1 ≤ i < m

25 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Computation Records of Atomic Pushdown Automata,
Continued

Now let w = wm, so that ErP(w) = v and m = |w |+ 1. This word
w is called the record of the given v -computation ∆1, . . . ,∆m by
M .

From w we can read off not only the word v but also the sequence
of “pushes” and “pops” as they occur. In particular,
wi , 1 < i ≤ m, indicates how M goes from ∆i−1 to ∆i .

26 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

An Atomic Automaton for L(Γ)

We now modify the pushdown automaton M of Theorem 8.2 so
that it will accept L(Γ) instead of L(Γs). The idea is to use
nondeterminism to “guess” the location of the “brackets” (i ,)i .

Continuing to use the notation of the proof of Theorem 8.2, We
define a pushdown automaton M̄ with the same states, initial
state, accepting states, the pushdown alphabet as M . However,
the tape alphabet of M̄ will be T (rather than T ∪ P). The
transitions of M̄ are, for all q ∈ Q:

1. for each a ∈ T , qa0 : 0p, where p = δ(q, a);

2. for i = 1, 2, . . . , n, q00 : Jipi , where pi = δ(q, (i);

3. for i = 1, 2, . . . , n, q0Ji : 0pi , where pi = δ(q,)i).

Depending on the transition function δ, M̄ can certainly be
non-deterministic. Note that M̄ is atomic (though M is not). It
remains to be proved that L(M̄) = L(Γ).

27 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

v ∈ L(Γ)⇒ v ∈ L(M̄)
Let v ∈ L(Γ). Then, since ErP(L(Γs)) = L(Γ), there is a word
w ∈ L(Γs) such that ErP(w) = v . By Theorem 8.2, w ∈ L(M).
Let

∆i = (i , pi , γi), i = 1, 2, . . . ,m

be an accepting w -computation by M (with m = |w |+ 1).
Let ni = 1 if w : ∆i `M ∆i+1 is via transition qa0 : 0p (with
p = δ(q, a)); otherwise ni = 0, 1 ≤ i < m. Let

l1 = 1,

li+1 = li + ni , 1 ≤ i < m.

Finally let
∆̄i = (li , pi , γi), 1 ≤ i < m.

Now, it can be checked that

v : ∆̄i `M̄ ∆̄i+1, 1 ≤ i < m.

Since ∆̄m = (|v |+ 1, q, 0) with q ∈ F , we conclude v ∈ L(M̄).
28 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

v ∈ L(M̄)⇒ v ∈ L(Γ)

Let v ∈ L(M̄). Let

∆̄i = (li , pi , γi), i = 1, 2, . . . ,m

be an accepting v -computation by M̄ . Using the fact that M̄ is
atomic, we can let w be the record of this computation as defined
earlier so that ErP(w) = v and m = |w |+ 1. Let
∆i = (i , pi , γi), i = 1, 2, . . . ,m, and we observe that

w : ∆i `M ∆i+1, i = 1, 2, . . . ,m.

Since pm ∈ F and γm = 0, ∆1,∆2, . . . ,∆m is an accepting
w -computation by M . Thus by Theorem 8.2, w ∈ L(Γs). Hence,
v ∈ L(Γ).

29 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-free Languages and Pushdown Automata

Theorem 8.3. Let Γ be a Chomsky normal form context-free
grammar. Then there is a pushdown automaton M̄ such that
L(M̄) = L(Γ). 2

Theorem 8.4. For every context-free grammar L, there is a
pushdown automaton M such that L = L(M). 2

Note that to prove Theorem 8.4, we need to take care of the case
where 0 ∈ L, hence L = L(Γ) ∪ {0} for a Chomsky normal form
context-free grammar Γ. For such a case, we need to modify the
pushdown automaton M̄ that accepts L(Γ). Actually we modify
the dfa component M0 of M̄ to build an equivalent nonrestarting
dfa. After that, we add the initial state of this new dfa to the set
of accepting states so that 0 will be recognized.

30 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Atomic Pushdown Automata, Revisited
Theorem 8.5. Let M be a pushdown automaton. Then there is
an atomic pushdown automaton M̄ such that L(M) = L(M̄).
Proof. For each transition paU : Vq of M for which a,U, v 6= 0,
we introduce two new states r , s and let M̄ have the transitions

pa0 : 0r

r0U : 0s

s00 : Vq

If exactly one of a,U,V is 0, the only two transitions are needed
for M̄ . For each transition p00 : 0q, we introduce a new state t
and replace p00 : 0q with the transitions

p00 : Jt

t0J : 0q

where J is an arbitrary symbol of the pushdown alphabet.
Otherwise, M̄ is exactly like M . Clearly, L(M̄) = L(M). 2

31 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-free Languages and Pushdown Automata

Theorem 8.6. For every pushdown automaton M , L(M) is a
context-free language.

Proof Outline. Without loss of generality, we assume M is atomic.
The plan is to prove that for the language L consisting exactly of
the records of all accepting u-computation by M , where
u ∈ L(M), we will have L = R ∩ PARn(T). R will be a regular
language accepted by a ndfa M0 devised from M , and T is tape
alphabet of M . As L(M) = ErP(L), it follows that L(M) is a
context-free language.

To prove L = R ∩ PARn(T), we need to show both
L ⊆ R ∩ PARn(T) and R ∩ PARn(T) ⊆ L.

32 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-free Languages and Pushdown Automata
Proof Outline of Theorem 8.6, Continued. Let M have states
Q = {q1, q2, . . . , qm}, initial state q1, final states F , tape alphabet
T , and pushdown alphabet Ω = {J1, . . . , Jm}.
To devise ndfa M0, we need P = {(i ,)i | i = 1, . . . ,m}. M0 has
the same states, initial state, and accepting states as M , and
transition function δ defined as follows. For each q ∈ Q,

δ(q, a) = {p ∈ Q | M has the transition qa0 : 0p} for a ∈ T

δ(q, (i) = {p ∈ Q | M has the transition q0Ji : 0p}, i = 1, . . . , n,

δ(q,)i) = {p ∈ Q | M has the transition q00 : Jip}, i = 1, . . . , n.

Let w ∈ L be the record of an accepting u-computation
∆i , . . . ,∆m, where ∆i = (li , pi , γi), i = 1, . . . ,m. By an induction,
we can show that pm ∈ δ∗(q1,w). As pm ∈ F , we have w ∈ R. By
another induction, we can show that γi (w) = γi , i = 1, . . . ,m. As
γ|w |+1(w) = γ|w |+1 = 0, we know w is balanced. We conclude
that w ∈ R ∩ PARn(T).

33 / 34

Context-Free Languages (10)
Bracket Languages (10.7)
Pushdown Automata (10.8)

Context-free Languages and Pushdown Automata
Proof Outline of Theorem 8.6, Continued. Conversely, let
w = c1 . . . cr ∈ R ∩ PARn(T), and let u = ErP(w) = d1, . . . ds .
Let p1, . . . , pr+1 be some sequence of states such that p1 = q1,
pr+1 ∈ δ(pi , ci) for i = 1, . . . , r . We claim that

(l1, p1, γ1(w)), (l2, p2, γ2(w)), . . . , (lr+1, pr+1, γr+1(w))

where l1 = 1

li+1 =

{
li + 1 if ci ∈ T
li otherwise

is an accepting u-computation by M and w is its record. That is,
we need to show that

u : (lr , pr , γr (w)) `M (lr+1, pr+1, γr+1(w))

for i = 1, . . . , r . This is done by an induction i and based on the
transitions that are used. We then conclude w ∈ L, the language
of the records of all accepting u-computation by M . 2

34 / 34

	Context-Free Languages (10)
	Bracket Languages (10.7)
	Pushdown Automata (10.8)

