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L1 ∪ L2

Theorem 5.1. If L1, L2 are context-free languages, then so is
L1 ∪ L2.

Proof. Let L1 = L(Γ1), L = L(Γ2), where Γ1, Γ2 are context-free
grammars with disjoint sets of variables V1 and V2, and start
symbols S1, S2, respectively.

Let Γ be the context-free grammar with variables V1 ∪ V2 ∪ {S}
and start symbol S . The productions of Γ are those of Γ1 and Γ2,
together with the two additional productions S → S1 and S → S2.
Obviously L(Γ) = L(Γ1) ∪ L(Γ2). 2
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L1 ∩ L2

Theorem 5.2. There are context-free languages L1 and L2 such
that L1 ∩ L2 is not context-free.

Proof. The following two languages L1 and L2 are context free.

L1 = {a[n]b[n]c [m] | n,m > 0 }
L2 = {a[m]b[n]c [n] | n,m > 0 }

However, as shown by Theorem 4.2, their intersection

L1 ∩ L2 = {a[n]b[n]c [n] | n > 0 }

is not context-free. 2
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A∗ − L

Corollary 5.3. There is a context-free language L ⊆ A∗ such that
A∗ − L is not context-free.

Proof. Suppose otherwise, that is, for every context-free language
L ⊆ A∗, A∗ − L is context-free. Then the De Morgan identity

L1 ∩ L2 = A∗ − ((A∗ − L1) ∪ (A∗ − L2))

together with Theorem 5.1 would contradict Theorem 5.2. 2
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R ∩ L

Theorem 5.4. If R is a regular language and L is a context-free
language, then R ∩ L is context-free.

Proof. Let A be an alphabet such that L,R ∈ A∗. Let L = L(Γ) or
L(Γ) ∪ {0}, where Γ is a positive context-free grammar with
variables V , terminals A and start symbol S . Let M be a dfa that
accepts R with states Q, initial state q1 ∈ Q, accepting states
F ⊆ Q, and transition function δ.

For each symbol σ ∈ A ∪ V , and each ordered pair p, q ∈ Q, we
introduce a new symbol σpq. We shall construct a positive
context-free grammar Γ̃ whose terminals are A, and whose
variables consists of a start symbol S̃ together with all the new
symbols σpq for σ ∈ A ∪ V and p, q ∈ Q. (Note that for a ∈ A, a
is a terminal, but apq is a variable for each p, q ∈ Q.)
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R ∩ L, Continued

Proof of Theorem 5.4 (Continued). The productions of Γ̃ are:

1. S̃ → Sq1q for all q ∈ F .

2. X pq → σpr11 σr1r2
2 . . . σ

rn−1q
n of all productions X → σ1σ2 . . . σn

of Γ and all p, r1, r2, . . . , rn−1, q ∈ Q.

3. apq → a for all a ∈ A and all p, q ∈ Q such that δ(p, a) = q.

We shall now prove that L(Γ̃) = R ∩ L(Γ).

First let u = a1a2 . . . an ∈ R ∩ L(Γ). Since u ∈ L(Γ), we have
S ⇒∗

Γ a1a2 . . . an. It follows that
S̃ ⇒Γ̃ Sq1qn+1 ⇒∗

Γ̃
aq1q2

1 aq2q3
2 . . . a

qnqn+1
n , where

q1, q2, . . . , qn, qn+1 ∈ Q, q1 is the initial state, and qn+1 ∈ F .
Since u ∈ L(M ), we can choose states so that δ(qi , ai ) = qi+1, for
all i . This implies that a

qiqi+1

i → ai , for all i . We conclude that

S̃ ⇒∗
Γ̃
a1a2 . . . an, hence u ∈ L(Γ̃).
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R ∩ L, Continued

For the other direction, that if S̃ ⇒Γ̃ Sq1q ⇒∗
Γ̃
a1a2 . . . an = u

where q ∈ F , then S ⇒∗
Γ u, we need to prove the following lemma.

Lemma. Let σpq ⇒∗
Γ̃
u ∈ A∗. Then, δ∗(p, u) = q. Moreover, if σ

is a variable, then σ ⇒∗
Γ u.

Proof of this lemma can be done by an induction on the length of
a derivation of u from σpq ∈ Γ̃. That is, for derivation of length
> 2, we can write

σpq ⇒Γ̃ σ
r0r1
1 σr1r2

2 . . . σ
rn−1rn
n ⇒∗

Γ̃
u1u2 . . . un = u

where r0 = p, rn = q, and σ
ri−1ri
i ⇒∗

Γ̃
ui . The induction hypotheses

ensure that δ∗(ri−1, ui ) = ri and σi ⇒∗
Γ ui , for all i . From this we

can show that δ∗(p, u) = q and σ ⇒∗
Γ u, hence complete the proof

for the other direction. 2
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Erased Symbols

Let A,P be alphabets such that P ⊆ A. For each letter a ∈ A, let
us write

a0 =

{
0 if a ∈ P
a if a ∈ A− P.

If x = a1a2 . . . an ∈ A∗, we write

ErP(x) = a0
1a

0
2 . . . , a

0
n

In other words, ErP(x) is the word that results from x where all
the symbols in it that are part of the alphabet P are “erased.”
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Erased Symbols, Continued

If L ⊆ A∗, we also write

ErP(L) = {ErP(x) | x ∈ L}.

If Γ is any context-free grammar with terminal symbols T and if
P ⊆ T , we write ErP(Γ) for the context-free grammar with
terminals T − P, the same variables and start symbol as Γ, and
production

X → ErP(v)

for each production X → v of Γ.
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A Theorem about Erased Symbols

Theorem 5.5. If Γ is a context-free grammar and Γ̃ = ErP(Γ),
then L(Γ̃) = ErP(L(Γ)).
Proof Outline. Suppose that w ∈ L(Γ), we have

S = w1 ⇒Γ w2 . . .⇒Γ wm = w .

Let vi = ErP(wi ), i = 1, 2, . . . ,m. Clearly,

S = v1 ⇒Γ̃ v2 . . .⇒Γ̃ vm = ErP(w).

so that ErP(w) ∈ L(Γ̃). This proves that L(Γ̃) ⊇ ErP(L(Γ)). For
the other direction, we need to show that whenever
X ⇒∗

Γ̃
v ∈ (T − P)∗, there is a word w ∈ T ∗ such that X ⇒∗

Γ w
and v = ErP(w). This can be done by an induction on the length
of a derivation of v from X in Γ̃. 2
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A Theorem about Erased Symbols, Continued

From Theorem 5.5, we may say that the “operators” L and ErP
commute

L(ErP(Γ)) = ErP(L(Γ))

for any context-free grammar Γ.

We prove the straightforward:

Corollary 5.6. If L ⊆ A∗ is a context-free language and P ⊆ A,
then ErP(L) is also a context-free language.

Proof. Let L = L(Γ), where Γ is context-free grammar. Let
Γ̃ = ErP(Γ). By Theorem 5.5, ErP(Γ) = L(Γ̃) so is context-free. 2
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Bracket Languages

Let A be a finite set. Let B be an alphabet we get from A by
adding 2n new symbols (i , )i , i = 1, 2, . . . , n, where n is some given
positive integer. We write PARn(A) for the language consisting of
all the strings in B∗ that are correctly “paired,” thinking of each
pair (i , )i as matching left and right brackets.

More precisely, PARn(A) = L(Γ0), where Γ0 is the context-free
grammar with the single variables S , terminals B, and the
productions

1. S → a for all a ∈ A,

2. S → (iS)i , i = 1, 2, . . . , n,

3. S → SS , S → 0.

The languages PARn(A) are called bracket languages.
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Bracket Languages, Examples

Let A = {a, b, c}, and n = 2. For ease of reading we will use the
symbol ( for (1, ) for )1, [ for (2, and ] for )2.

Then we have
cb[(ab)c](a[b]c) ∈ PAR2(A)

as well as
()[] ∈ PAR2(A)
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Bracket Languages, Properties

Theorem 7.1. PARn(A) is a context-free language such that

a. A∗ ⊆ PARn(A);

b. if x , y ∈ PARn(A), so is xy ;

c. if x ∈ PARn(A), so is (ix)i , for i = 1, 2, . . . , n;

d. if x ∈ PARn(A) and x 6∈ A∗, then we can write x = u(iv)iw , for
some i = 1, 2, . . . , n, where u ∈ A∗ and v ,w ∈ PARn(A).

Proof Outline. The proof for the first three properties are
straightforward. For the last, we use an induction on the length of
x . Note we have |x | > 1 otherwise x ∈ A ⊆ A∗, a contradiction.
Since |x | > 1, we need only to consider two cases:

I S ⇒ (iS)i ⇒∗ (iv)i = x , where S ⇒∗ v ;

I S ⇒ SS ⇒∗ rs = x , where S ⇒∗ r ,S ⇒∗ s, and r 6= 0, s 6= 0.

Both lead to x = u(iv)iw , u ∈ A∗ and v ,w ∈ PARn(A). 2
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Dyck Languages

The language PARn(∅) is called the Dyck language of order n and
is usually written Dn. Note that this is a special case of A = ∅ for
PARn(A).
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The Separators

Let us begin with a Chomsky normal form grammar Γ, with
terminals T and productions

Xi → YiZi , i = 1, 2, . . . , n

in addition to certain productions of the form V → a, a ∈ T .

We construct a new grammar Γs which we call the separator of Γ.
The terminals of Γs are the symbols of T together with 2n new
symbols (i , )i , i = 1, 2, . . . , n. The productions of Γs are

Xi → (iYi )iZi , i = 1, 2, . . . , n

as well as all of the productions in Γ of the form V → a with
a ∈ T .
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The Separators, Examples

As an example, let Γ have the productions

S → XY , S → YX , Y → ZZ ,

X → a, Z → a.

The productions of Γs can be written as

S → (X )Y , S → [Y ]X , Y → {Z}Z ,

X → a, Z → a.

where we use (, ), [, ], and {, } in place for the numbered brackets.
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Ambiguity in Context-free Grammars

Definition. A context-free grammar Γ is called ambiguous if there
is a word u ∈ L(Γ) that has two different leftmost derivations in Γ.
If Γ is not ambiguous, it is said to be unambiguous. 2

Note that grammar Γ in the last slide is ambiguous: There are two
leftmost derivations for aaa:

S ⇒ XY ⇒ aY ⇒ aZZ ⇒ aaZ ⇒ aaa

S ⇒ YX ⇒ ZZX ⇒ aZX ⇒ aaX ⇒ aaa

However, for grammar Γs , the two derivations become

S ⇒ (X )Y ⇒ (a)Y ⇒ (a){Z}Z ⇒ (a){a}Z ⇒ (a){a}a
S ⇒ [Y ]X ⇒ [{Z}Z ]X ⇒ [{a}Z ]X ⇒ [{a}a]X ⇒ [{a}a]a

That is, Γs separates the two derivations in Γ. The bracketing in
the words (a){a}a and [{a}a]a enables their respective derivation
trees to be recovered.
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Separated then Erased

If we write P or the set of brackets (i , )i , i = 1, 2, . . . , n, then
clearly Γ = ErP(Γs). Hence, by Theorem 5.5, we conclude
immediately that

Theorem 7.2. ErP(L(Γs)) = L(Γ). 2

In addition, we can also prove the following four lemmas about
some relationship between languages L(Γs) and PARn(T ).
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Lemma 1

Lemma 1. L(Γs) ⊆ PARn(T ).

Proof. We want to show that if X ⇒∗
Γs

w ∈ (T ∪ P)∗ for any
variable X , the w ∈ PARn(T ). The proof is by an induction on the
length of a derivation of w from X in Γs . If the length is 2, then w
is a single terminal and the result is clear. Otherwise, we write

X = X1 ⇒Γs (iYi )iZi ⇒∗
Γs

(iu)iv = w ,

where Yi ⇒∗
Γs

u and Zi ⇒∗
Γs

v . By the induction hypothesis,
u, v ∈ PARn(T ). By b and c of Theorem 7.1, so is w . 2

To proceed further, we need to define a new context-free grammar
∆, which is related to Γs .
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