Theory of Computation

Prof. Michael Mascagni

Florida State University Department of Computer Science

Context-Free Production

Let \mathscr{V}, \mathcal{T} be a pair of disjoint alphabets. A *context-free production* on \mathscr{V}, \mathcal{T} is an expression

 $X \rightarrow h$

where $X \in \mathscr{V}$ and $h \in (\mathscr{V} \cup T)^*$.

- ► The elements of 𝒴 are called variables, and the elements of T are called terminals.
- ▶ If *P* stands for the production $X \to h$ and $u, v \in (\mathscr{V} \cup T)^*$, we write

$$u \Rightarrow_P v$$

to mean that there are words $p, q \in (\mathcal{V} \cup T)^*$ such that u = pXq and v = phq.

• Productions $X \rightarrow 0$ are called *null productions*.

Context-Free Grammars and Their Derivation Trees (10.1) Regular Grammars (10.2) Chomsky Normal Form (10.3) Bar-Hillel's Pumping Lemma (10.4)

Context-Free Grammar

A context-free grammar Γ with variables \mathscr{V} and terminals T consists of a finite set of context-free productions on \mathscr{V} , T together with a designated symbol $S \in \mathscr{V}$ called the *start symbol*.

- Collectively, the set $\mathscr{V} \cup T$ is called the *alphabet* of Γ .
- If none of the productions of Γ is a null production, Γ is called a positive context-free grammar.

Context-Free Languages (10) Context-Free Languages (10) Context-Free Languages (10) Chomsky Normal Form (10.3) Bar-Hillel's Pumping Lemma (10.4)

Derivation

If Γ is a context-free grammar with variables \mathscr{V} and terminals T, and if $u, v \in (\mathscr{V} \cup T)^*$, we write

$u \Rightarrow_{\Gamma} v$

to mean that $u \Rightarrow_P v$ for some production P of Γ . We write

$$u \Rightarrow^*_{\Gamma} v$$

to mean there is a sequence u_1, \ldots, u_m where $u = u_1, u_m = v$, and

$$u_i \Rightarrow_{\Gamma} u_{i+1}$$
 for $1 \le i < m$.

The sequence u_1, \ldots, u_m is called a *derivation of v from u in* Γ .

- ▶ The number *m* is called the length of the derivation.
- The subscript Γ in ⇒_Γ may be omitted when no ambiguity results.

Context-Free Language

► Let Γ be a context-free grammar with terminals T and start symbol S, we define

$$L(\Gamma) = \{ u \in T^* \mid S \Rightarrow^* u \}.$$

 $L(\Gamma)$ is called the language *generated* by Γ .

A Language L ⊆ T* is called *context-free* is there is a context-free grammar Γ such that L = L(Γ).

Context-Free Languages (10)

Context-Free Grammars and Their Derivation Trees (10.1) Regular Grammars (10.2) Chomsky Normal Form (10.3) Bar-Hillel's Pumping Lemma (10.4)

Context-Free Language, An Example

A simple example of a context-free grammar Γ is given by $\mathscr{V} = \{S\}, T = \{a, b\}$, and the productions

$$egin{array}{ccc} S &
ightarrow & aSb \ S &
ightarrow & ab \end{array}$$

Clearly, we have

$$L(\Gamma) = \{a^{[n]}b^{[n]} \mid n > 0\}.$$

- That is, the language $\{a^{[n]}b^{[n]} \mid n > 0\}$ is context-free.
- Note that $L(\Gamma)$ is not regular.
- Later we shall show that every regular language is context-free.

Positive Context-Free Grammar

- Recall that if none of the productions of a context-free grammar Γ is a null production, Γ is called a *positive context-free grammar*.
- ▶ If Γ is a positive context-free grammar, then $0 \notin L(\Gamma)$.
- The following algorithm transforms a given context-free grammar Γ into a positive context-free grammar Γ such that L(Γ) = L(Γ) or L(Γ) = L(Γ) ∪ {0}.
 - 1. First we compute the kernel of Γ ,

 $\ker(\Gamma) = \{ V \in \mathscr{V} \mid V \Rightarrow^*_{\Gamma} 0 \}.$

2. Then we obtain $\overline{\Gamma}$ by first adding all productions that can be obtained from the productions of Γ by deleting from the righthand sides one or more variables belonging to ker(Γ) and then deleting all null productions.

Context-Free Languages (10)

Context-Free Grammars and Their Derivation Trees (10.1) Regular Grammars (10.2) Chomsky Normal Form (10.3) Bar-Hillel's Pumping Lemma (10.4)

Positive Context-Free Grammar, An Example

Consider the context-free grammar Γ with productions

 $S \rightarrow XYYX, S \rightarrow aX, X \rightarrow 0, Y \rightarrow 0.$

We obtain a positive context-free grammar $\overline{\Gamma}$ by

1. first computing the kernel of Γ ,

 $\ker(\Gamma) = \{X, Y, S\}.$

2. then obtaining the productions of $\overline{\Gamma}$ as the following: $S \rightarrow XYYX, S \rightarrow YYX, S \rightarrow XYX, S \rightarrow XYY,$ $S \rightarrow YX, S \rightarrow YY, S \rightarrow XX, S \rightarrow XY,$ $S \rightarrow X, S \rightarrow Y,$ $S \rightarrow X, S \rightarrow Y,$

8 / 35

Context-Free Languages (10)

Context-Free Grammars and Their Derivation Trees (10.1) Regular Grammars (10.2) Chomsky Normal Form (10.3) Bar-Hillel's Pumping Lemma (10.4)

Positive Context-Free Grammar, Continued

Theorem 1.2. A language *L* is context-free if and only if there is a positive context-free grammar Γ such that

$$L = L(\Gamma)$$
 or $L = L(\Gamma) \cup \{0\}$.

Moreover, there is an algorithm that will transform a context-free grammar Δ for which $L = L(\Delta)$ into a positive context-free grammar Γ that satisfies the above equation.

Γ-tree

Let Γ be a *positive* context-free grammar with alphabet $\mathscr{V} \cup T$, where T consists of the terminals and \mathscr{V} is the set of variables. A tree is called a Γ -tree if it satisfies the following conditions:

- 1. the root is labeled by a variable;
- 2. each vertex which is not a leaf is labeled by a variable;
- if a vertex is labeled X and its immediate successors (i.e. children) are labeled α₁, α₂,..., α_k (reading from left to right), then X → α₁α₂...α_k is a production of Γ.

Let \mathscr{T} be a Γ -tree, and let v be a vertex of Γ which is labeled by the variable X. We shall speak of the *subtree* \mathscr{T}^v of \mathscr{T} *determined by* v. The vertices of \mathscr{T}^v are v, its immediate successors in \mathscr{T} , their immediate successors, and so on. Clearly, \mathscr{T}^v is itself a Γ -tree.

Derivation Tree

- If *T* is a Γ-tree, we write (*T*) for the word that consists of the labels of the leaves of *T* reading from left to right.
- If the root of 𝒯 is labeled by the start symbol symbol S of Γ and if w = ⟨𝒯⟩, then 𝒯 is called a *derivation tree for w in* Γ.
- See the tree shown in Fig. 1.1 for a derivation tree for a^[4] b^[3] in the grammar shown in the same figure

Theorem 1.3. If Γ is a positive context-free grammar, and $S \Rightarrow_{\Gamma}^* w$, then there is a derivation tree for w in Γ .

Leftmost Derivation and Rightmost Derivation

Definition. We write $u \Rightarrow_l v$ in Γ if u = xXy and v = xzy, where $X \rightarrow z$ is a production of Γ and $x \in T^*$. If instead, $x \in (\mathscr{V} \cup T)^*$ but $y \in T^*$, we write $u \Rightarrow_r v$.

- When u ⇒₁ v, it is the *leftmost* variable in u for which a substitution is made. whereas when u ⇒_r v, it is the *rightmost* variable in u.
- A derivation

 $u_1 \Rightarrow_I u_2 \Rightarrow_I u_3 \Rightarrow_I \ldots u_n$

is called a *leftmost* derivation, and then we write $u_1 \Rightarrow_l^* u_n$. Similarly, a derivation

$$u_1 \Rightarrow_r u_2 \Rightarrow_r u_3 \Rightarrow_r \ldots u_n$$

is called a *rightmost* derivation, and we write $u_1 \Rightarrow_r^* u_n$.

Leftmost Derivation and Rightmost Derivation, Examples

Consider the following positive context-free grammar

$$S \rightarrow aXbY, X \rightarrow aX, X \rightarrow a, Y \rightarrow bY, Y \rightarrow b$$

and consider the following three derivations of $a^{[4]}b^{[3]}$ from S:

- 1. $S \Rightarrow aXbY \Rightarrow a^{[2]}XbY \Rightarrow a^{[3]}XbY \Rightarrow a^{[4]}bY \Rightarrow a^{[4]}b^{[2]}Y \Rightarrow a^{[4]}b^{[3]}$
- 2. $S \Rightarrow aXbY \Rightarrow a^{[2]}XbY \Rightarrow a^{[2]}Xb^{[2]}Y \Rightarrow a^{[3]}Xb^{[2]}Y \Rightarrow a^{[3]}Xb^{[3]} \Rightarrow a^{[4]}b^{[3]}$
- 3. $S \Rightarrow aXbY \Rightarrow aXb^{[2]}Y \Rightarrow aXb^{[3]} \Rightarrow a^{[2]}Xb^{[3]} \Rightarrow a^{[3]}Xb^{[3]} \Rightarrow a^{[4]}b^{[3]}$

The first derivation is leftmost, the last is rightmost, and the second is neither.

Leftmost Derivation and Rightmost Derivation, Continued

Theorem 1.4. Let Γ be a positive context-free grammar with start symbol *S* and terminals *T*. Let $w \in T^*$. Then the following conditions are equivalent:

- 1. $w \in L(\Gamma)$;
- 2. there is a derivation tree for w in Γ ;
- 3. there is a leftmost derivation of w from S in Γ ;
- 4. there is a rightmost derivation of w from S in Γ .

Branching Context-Free Grammar

Definition. A positive context-free grammar is called *branching* if it has no productions of the form $X \rightarrow Y$, where X and Y are variables.

Theorem 1.5. There is an algorithm that transforms a given positive context-free grammar Γ into a branching grammar Δ such that $L(\Delta) = L(\Gamma)$. *Proof.* We transform Γ into Δ in two steps. First, we eliminate from Γ all the "cycling" productions

$$X_1 \rightarrow X_2, \quad X_2 \rightarrow X_3, \quad \ldots, \quad X_k \rightarrow X_1$$

and replace variables X_1, X_2, \ldots, X_k in the remaining productions of Γ by a new variable X. Next, we eliminate production $X \to Y$, but add to Γ productions $X \to x$ for each word $x \in (\mathscr{V} \cup T)^*$ for which $Y \to x$ is a production of Γ .

Path in a **Γ**-tree

A path in a Γ -tree \mathscr{T} is a sequence $\alpha_1, \alpha_2, \ldots, \alpha_k$ of vertices of \mathscr{T} such that α_{i+1} is an immediate successor of α_i for $i = 1, 2, \ldots, k - 1$. All of the vertices on the path are called *descendants* of α_1 .

We may have two different vertices α, β lie on the same path in the derivation tree \mathscr{T} and are labeled by the same variable X. In such a case one of the vertices is a descendant of the other, say, β is a descendant of α . Therefore, \mathscr{T}^{β} is not only a subtree of \mathscr{T} but also of \mathscr{T}^{α} .

We wish to consider two important operations in the derivation tree \mathscr{T} which can be performed in this case. The two operations are called *pruning* and *splicing*.

Pruning and Splicing

- Pruning is the operation that removes the subtree *T*^α from the vertex α and to graft the subtree *T*^β in its place.
- Splicing is the operation that removes the subtree *S^β* from the vertex β and to graft an exact copy of *S^α* in its place.
- Because α and β are labeled by the same variable, the trees obtained by pruning and splicing are themselves derivation trees.
- See Fig. 1.3 in the textbook for illustrations of pruning and splicing.

Pruning and Splicing, Continued

Let \mathscr{T}_p and \mathscr{T}_s be trees obtained from a derivation tree \mathscr{T} in a branching grammar by pruning and splicing, respectively, where α and β are as before.

We have $\langle \mathscr{T} \rangle = r_1 \langle \mathscr{T}^{\alpha} \rangle r_2$ for words r_1, r_2 and $\langle \mathscr{T}^{\alpha} \rangle = q_1 \langle \mathscr{T}^{\beta} \rangle q_2$ for words q_1, q_2 . Since α, β are distinct vertices, and since the grammar is branching, q_1 and q_2 cannot both be 0. (That is, $q_1q_2 \neq 0$.)

Also,

$$\langle \mathscr{T}_p \rangle = r_1 \langle \mathscr{T}^\beta \rangle r_2$$
 and $\langle \mathscr{T}_s \rangle = r_1 q_1^{[2]} \langle \mathscr{T}^\beta \rangle q_2^{[2]} r_2$.

Since $q_1q_2 \neq 0$, we have $|\langle \mathscr{T}^\beta \rangle| < |\langle \mathscr{T}^\alpha \rangle|$ and hence $|\langle \mathscr{T}_p \rangle| < |\langle \mathscr{T} \rangle|$.

Context-Free Grammars and Their Derivation Trees (10.1) Regular Grammars (10.2) Chomsky Normal Form (10.3) Bar-Hillel's Pumping Lemma (10.4)

Pruning and Splicing, Continued

Theorem 1.6. Let Γ be a branching context-free grammar, let $u \in L(\Gamma)$, and let u have a derivation tree \mathscr{T} in Γ that has two different vertices on the same path labeled by the same variable. Then there is a word $v \in L(\Gamma)$ such that |v| < |u|.

Proof. Since $u = \langle \mathscr{T} \rangle$, we need only take $v = \langle \mathscr{T}_p \rangle$.

Regular Grammars

Definition. A context-free grammar is called *regular* if each of its productions has one of the two forms

U
ightarrow aV or U
ightarrow a

where U, V are variables and a is a terminal.

Theorem 2.1. If *L* is a regular language, then there is a regular grammar Γ such that either $L = L(\Gamma)$ or $L = L(\Gamma) \cup \{0\}$.

 \square

A Regular Grammar for Every Regular Language

Proof of Theorem 2.1. Let $L = L(\mathcal{M})$, where \mathcal{M} is a dfa with states q_1, \ldots, q_m , alphabet $\{s_1, \ldots, s_n\}$, transition function δ , and the set of accepting states F. We construct a grammar Γ with variables q_1, \ldots, q_m , terminals s_1, \ldots, s_n , and start symbol q_1 . The productions are

- 1. $q_i \rightarrow s_r q_j$ whenever $\delta(q_i, s_r) = q_j$, and
- 2. $q_i \rightarrow s_r$ whenever $\delta(q_i, s_r) \in F$.

Clearly the grammar Γ is regular. To show that $L(\Gamma) = L - \{0\}$ we suppose $u \in L$, $u = s_{i_1}s_{i_2} \dots s_{i_l}s_{i_{l+1}} \neq 0$. Thus, $\delta^*(q_1, u) \in F$, so that we have

$$\delta(q_1, s_{i_1}) = q_{j_1}, \ \ \delta(q_{j_1}, s_{i_2}) = q_{j_2}, \ \ \ldots, \ \ \delta(q_{j_l}, s_{i_{l+1}}) = q_{j_{l+1}} \in F.$$

A Regular Grammar for Every Regular Language, Continued

Proof of Theorem 2.1. (Continued) By construction, grammar Γ contains the productions

 $q_1 o s_{i_1} q_{j_1}, \ \ q_{j_1} o s_{i_2} q_{j_2}, \ \ \ldots, \ \ q_{j_{l-1}} o s_{i_l} q_{j_l}, \ \ q_{j_l} o s_{i_{l+1}}.$

Thus, we have in $\ensuremath{\mathsf{\Gamma}}$

 $q_1 \Rightarrow s_{i_1}q_{j_1} \Rightarrow s_{i_1}s_{i_2}q_{j_2} \Rightarrow \ldots \Rightarrow s_{i_1}s_{i_2}\ldots s_{i_l}q_{j_l} \Rightarrow s_{i_1}s_{i_2}\ldots s_{i_l}s_{i_{l+1}} = u$

so that $u \in L(\Gamma)$.

Conversely, suppose that $u \in L(\Gamma)$, $u = s_{i_1}s_{i_2} \dots s_{i_l}s_{i_{l+1}}$. Then there is a derivation of u from q_1 in Γ . By construction, Γ has all the necessary productions to simulate the transition $\delta^*(q_1, u) \in F$ in the dfa \mathcal{M} .

A Regular Language for Every Regular Grammar

Theorem 2.2. Let Γ be a regular grammar. Then $L(\Gamma)$ is a regular language.

Proof. Let Γ have the variables V_1, V_2, \ldots, V_K , where $S = V_1$ is the start symbol, and terminals s_1, s_2, \ldots, s_n . Since Γ is regular, its productions are of the form $V_i \rightarrow s_r V_j$ and $V_i \rightarrow s_r$. We now construct the following ndfa \mathscr{M} which accepts precisely $L(\Gamma)$.

► The states are V₁, V₂,... V_K and an additional state W. V₁ is the initial state and W is the only accepting state.

► For transition functions, let

$$\begin{array}{lll} \delta_1(V_i,s_r) &=& \{V_j \mid V_i \to s_r V_j \text{ is a production of } \Gamma\}, \\ \delta_2(V_i,s_r) &=& \begin{cases} \{W\} & \text{if } V_i \to s_r \text{ is a production of } \Gamma\\ \emptyset & \text{otherwise.} \end{cases} \end{array}$$

Then define the transition function δ as $\delta(V_i, s_r) = \delta_1(V_i, s_r) \cup \delta_2(V_i, s_r).$

A Regular Language for Every Regular Grammar

Proof of Theorem 2.2. (Continued) Now let $u = s_{i_1}s_{i_2} \dots s_{i_l}s_{i_{l+1}} \in L(\Gamma)$. Thus we have

 $V_1 \Rightarrow s_{i_1}V_{j_1} \Rightarrow s_{i_1}s_{i_2}V_{j_2} \Rightarrow^* s_{i_1}s_{i_2}\dots s_{i_l}V_{i_l} \Rightarrow s_{i_1}s_{i_2}\dots s_{i_l}s_{i_{l+1}}$

where Γ contains the productions

 $V_1 \to s_{i_1} V_{j_1}, V_{j_1} \to s_{i_2} V_{j_2}, \dots, V_{j_{l-1}} \to s_{i_l} V_{j_l}, V_{j_l} \to s_{i_{l+1}}$ Thus,

 $V_{j_1} \in \delta(V_1, s_{i_1}), V_{j_2} \in \delta(V_{j_1}, s_{i_2}), \dots, W \in \delta(V_{j_l}, s_{i_{l+1}}).$

Thus $W \in \delta^*(V_1, u)$ and $u \in L(\mathcal{M})$.

Conversely, if $u = s_{i_1}s_{i_2} \dots s_{i_l}s_{i_{l+1}}$ is accepted by \mathcal{M} , then there must be a sequence of transitions of the form above. Hence, the productions listed above must all belong to Γ , so that there is a derivation of u from V_1 .

Every Regular Language Is Context-free

Theorem 2.3. A language *L* is regular if and only if there is a regular grammar Γ such that either $L = L(\Gamma)$ or $L = L(\Gamma) \cup \{0\}$. \Box

Corollary 2.4. Every regular language is context-free.

Right-linear Grammars

Definition. A context-free grammar is called *right-linear* if each of its productions has one of the two forms

 $U \rightarrow xV$ or $U \rightarrow x$,

where U, V are variables and $x \neq 0$ is a word consisting entirely of terminals.

Thus, a regular grammar is just a right-linear grammar in which |x| = 1.

Right-linear Grammars, Continued

Theorem 2.5. Let Γ be a right-linear grammar. Then $L(\Gamma)$ is regular.

Proof. We replace each production of Γ of the form

 $U \rightarrow a_1 a_2 \dots a_n V, \quad n > 1$

by the productions

 $U \rightarrow a_1 Z_1, \quad Z_1 \rightarrow a_2 Z_2, \quad Z_{n-2} \rightarrow a_{n-1} Z_{n-1}, \quad Z_{n-1} \rightarrow a_n V,$

where Z_1, \ldots, Z_{n-1} are new variables. Do similar replacement for production

 $U \rightarrow a_1 a_2 \dots a_n, \quad n > 1$

Chomsky Normal Form

Definition. A context-free grammar Γ with variables \mathscr{V} and terminals \mathcal{T} is in *Chomsky normal form* if each of its productions has one of the forms

$$X \rightarrow YZ$$
 or $X \rightarrow a$,

where $X, Y, Z \in \mathscr{V}$ and $a \in T$.

Theorem 3.1. There is an algorithm that transforms a given positive context-free grammar Γ into a Chomsky normal form grammar Δ such that $L(\Gamma) = L(\Delta)$.

Chomsky Normal Form, Continued

Proof of Theorem 3.1. Using Theorem 1.5, we begin with a branching context-free grammar Γ with variable \mathscr{V} and terminals \mathcal{T} . We then perform the following two steps:

- 1. a new variable X_a is introduced for each $a \in T$, and for each production $X \to x \in \Gamma$, |x| > 1, we replace it with $X \to x'$ where x' is obtained from x by replacing each terminal a by the corresponding new variable X_a ;
- 2. For productions of the form $X \to X_1 X_2 \dots X_k$, k > 2, we introduce new variables Z_1, Z_2, \dots, Z_{k-2} and replace the production with the following

29/35

Chomsky Normal Form, Examples

Consider the following branching context-free grammar

 $S
ightarrow aXbY, \ X
ightarrow aX, \ Y
ightarrow bY, \ X
ightarrow a, \ Y
ightarrow b$

The resulting grammar, respectively, from the two steps is: 1.

$$\begin{split} & S \to X_a X X_b Y, \quad X \to X_a X, \quad Y \to X_b Y, \\ & X \to a, \quad X_a \to a, \quad Y \to b, \quad X_b \to b \end{split}$$

2. For the production $S \rightarrow X_a X X_b Y$, we replace it with the following:

$$S \rightarrow X_a Z_1$$

 $Z_1 \rightarrow X Z_2$
 $Z_2 \rightarrow X_b Y$.

The resulting grammar is in Chomsky normal form.

Bar-Hillel's Pumping Lemma

An application of Chomsky normal form is in the proof of the following theorem, which is an analogy for context-free languages of the pumping lemma for regular languages.

Theorem 4.1. Let Γ be a Chomsky normal form grammar with exactly *n* variables, and let $L = L(\Gamma)$. Then, for every $x \in L$ for which $|x| > 2^n$, we have $x = r_1q_1rq_2r_2$, where

- 1. $|q_1 r q_2| \le 2^n$;
- 2. $q_1q_2 \neq 0$;
- 3. for all $i \ge 0, r_1 q_1^{[i]} r q_2^{[i]} r_2 \in L$.

A Small Lemma

Lemma. Let $S \Rightarrow_{\Gamma}^{*} u$, where Γ is a Chomsky normal form grammar. Suppose that \mathscr{T} is a derivation tree for u in Γ and that no path in \mathscr{T} contains more than k nodes. Then $|u| \leq 2^{k-2}$.

Proof. First, suppose, that \mathscr{T} has just one leaf labeled by a terminal *a*. Then u = a, and \mathscr{T} just have two nodes, *S* and *a*, and one path of length 1 < k = 2. Clearly $|u| = 1 \le 2^{2-2}$. Otherwise, since Γ is in Chomsky normal form, the root of \mathscr{T} is labeled by *S* where $S \to XY$ for variables *X* and *Y*. Let \mathscr{T}_1 and \mathscr{T}_2 be the two trees whose roots are labeled by *X* and *Y*, respectively. In each of \mathscr{T}_1 and \mathscr{T}_2 , the longest path must contain $\le k - 1$ nodes. Proceeding inductively, we may assume that each of the $\mathscr{T}_1, \mathscr{T}_2$ have $\le 2^{k-3}$ leaves. Hence

$$|u| \le 2^{k-3} + 2^{k-3} = 2^{k-2}.$$

Bar-Hillel's Pumping Lemma, Proof

Proof of Theorem 4.1. Let $x \in L$, where $|x| > 2^n$, and let \mathscr{T} be a derivation tree for x in Γ . Let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be the longest path in \mathscr{T} . Then $m \ge n+2$ and α_m is a leaf. This is because, if $m \le n+1$, by the small lemma, $|x| \le 2^n - 1$ is a contradiction.

Note that $\alpha_1, \alpha_2, \ldots, \alpha_{m-1}$ are all labeled by variables, while α_m is labeled by a terminal. Let $\gamma_1, \gamma_2, \ldots, \gamma_{n+2}$ be the path consisting of the vertices $\alpha_{m-n-1}, \alpha_{m-n-2}, \ldots, \alpha_{m-1}, \alpha_m$.

Since there are only *n* variables in the alphabet of Γ , the pigeon-hole principle guarantees that there is a variable *X* that labels two different vertices: $\alpha = \gamma_i$ and $\beta = \gamma_j$, where i < j. (See Fig. 4.2.)

Bar-Hillel's Pumping Lemma, Proof

(Proof of Theorem 4.1., Continued) Hence, the operations of pruning and splicing can be applied. Let $r = \langle \mathcal{T}^{\beta} \rangle$. Then we have, for example,

$$\begin{array}{rcl} \langle \mathscr{T}_{p} \rangle &=& r_{1} \ r \ r_{2}, \\ \langle \mathscr{T}_{s} \rangle &=& r_{1} \ q_{1}^{[2]} \ r \ q_{2}^{[2]} \ r_{2}, \\ (\mathscr{T}_{s})_{s} \rangle &=& r_{1} \ q_{1}^{[3]} \ r \ q_{2}^{[3]} \ r_{2} \end{array}$$

That is, $r_1 q_1^i r q_2^i r_2 \in L(\Gamma), i \ge 0$. Note that the path in \mathscr{T}^{α} consists of $\le n + 2$ nodes, so by the small lemma $|q_1 r q_2| = |q_1 \langle \mathscr{T}^{\beta} \rangle |q_2| = |\langle \mathscr{T}^{\alpha} \rangle| \le 2^n$.

Bar-Hillel's Pumping Lemma, Application

Theorem 4.2. The language $L = \{a^{[n]}b^{[n]}c^{[n]} \mid n > 0\}$ is not context-free.

Proof. Suppose that *L* is context-free with $L = L(\Gamma)$, where Γ is a Chomsky normal form grammar with *n* variables. Choose *k* so large that $|a^{[k]}b^{[k]}c^{[k]}| > 2^n$. Then $a^{[k]}b^{[k]}c^{[k]} = r_1q_1rq_2r_2$, where $x_i = r_1 q_1^{[i]} r q_2^{[i]} r_2 \in L$

for all $i \ge 0$. As $x_2 = r_1q_1q_1rq_2q_2r_2 \in L$, we know that q_1 and q_2 must each contain only one of the letters a, b, c. That is, one letter is missing in both q_1 and q_2 .

But as i = 2, 3, 4, ... contains more and more copies of q_1 and q_2 and since $q_1q_2 \neq 0$, it is impossible for x_i to have the same number of occurrences of a, b, and c. This contradiction shows that L is not context-free.