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Context-Free Production

Let V ,T be a pair of disjoint alphabets. A context-free production
on V ,T is an expression

X → h

where X ∈ V and h ∈ (V ∪ T )∗.

I The elements of V are called variables, and the elements of T
are called terminals.

I If P stands for the production X → h and u, v ∈ (V ∪ T )∗,
we write

u ⇒P v

to mean that there are words p, q ∈ (V ∪ T )∗ such that
u = pXq and v = phq.

I Productions X → 0 are called null productions.
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Context-Free Grammar

A context-free grammar Γ with variables V and terminals T
consists of a finite set of context-free productions on V ,T
together with a designated symbol S ∈ V called the start symbol.

I Collectively, the set V ∪ T is called the alphabet of Γ.

I If none of the productions of Γ is a null production, Γ is called
a positive context-free grammar.
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Derivation

If Γ is a context-free grammar with variables V and terminals T ,
and if u, v ∈ (V ∪ T )∗, we write

u ⇒Γ v

to mean that u ⇒P v for some production P of Γ. We write

u ⇒∗Γ v

to mean there is a sequence u1, . . . , um where u = u1, um = v , and

ui ⇒Γ ui+1 for 1 ≤ i < m.

The sequence u1, . . . , um is called a derivation of v from u in Γ.

I The number m is called the length of the derivation.
I The subscript Γ in ⇒Γ may be omitted when no ambiguity

results.
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Context-Free Language

I Let Γ be a context-free grammar with terminals T and start
symbol S , we define

L(Γ) = {u ∈ T ∗ | S ⇒∗ u}.

L(Γ) is called the language generated by Γ.

I A Language L ⊆ T ∗ is called context-free is there is a
context-free grammar Γ such that L = L(Γ).
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Context-Free Language, An Example

A simple example of a context-free grammar Γ is given by
V = {S}, T = {a, b}, and the productions

S → aSb

S → ab

I Clearly, we have

L(Γ) = {a[n]b[n] | n > 0}.

I That is, the language {a[n]b[n] | n > 0} is context-free.
I Note that L(Γ) is not regular.
I Later we shall show that every regular language is

context-free.
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Positive Context-Free Grammar

I Recall that if none of the productions of a context-free
grammar Γ is a null production, Γ is called a positive
context-free grammar.

I If Γ is a positive context-free grammar, then 0 6∈ L(Γ).
I The following algorithm transforms a given context-free

grammar Γ into a positive context-free grammar Γ̄ such that
L(Γ) = L(Γ̄) or L(Γ) = L(Γ̄) ∪ {0}.

1. First we compute the kernel of Γ,

ker(Γ) = {V ∈ V | V ⇒∗
Γ 0}.

2. Then we obtain Γ̄ by first adding all productions that can be
obtained from the productions of Γ by deleting from the
righthand sides one or more variables belonging to ker(Γ) and
then deleting all null productions.
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Positive Context-Free Grammar, An Example
Consider the context-free grammar Γ with productions

S → XYYX , S → aX , X → 0, Y → 0.

We obtain a positive context-free grammar Γ̄ by

1. first computing the kernel of Γ,

ker(Γ) = {X ,Y , S}.

2. then obtaining the productions of Γ̄ as the following:

S → XYYX , S → YYX , S → XYX , S → XYY ,

S → YX , S → YY , S → XX , S → XY ,

S → X , S → Y ,

S → aX , S → a. 8 / 35
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Positive Context-Free Grammar, Continued

Theorem 1.2. A language L is context-free if and only if there is a
positive context-free grammar Γ such that

L = L(Γ) or L = L(Γ) ∪ {0}.

Moreover, there is an algorithm that will transform a context-free
grammar ∆ for which L = L(∆) into a positive context-free
grammar Γ that satisfies the above equation. 2
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Γ-tree

Let Γ be a positive context-free grammar with alphabet V ∪ T ,
where T consists of the terminals and V is the set of variables.
A tree is called a Γ-tree if it satisfies the following conditions:

1. the root is labeled by a variable;

2. each vertex which is not a leaf is labeled by a variable;

3. if a vertex is labeled X and its immediate successors (i.e.
children) are labeled α1, α2, . . . , αk (reading from left to
right), then X → α1α2 . . . αk is a production of Γ.

Let T be a Γ-tree, and let v be a vertex of Γ which is labeled by
the variable X . We shall speak of the subtree T v of T
determined by v . The vertices of T v are v , its immediate
successors in T , their immediate successors, and so on. Clearly,
T v is itself a Γ-tree.
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Derivation Tree

I If T is a Γ-tree, we write 〈T 〉 for the word that consists of
the labels of the leaves of T reading from left to right.

I If the root of T is labeled by the start symbol symbol S of Γ
and if w = 〈T 〉, then T is called a derivation tree for w in Γ.

I See the tree shown in Fig. 1.1 for a derivation tree for a[4]b[3]

in the grammar shown in the same figure

Theorem 1.3. If Γ is a positive context-free grammar, and
S ⇒∗Γ w , then there is a derivation tree for w in Γ. 2
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Leftmost Derivation and Rightmost Derivation

Definition. We write u ⇒l v in Γ if u = xXy and v = xzy , where
X → z is a production of Γ and x ∈ T ∗. If instead, x ∈ (V ∪ T )∗

but y ∈ T ∗, we write u ⇒r v . 2

I When u ⇒l v , it is the leftmost variable in u for which a
substitution is made. whereas when u ⇒r v , it is the
rightmost variable in u.

I A derivation
u1 ⇒l u2 ⇒l u3 ⇒l . . . un

is called a leftmost derivation, and then we write u1 ⇒∗l un.
Similarly, a derivation

u1 ⇒r u2 ⇒r u3 ⇒r . . . un

is called a rightmost derivation, and we write u1 ⇒∗r un.
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Leftmost Derivation and Rightmost Derivation, Examples

Consider the following positive context-free grammar

S → aXbY , X → aX , X → a, Y → bY , Y → b

and consider the following three derivations of a[4]b[3] from S :

1. S ⇒ aXbY ⇒ a[2]XbY ⇒ a[3]XbY ⇒ a[4]bY ⇒ a[4]b[2]Y ⇒
a[4]b[3]

2. S ⇒ aXbY ⇒ a[2]XbY ⇒ a[2]Xb[2]Y ⇒ a[3]Xb[2]Y ⇒
a[3]Xb[3] ⇒ a[4]b[3]

3. S ⇒ aXbY ⇒ aXb[2]Y ⇒ aXb[3] ⇒ a[2]Xb[3] ⇒ a[3]Xb[3] ⇒
a[4]b[3]

The first derivation is leftmost, the last is rightmost, and the
second is neither.
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Leftmost Derivation and Rightmost Derivation, Continued

Theorem 1.4. Let Γ be a positive context-free grammar with start
symbol S and terminals T . Let w ∈ T ∗. Then the following
conditions are equivalent:

1. w ∈ L(Γ);

2. there is a derivation tree for w in Γ;

3. there is a leftmost derivation of w from S in Γ;

4. there is a rightmost derivation of w from S in Γ.

2
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Branching Context-Free Grammar

Definition. A positive context-free grammar is called branching if
it has no productions of the form X → Y , where X and Y are
variables. 2

Theorem 1.5. There is an algorithm that transforms a given
positive context-free grammar Γ into a branching grammar ∆ such
that L(∆) = L(Γ).
Proof. We transform Γ into ∆ in two steps. First, we eliminate
from Γ all the “cycling” productions

X1 → X2, X2 → X3, . . . , Xk → X1

and replace variables X1,X2, . . . ,Xk in the remaining productions
of Γ by a new variable X . Next, we eliminate production X → Y ,
but add to Γ productions X → x for each word x ∈ (V ∪ T )∗ for
which Y → x is a production of Γ. 2
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Path in a Γ-tree

A path in a Γ-tree T is a sequence α1, α2, . . . , αk of vertices of T
such that αi+1 is an immediate successor of αi for
i = 1, 2, . . . , k − 1. All of the vertices on the path are called
descendants of α1.

We may have two different vertices α, β lie on the same path in
the derivation tree T and are labeled by the same variable X . In
such a case one of the vertices is a descendant of the other, say, β
is a descendant of α. Therefore, T β is not only a subtree of T
but also of T α.

We wish to consider two important operations in the derivation
tree T which can be performed in this case. The two operations
are called pruning and splicing.
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Pruning and Splicing

I Pruning is the operation that removes the subtree T α from
the vertex α and to graft the subtree T β in its place.

I Splicing is the operation that removes the subtree T β from
the vertex β and to graft an exact copy of T α in its place.

I Because α and β are labeled by the same variable, the trees
obtained by pruning and splicing are themselves derivation
trees.

I See Fig. 1.3 in the textbook for illustrations of pruning and
splicing.
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Pruning and Splicing, Continued

Let Tp and Ts be trees obtained from a derivation tree T in a
branching grammar by pruning and splicing, respectively, where α
and β are as before.

We have 〈T 〉 = r1〈T α〉r2 for words r1, r2 and 〈T α〉 = q1〈T β〉q2

for words q1, q2. Since α, β are distinct vertices, and since the
grammar is branching, q1 and q2 cannot both be 0. (That is,
q1q2 6= 0.)

Also,

〈Tp〉 = r1〈T β〉r2 and 〈Ts〉 = r1q
[2]
1 〈T

β〉q[2]
2 r2.

Since q1q2 6= 0, we have |〈T β〉| < |〈T α〉| and hence
|〈Tp〉| < |〈T 〉|.
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Pruning and Splicing, Continued

Theorem 1.6. Let Γ be a branching context-free grammar, let
u ∈ L(Γ), and let u have a derivation tree T in Γ that has two
different vertices on the same path labeled by the same variable.
Then there is a word v ∈ L(Γ) such that |v | < |u|.

Proof. Since u = 〈T 〉, we need only take v = 〈Tp〉. 2
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Regular Grammars

Definition. A context-free grammar is called regular if each of its
productions has one of the two forms

U → aV or U → a

where U,V are variables and a is a terminal. 2

Theorem 2.1. If L is a regular language, then there is a regular
grammar Γ such that either L = L(Γ) or L = L(Γ) ∪ {0}. 2
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A Regular Grammar for Every Regular Language

Proof of Theorem 2.1. Let L = L(M ), where M is a dfa with
states q1, . . . qm, alphabet {s1, . . . , sn}, transition function δ, and
the set of accepting states F . We construct a grammar Γ with
variables q1, . . . qm, terminals s1, . . . , sn, and start symbol q1. The
productions are

1. qi → srqj whenever δ(qi , sr ) = qj , and

2. qi → sr whenever δ(qi , sr ) ∈ F .

Clearly the grammar Γ is regular. To show that L(Γ) = L− {0} we
suppose u ∈ L, u = si1si2 . . . sil sil+1

6= 0. Thus, δ∗(q1, u) ∈ F , so
that we have

δ(q1, si1) = qj1 , δ(qj1 , si2) = qj2 , . . . , δ(qjl , sil+1
) = qjl+1

∈ F .
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A Regular Grammar for Every Regular Language,
Continued

Proof of Theorem 2.1. (Continued) By construction, grammar Γ
contains the productions

q1 → si1qj1 , qj1 → si2qj2 , . . . , qjl−1
→ silqjl , qjl → sil+1

.

Thus, we have in Γ

q1 ⇒ si1qj1 ⇒ si1si2qj2 ⇒ . . .⇒ si1si2 . . . silqjl ⇒ si1si2 . . . sil sil+1
= u

so that u ∈ L(Γ).
Conversely, suppose that u ∈ L(Γ), u = si1si2 . . . sil sil+1

. Then there
is a derivation of u from q1 in Γ. By construction, Γ has all the
necessary productions to simulate the transition δ∗(q1, u) ∈ F in
the dfa M . 2
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A Regular Language for Every Regular Grammar

Theorem 2.2. Let Γ be a regular grammar. Then L(Γ) is a regular
language.
Proof. Let Γ have the variables V1,V2, . . . ,VK , where S = V1 is
the start symbol, and terminals s1, s2, . . . , sn. Since Γ is regular, its
productions are of the form Vi → srVj and Vi → sr . We now
construct the following ndfa M which accepts precisely L(Γ).

I The states are V1,V2, . . .VK and an additional state W . V1 is
the initial state and W is the only accepting state.

I For transition functions, let

δ1(Vi , sr ) = {Vj | Vi → srVj is a production of Γ},

δ2(Vi , sr ) =

{
{W } if Vi → sr is a production of Γ
∅ otherwise.

Then define the transition function δ as
δ(Vi , sr ) = δ1(Vi , sr ) ∪ δ2(Vi , sr ).
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A Regular Language for Every Regular Grammar

Proof of Theorem 2.2. (Continued) Now let
u = si1si2 . . . sil sil+1

∈ L(Γ). Thus we have

V1 ⇒ si1Vj1 ⇒ si1si2Vj2 ⇒∗ si1si2 . . . silVil ⇒ si1si2 . . . sil sil+1

where Γ contains the productions

V1 → si1Vj1 , Vj1 → si2Vj2 , . . . ,Vjl−1
→ silVjl , Vjl → sil+1

Thus,

Vj1 ∈ δ(V1, si1), Vj2 ∈ δ(Vj1 , si2), . . . , W ∈ δ(Vjl , sil+1
).

Thus W ∈ δ∗(V1, u) and u ∈ L(M ).
Conversely, if u = si1si2 . . . sil sil+1

is accepted by M , then there
must be a sequence of transitions of the form above. Hence, the
productions listed above must all belong to Γ, so that there is a
derivation of u from V1. 2
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Every Regular Language Is Context-free

Theorem 2.3. A language L is regular if and only if there is a
regular grammar Γ such that either L = L(Γ) or L = L(Γ) ∪ {0}. 2

Corollary 2.4. Every regular language is context-free. 2
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Right-linear Grammars

Definition. A context-free grammar is called right-linear if each of
its productions has one of the two forms

U → xV or U → x ,

where U,V are variables and x 6= 0 is a word consisting entirely of
terminals. 2

Thus, a regular grammar is just a right-linear grammar in which
|x | = 1.
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Right-linear Grammars, Continued

Theorem 2.5. Let Γ be a right-linear grammar. Then L(Γ) is
regular.
Proof. We replace each production of Γ of the form

U → a1a2 . . . anV , n > 1

by the productions

U → a1Z1, Z1 → a2Z2, Zn−2 → an−1Zn−1, Zn−1 → anV ,

where Z1, . . . ,Zn−1 are new variables. Do similar replacement for
production

U → a1a2 . . . an, n > 1

2
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Chomsky Normal Form

Definition. A context-free grammar Γ with variables V and
terminals T is in Chomsky normal form if each of its productions
has one of the forms

X → YZ or X → a,

where X ,Y ,Z ∈ V and a ∈ T . 2

Theorem 3.1. There is an algorithm that transforms a given
positive context-free grammar Γ into a Chomsky normal form
grammar ∆ such that L(Γ) = L(∆). 2
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Chomsky Normal Form, Continued

Proof of Theorem 3.1. Using Theorem 1.5, we begin with a
branching context-free grammar Γ with variable V and terminals
T . We then perform the following two steps:

1. a new variable Xa is introduced for each a ∈ T , and for each
production X → x ∈ Γ, |x | > 1, we replace it with X → x ′

where x ′ is obtained from x by replacing each terminal a by
the corresponding new variable Xa;

2. For productions of the form X → X1X2 . . .Xk , k > 2, we
introduce new variables Z1,Z2, . . . ,Zk−2 and replace the
production with the following

X → X1Z1

...

Zk−3 → Xk−2Zk−2

Zk−2 → Xk−1Xk . 2 29 / 35
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Chomsky Normal Form, Examples

Consider the following branching context-free grammar

S → aXbY , X → aX , Y → bY , X → a, Y → b

The resulting grammar, respectively, from the two steps is:

1.
S → XaXXbY , X → XaX , Y → XbY ,

X → a, Xa → a, Y → b, Xb → b

2. For the production S → XaXXbY , we replace it with the
following:

S → XaZ1

Z1 → XZ2

Z2 → XbY .

The resulting grammar is in Chomsky normal form.
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Bar-Hillel’s Pumping Lemma

An application of Chomsky normal form is in the proof of the
following theorem, which is an analogy for context-free languages
of the pumping lemma for regular languages.

Theorem 4.1. Let Γ be a Chomsky normal form grammar with
exactly n variables, and let L = L(Γ). Then, for every x ∈ L for
which |x | > 2n, we have x = r1q1rq2r2, where

1. |q1rq2| ≤ 2n;

2. q1q2 6= 0;

3. for all i ≥ 0, r1q
[i ]
1 rq

[i ]
2 r2 ∈ L.

2
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A Small Lemma

Lemma. Let S ⇒∗Γ u, where Γ is a Chomsky normal form
grammar. Suppose that T is a derivation tree for u in Γ and that
no path in T contains more than k nodes. Then |u| ≤ 2k−2.

Proof. First, suppose, that T has just one leaf labeled by a
terminal a. Then u = a, and T just have two nodes, S and a, and
one path of length 1 < k = 2. Clearly |u| = 1 ≤ 22−2.
Otherwise, since Γ is in Chomsky normal form, the root of T is
labeled by S where S → XY for variables X and Y . Let T1 and T2

be the two trees whose roots are labeled by X and Y , respectively.
In each of T1 and T2, the longest path must contain ≤ k − 1
nodes. Proceeding inductively, we may assume that each of the
T1,T2 have ≤ 2k−3 leaves. Hence

|u| ≤ 2k−3 + 2k−3 = 2k−2.

2
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Bar-Hillel’s Pumping Lemma, Proof

Proof of Theorem 4.1. Let x ∈ L, where |x | > 2n, and let T be a
derivation tree for x in Γ. Let α1, α2, . . . , αm be the longest path
in T . Then m ≥ n + 2 and αm is a leaf. This is because, if
m ≤ n + 1, by the small lemma, |x | ≤ 2n − 1 is a contradiction.

Note that α1, α2, . . . , αm−1 are all labeled by variables, while αm is
labeled by a terminal. Let γ1, γ2, . . . , γn+2 be the path consisting
of the vertices αm−n−1, αm−n−2, . . . , αm−1, αm.

Since there are only n variables in the alphabet of Γ, the
pigeon-hole principle guarantees that there is a variable X that
labels two different vertices: α = γi and β = γj , where i < j . (See
Fig. 4.2.)
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Bar-Hillel’s Pumping Lemma, Proof

(Proof of Theorem 4.1., Continued)
Hence, the operations of pruning and splicing can be applied. Let
r = 〈T β〉. Then we have, for example,

〈Tp〉 = r1 r r2,

〈Ts〉 = r1 q
[2]
1 r q

[2]
2 r2,

〈(Ts)s〉 = r1 q
[3]
1 r q

[3]
2 r2

That is, r1 qi1 r qi2 r2 ∈ L(Γ), i ≥ 0. Note that the path in T α

consists of ≤ n + 2 nodes, so by the small lemma
|q1 r q2| = |q1 〈T β〉 q2| = |〈T α〉| ≤ 2n. 2
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Bar-Hillel’s Pumping Lemma, Application

Theorem 4.2. The language L = {a[n]b[n]c [n] | n > 0} is not
context-free.

Proof. Suppose that L is context-free with L = L(Γ), where Γ is a
Chomsky normal form grammar with n variables. Choose k so
large that |a[k]b[k]c [k]| > 2n. Then a[k]b[k]c [k] = r1q1rq2r2, where

xi = r1 q
[i ]
1 r q

[i ]
2 r2 ∈ L

for all i ≥ 0. As x2 = r1q1q1rq2q2r2 ∈ L, we know that q1 and q2

must each contain only one of the letters a, b, c . That is, one
letter is missing in both q1 and q2.
But as i = 2, 3, 4, . . . contains more and more copies of q1 and q2

and since q1q2 6= 0, it is impossible for xi to have the same
number of occurrences of a, b, and c . This contradiction shows
that L is not context-free. 2

35 / 35


	Context-Free Languages (10)
	Context-Free Grammars and Their Derivation Trees (10.1)
	Regular Grammars (10.2)
	Chomsky Normal Form (10.3)
	Bar-Hillel's Pumping Lemma (10.4)


