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Brownian Motion

Introduction to Brownian Motion as a Measure

Introduction to Brownian Motion

» LetQ = {8 € C[0,1]; B(0) = O}d—efCo[O 1], be an infinitely dimensional

space we consider for placing a probability measure

» Consider (2, B, P), where B is the set of measurable subsets (a
o-algebra) and P is the probability measure on Q

» We would like to answer questions like P [fo B2(s)ds < a]

» We now construct Brownian motion (BM) via some limit ideas
» Central Limit Theorem (CLT): let Xi, Xz, ... be independent, identically
distributed( i.i.d.) with E[X;] = 0, Var[Xj] = 1 and define S, = Y7, X
. Note if X;‘,X;, ... areiid. with E[X7] = pu, Var[X?] = 0% < oo, then
X=X has E[X;] = 0, Var[Xj] =1

2. Then % converges in distribution to N(0,1) as n — oo
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Introduction to Brownian Motion as a Measure

Introduction to Brownian Motion

» Let Xi, Xz, ... be as before, then it follows from the CLT that
. Sh } 1 / ¢ 2
lim P|— < = — e
n—oo |:\/ﬁ =@ Ver J_eo
» Erdds and Kac proved (we will find the o4(+)’s):

1. IimrHooP[max(\s} \S},,\S;) ]_01 (@) \/7f0 _Tdu

2
2. limp—oo P S1+SZ+ +5 < a} = oo(a)
3. limp—soo P [31 +32+ +8n < a] = o3(a)

> Let N, = #{81,...,Sn|8, > 0}, then

N 0, ifa<0
n&m P{#ga}: 2 arcsin /o, if0<a <1
1, ifa>1
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Introduction to Brownian Motion as a Measure

Definitions

Definitions

» Xi,Xz,... are as above, and Vn € Nand t € [0, 1] define

() 1=
n I
X (t): \Sf,n i

S i=1,2,....n

N ©

t<

2|
SI-

» Let R denote the space of Riemann integrable functions on [0, 1].
» Theorem: F : R — R and with some weak hypotheses, then

Jim PF (X)) <a] = PwIF(8) <al,

where Py denotes the probability called “Wiener measure,” and this
result is called Donsker’s Invariance Principal
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Introduction to Brownian Motion as a Measure

Donsker’s Invariance Principal

Examples of Donsker’s Invariance Principal

1. F[8] = J; B2(s) ds, then by the theorem

lim P [zn: %’2 < a:| =Py [ 01 B2(s)ds < a]

n— oo -
i=1

2. F[B] = (1), then

Jm P[5 <ol = Puls <al= o [T et

3. F[B] = [] 1S9MPC) gs, where sgn(x) = {1’1 ;(Z 8 Then
1
n—oo 0
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Introduction to Brownian Motion as a Measure

— Donsker’s Invariance Principal

Defining Wiener Measure Using Cylinder Sets

» For any integer n, any choice of 0 < 71 < --- < 7, < 1, and any
Lebesgue measurable (£-mb) set, E € R” define the “interval”

I=1I(n;7;...;m E) :={B(:) € Co[0,1]; (B(74),...,B(7n)) € E}
» Let A be the class of intervals containing all the / for all n, 7, ..., and

all L—mb sets E € R", then A is an algebra of sets in Gy[0, 1]

» The I's are the cylinder sets upon which we will define Wiener measure,
and then standard measure theoretic ideas to extend to all measurable
subsets of the infinite dimensional space, Cy|0, 1]
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Introduction to Brownian Motion as a Measure

— Donsker’s Invariance Principal

Defining Wiener Measure Using Cylinder Sets

» Given /, we define its measure as
_ 1
V@r)ri(re — 1) (T — Thot)

7ﬁ7 (p—uw)® (Un—up_1)?
/, . / e 211 Am—m) 2Amn=7n—1) duy - - - dup.
E

» Let B be the smallest o—algebra generated by A, this is the class of
Wiener measurable (W-mb) sets in Gy[0, 1]

» This extension of Wiener measure, also creates a probability measure on
Co[0, 1], and expectation w.r.t. Wiener measure will be referred to as a
1. Wiener integral or Wiener integration
2. Brownian motion expectation

n(l)
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Introduction to Brownian Motion as a Measure

Donsker’s Invariance Principal

Examples
> Let Ac R™"with Aj = min(7;,7;),i.eforthecase n=3, 7 <7 <73
we have
™ T T
A= 1 m m
T T2 T3
and in general we can write U = (uy,...,u,)" and
1 —UTA U
Izifmfe duy...du
= e rdeta £ "

» Let 3(-)beaBM,and 0 < 74 < 72 < 1, then

by 2
Plar < B(r) < bi] = — / e %7 duand
a

27T

P[a1 < ﬂ(ﬂ) <bna< B(Tg) < bg]

2 U*”)

2ry "2z duy dus

W/ /me
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Useful Properties of Brownian Motion

» Theorem: Let /| = J=, [ where [Nl =0Vi# kand I, h, b, --- € A,
then u(l) = 3275, n(l)
» we will see that the BM, §(t), satisfies:

1. Almost every (AE) path is non-differentiable at every point
2. AE path satisfies a Hélder condition of order o < % ie.

[B(s) = ()| < LIs—t]*
- E[p(]1=0
E[B?(1)] = t, and so B(t) ~ N(0, 1)

- 8(0) =0, B(t) — B(s) ~ N(0,t — s)
E[5(1)B(s)] = min(s, 1)

oUA W
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Useful Properties of Brownian Motion

» Let EER"(L—mb),0< 7 <---<7a<1,I=I(m;7;...;m; E), then

/)—/ /,07'1,0 u)p(me — 71, Uy, Up) - -

P(T™n — Tn—1, Un, Upn—1) AUy - - - dup

e

=y
where p(t,x,y) = \/? 2
» Note that p(t, x, y) = ¥(t, x, y), the fundamental solution for the initial

value problem for the heat/diffusion equation

Yi= 2t B(0.xy) =y —x)

» u is finitely additive since integrals are additive set functions
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Introduction to Brownian Motion as a Measure

— Properties of Brownian Motion

Useful Properties of Brownian Motion

» Theorem 1: Leta > 0, 0 < v < } and define
Aary = {B € Co[0,1];|B(72) — B(m1)| < alrz — 74|" V71,72 € [0,1]}

For any interval | C Go[0, 1] s.t. IN A, = 0 there is a K indepedent of a
for which

m(l) < Ka~ 7%

» Remark: A, is a compact set in Co[0, 1] and eventually one can prove
that AE 8 € Co[0, 1] satisfy some Hdélder condition

» Theorem 2: p is countably additive on A, i.e. if I, € A, n € N disjoint
(Nl =0,j+# k) then

/:G/neA:»u(/):Zu(/n)

n=1 n=1
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Introduction to Brownian Motion as a Measure

— Properties of Brownian Motion

Useful Properties of Brownian Motion

» Suppose F : Cy[0,1] — R is a measurable functional,
i.e. {8 € GCo[0,1]; F[B] < a} is measurable Va
» We can consider

E[F] = Ew[FI[B()]l = /F[ﬁ(-)]cSW, a Wiener integral

» Consider C«[0, t] = {f € C[0, t]; f(0) = x}, then
1 _y=x?
P O:x,teAz—/e - a
50) =x.8(0) € Al = = | y
» Furthermore

3
E[B(r ue 2r du=0,vr >0

V=G

Elg(B(r).. .. B(ma))] !

:\/(ZW)”ﬂ(Tz —71)(Th — Tn=1)

S A 7Y GO U7 8 Vi
/"'/Q(U1,---,Un)9 27y 2(mp—7y) Amn=7n-1) duy - - - dup

X
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Introduction to Brownian Motion as a Measure

Properties of Brownian Motion

Useful Properties of Brownian Motion

» Let us now consider, without proof, a large deviation result for BM:

» Theorem (The Law of the Iterated Logarithm for BM): Let 5(s) €
Co[0, ) be ordinary Brownian Motion, then

(1)
. B L\ _
i (“?lsolip V2tinint 1) =1
@ B(1)
P (Img Vathnint _1) =1




Brownian Motion
Introduction to Brownian Motion as a Measure
Properties of Brownian Motion

Dirac Delta Function

» Let g be Borel measurable (B-mb), then

Elg(B(r))] = \/% / " gwe £ du

» Let g(u) = §(u — x), using the Dirac delta function, then

1 2

E[5(B(t) — x)] = \/%m/_w 5(u—x)e % du= o "

thus u(x, t) = E[6(B(t) — x)] = 2 is the fundamental solution of

the heat equation

ur = %uxx, u(x,0) = é(x)
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The Feynman-Kac Formula

The Feynman-Kac Formula

» Consider now V(x) > 0 continuous and consider the equation

w:%wa—vuw,W&nga;

then we can write
u(x, 1) = E [e YD R5(5(1) )]
This is the Feynman-Kac formula
» Example:
’ 1
2
mnozEk%ﬁf@%wm—n}

X2
Ue — U, u(x,0) = é(x), then
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The Feynman-Kac Formula

The Feynman-Kac Formula

» The following is clearly true:
P[B(T) < x] =P ({8 € Go[0,7]; B(7) € E = (—00,x]}) =
1 /X _2 -
— e 27 du, and similarl
Vent J-w y
With0 =7 <7y --- < 7, Wwe have
_ (2m) "2
Vi =70)(re = 71) - (T — Tn—1)

Xn X (mup? =ty )P
/ / e 211 2Ama—Ty) Amn=7n—1) duy - - - dup
— 00 — 0o

» Hence with A; = min(7;,77)

P[B(r1) < x1,...,B(mn) < xi]

X

1

~VenA”

* > —1uTA Y
/ / g(uh...,un)e 2 aduy - - - dup
— 00 — 00

Elg(B(m1), ..., B(mn))]
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation
» Let us consider the Wiener integral below, where expectation is taken
over all of G0, ]
E {e— 3 v(B() dr}

» We will show that this is equal to the solution of the Bloch equation using
an elementary proof of Kac

» We assume that 0 < V(x) < M is bounded from above and
non-negative; however, the upper bound will be relaxed

» We know

oo t k
e SoVPmMIdT — Sy { / V(B(7)) dr] /k!
k=0 0
» Since V/(-) is bounded we also have

0< /t V(B()) dr < Mt

» This allows us to use Fubini’s theorem as follows

t > t K
E{e*fo V(B(T))dr} _ Z(_.I)kE{ {/0 V(ﬁ(r))dr] }/k! @
k=0 >
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation
» Now let us consider the moments

plt) = E{ [ v d]}

» Consider first k = 1

e{ [ visnar} ™ [Eveen or= [ [ v et acar

» The case k = 2 is a bit more complicated

E{ [/Ot v(B(r)) dTr} _ 2!E{/Ot /072 V(B()) V(B(72)) drs dTg} Fubini

21/ /72 E{V(B(m))V(B(2))} dri drz =

(£2—1)

e Am—m)
2'/ / / / V(&) V(&) \/2 o= ) d¢s d&z dr dzp.
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation

» For general k we will proceed by defining the function Qx(x, t) as follows
X2
1. Q()(X7 t) = \/%e_ﬁ

(x—€)?
e 2T=D V(E)Qn(€,7)dgdT

2 Qpr(1) = Ji %5 g
We have that u(t) = k! [ Qu(x, t) dx

By the boundedness of V(-) we also have, by induction, that

0 < Qu(x, t) < M Qu(x, 1)

Now define Q(x, t) =32 (=D Qu(x, 1)

This series converges for all x and t # 0 and |Q(x, t)| < e Qo(x, t)

» One can easily check that the definitions of the Q«(x, t)’s ensures that
Q(x, t) satisfies the following integral equation

v

v

v

v

Qx, f) + e TN V(€)Q(E, 7) dE dr = Qo(x, 1)

L
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation

It also follows that

E{e Ve / Q(x, 1) dx

v

\4

Recall that his Wiener integral is over all of Gy|0, {], let us restrict this
only to a < (t) < b, thus

b
E{e‘ Jovisyar. 5 - B(t) < b} = / Q(x, 1) dx

v

This tell us immediately that Q(x,t) > 0
Now we will relax the upper bound on V/(-) by considering the function

v

(v, v <m
Vu(x) = {M, if V(x) > M

and we denote Q™ (x, t) as the respective “Q” function
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation

» By the additivity of Wiener measure we have that

lim E{eJs uB@)dr, a<5(t)<b} E{e Jvemar. g < g t)<b}

M— oo

» Furthermore, as M — oo the functions Q™ (x, t) form a decreasing
sequence with limy_,.. Q™ (x, t) = Q(x, t) existing with the resulting
limiting function, Q(x, t) satisfying the (Bloch) equation

0Q _ 1070
ot~ 2 9x2

with the initial condition Q(x,t) — d(x)ast — 0

- V(x)Q
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The Feynman-Kac Formula

Feynman-Kac Formula: Derivation Variation

» Recall the integral equation solved by Q(x, t)

_2
e =

55 v(e)a(e, ) de dr =

1 t oo 1 1
ax, 0+E/o /_oo N(EDN V2nt

> Letus define W(x) = [*_Q(x,t)e”* dt with s > 0, this is the Laplace
transform of Q(x, t)

» Now multiply the integral equation by e~ and integrate out t to get the
equation satisfied by the Laplace transform of Q(x, t)

v+ o [ e Vg de = e

V2s
» lItis easy to verify that W(x) also satisfies the following differential
equation
%\U” — (s + V(x))¥ = 0, with the following conditions

1. W —>0as x| - o0
2. ¥’ is continuous exceptat x = 0 am NST |
3. V(-0)-V'(-0)=2 s
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The Feynman-Kac Formula

— Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion

v

Suppose that F[3] = [ 3?(s) ds, then it follows

2

E[/OIBZ(s)ds] F‘gni/OtE[BZ(s)] ds:/ots(js:fE

To compute E [efot B(s) ds] , we need to do some classical analysis

v

\{

Consider the eigenvalue problem for this integral equation

p/: u(s) min(r, s) ds = u(r)

v

Find eigenvalues po, p1, ... and corresponding orthonormalized
eigenfunctions uo(7), ur (7), ... with [ ui(T)uk(r) dr = 8k, Vj, k >0
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The Feynman-Kac Formula

Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion

» For t > 7 we have
T t
p/ su(s)ds + p/ Tu(s) ds = u(r)
0 T
d t
== pru(t) — pru(t) + p/ u(s)ds = u'(r)

d
2 —pu(r) = U (7)
Thus u” (1) + pu(r) = 0 and with u(0) = 0, u'(t) = 0 we get
— (k4 1)2=2
po=ktgle k=012, ..
uk(s) = \ﬂsm (k+3)7%)

» By the spectral theorem the integral equation kernel can be represented
as:

min(s, ) = i Uk($)u(T)

k=0 Pk
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The Feynman-Kac Formula

— Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion

> Let ag(w), 1 (w), ... bei.id. N(0O, 1), then we claim that the following is
an explicit representation of BM

oo

ak(w)uk(t) _ .
27\/@ = B(7) (2.1)

» This is a Fourier series with random coefficients and we will prove that
this converges for AE path w with the following properties

1. We use w to denote an individual sample of i.i.d. N(0, 1) aj(w)’s
2. E[aj(w)]=0,Vi>0
3. Elaj(w)aj(w)] = 6, Vi,j >0
» This is the simplest version of the Karhunen-Loéve expansion of
stochastic processes
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The Feynman-Kac Formula

— Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion (Proof)

» We now use the representation (2.1) to compute some expectations
w.r.t. the a;j’s ~ N(0, 1)

|:Z ak(w) :| i.i.d. N(O, ) & Fubini

E[ak(w ]Uk(T > 0 x Uk(T) _ _ -
giﬁ ZO Jpe = 0= EB(]

» We now use the representation (2.1) to compute some expectations

>\ o (w) 4 ay(w) i.1.d.N(0,1)
z:: \/;07( Uk(T)Z \/[7/ U/(T):| =
2
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The Feynman-Kac Formula

Explicit Representation of Brownian Motion

Explicit Representation of Brownian Motion (Proof)

» Similarly we compute

ak(w) > ay(w) i.i.d.N(0,1)
Z u(T) /z:o: WUI(S) =

Z M = min(r, s) = E [8(r)5(s)]

k=0 Pk

» We have computed the mean, variance, and correlation of the process
defined in (2.1), and it is clear that it is ~ N(0, 7) and hence Brownian
motion, 3(7)
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The Feynman-Kac Formula

— The Karhunen-Loéve Expansion

An Introduction to the Karhunen-Loéve Expansion

» Karhunen-Loéve (KL) expansion writes the stochastic processes Y(w, t)
as a stochastic linear combination of a set of orthonormal, deterministic
functions in L2, {e;(t)}%

Y(w, 1) =Y Z(w)ei(t)

i=0

1. Given the covariance function of the random process Y (w, t) as Cyy(s, )
the KL expansion is

Y(w ) = 3 VAe(@)sih)
i=0

2. Here )\; and ¢;(t) are the eigenvalues and L2-orthonormal eigenfunctions of
the covariance function and &;(w)¢;(t) are i.i.d. random variables whose
distribution depends on Y(w, t), i.e. Zi(w) = VAi&i(w), and ei(t) = ¢i(t)

3. It can be shown that such an expansion converges to the stochastic process

in L2 (in distribution) & v
g’ e
& Y
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The Feynman-Kac Formula

— The Karhunen-Loéve Expansion

An Introduction to the Karhunen-Loéve Expansion

4. By the spectral theorem, we can expand the covariance, thought of as
an integral equation kernel, as follows

Cyv(s,7) = 2/\ i(8)¢i(T)

i=0
5. Here \; and ¢;(t) are the eigenvalues and eigenfunctions of the following
integral equation

/O " Cov(s, 7)dy(7) dr = Ndy(9)

» For ordinary BM, Y(w, t) = 3(t), we have from above
Cyy(s,7) = Cgp(s,7) = min(s, 7)

A= . where pj = (j +3)° %

oi(t) = y(t) = /2 sin(( + 1))

§j(w) = aj(w) ~ N(0,1)

Y(w, ) = 5% 0 = (1)

o~ w b=
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The Feynman-Kac Formula

Explicit Computation of Wiener Integrals

Explicit Computation of Wiener Integrals

» We are now in position to compute
E[eh?9*] ~ E [ef"t S " ds} _

(oo}

E[ezfiofo' %uk(sws] indep. H E[e%kfé uk(s)ds] _

[[ome Uiuoro  _ g s mite S dsor _
k=0
o i fiminsrydsar  _ ol R Hrt-)dr _ of

» We have used the following results

. E[e*¥] = eT with oo ~ N(0, 1) via moment generating function
2. fo min(s,7)ds = f; sds-i—f Tds= T + (t(t—71))
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The Feynman-Kac Formula
Explicit Computation of Wiener Integrals

Explicit Computation of Wiener Integrals

» Moreover
2 o O
E [e—%z fo'ﬂz(s)dS:| - E e*AT 2o p:]
_aZof > o _a2a2 2
'"prE[e z "]:H1/ e 7rwe 7T da
k=0 iCo V2T J—co
[e'e) 2 2
1 o0 J*—(H*—)
:Hi/ e * Pk) da
ko V2T J—oo

k=0 1 + )\72 %) 212
\/ Pk \/Hk—o (1 + m)
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The Feynman-Kac Formula

The Schrédinger Equation

The Schrédinger Equation

» Let us review the Schrédinger equation from quantum mechanics
1. The “standard," time-dependent Schrddinger equation

W(x, t) = H(x, Hw

ihélll(x t) = izmr V(x, t)
at 7 | 2m ’

2. We can make the equation dimensionless as

2t = [ 36 V] ot = e

3. We also are interested in the spectral properties of the time-independent
problem

[%A - V(x, t)} (X, t) = HX, t)yp = Ay




Brownian Motion

The Feynman-Kac Formula

— The Schrédinger Equation

The Schrédinger and Bloch Equations

» We now arrive at the Bloch equation
1. Consider transformation (analytic continuation) of the Schrédinger to
imaginary time, = = it, this gives us the Bloch equation, but is sometimes
also called the Schrédinger equation (going back to u(x, t))

1
QU D) _ 1A w1 — VI(x, Bu(x, t)
or 2
2. The time dependent Bloch equation can be solved via separation of
variables as

u(x, t) = U(x)T(t), and so we apply this to the Bloch equation

ou(x, t)
ot

= UX)T'(t) = %AU(x)f V(x, hUu(x)| T(t)




Brownian Motion

The Feynman-Kac Formula

— The Schrédinger Equation

The Schrédinger and Bloch Equations

3. Placing the time and space dependent on different sides of the equation
gives

T _ [ Vx ] Ux)
O U(x)
4. Thus we have that T(t) and U(x) satisfy the following equations
T'(t) — AT(t) =0,

[%A — V(x, t)] U(x) = AU(x)

5. Thus the \;’s and );(x, t)’s are eigenvalues and eigenfunctions of the
above eigenvalue problem, and the solution by separation variables is

,where X is constant

u(x, t) = icje‘*/"w,(x), where, ¢ = /oo Uo(X)2j(x) dx

=1 -
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The Feynman-Kac Formula

The Schrédinger Equation

The Schrédinger and Bloch Equations

~ v2e % and

» LetA=1,ast — oo, E[e*%fo'ﬁg(s)ds] = \/‘W

lim %InE [e*%fo'“(s)f’S] _ 1

t— oo 2 ’

» Theorem: If V(y) — oo as |y| — oo, then
lim 1InE[e fo v )ds]:_)m
t—oo t

where )\ is the lowest eigenvalue of the Bloch equation

200 = VI = M)
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The Feynman-Kac Formula

The Schrédinger Equation

The Schrédinger and Bloch Equations

» Feynmann-Kac: Let V be measurable and bounded below, then the
solution of the Bloch equation

ur = %uxx — V(X)u, u(x,0)= uo(x)

is u(x, ) = B [ 18 V@ Sy 5(1))|
» This equation is the imaginary time analog of the Schrédinger
1 1"
2V ) = V()ely) = 2(y)
Equation

1. Special case: V = 0:

(x—

Edw(0) = = [ w(ne “# dy — uix.




Brownian Motion
The Schrédinger Equation
Another special case

2. ForV(x) =%, up=1:

Ux, ) = = E, [em 2 P0% 1] = By [om 2 000

:e‘éE [e—xfo' B(s)ds—1 fI B%(s) dS]

2
:e_XTtE e—XZf(’io % S u(s) ds—3 o2, :|
2t d 1 of
:e‘THE e X T Jo u(9) ds—3 ZE
k=0
2, 2 © _ya -
—e T[] 1 / R L L GL AT I
ko V2 J—oo
B _é 1 2 fof S, % S)Uk(ﬂ') dsdr

v/cosh(t)
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The Feynman-Kac Formula

The Schrédinger Equation

» Define R(s, 7; —)?) such that
t
min(s,r):Az/ min(s, £)R(¢, T; —A%) d¢
0

Note that R(s,7; —1) = — > ouk(pskik1 ).

» Consider

uk(8)uk(7) uk(S)uk(7)
_kzg pk+)\2 Z Pk

B U(SU(S) u(@u(r)

— 2 Z k(S) Uk Z ; _'_I)\2

0 k=0 =0
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The Feynman-Kac Formula

The Schrédinger Equation

» For 0 < s < twe have

cosh(X(t—7)) sinh(\s) s<rT

R(S - _)\2) _ {_cosh 2 cosh(A7) =
sl (X\(t—s)) sinh(A\T)
- X cosh(t) s§=>7

» Thus

u(x, 1) = 1 ef%(H»fo JER(s,mi—1)dsdr) _ 1 67%
cosh(t) cosh(t)

» Exercise: compute u(x, t)for V(x) = %, uo(x) = x. Hint: the solution is
u(x, t) = Ex [e 31555 dsﬁ(t)] . Calculate

U(x,1,0) =E, [P0 EBEO®] -y = &

bt A)]

A=0
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— Proof of the Arcsin Law

Proof of the Arcsin Law

» Theorem: Let Xy, Xz, ... beii.d. r.v’s with E[X]] =0, Var(X;) =1, and
N, is the number of partial sums S; = >"/_, X; out of Si,..., S, which

are > 0:
N 0 a<0
nim P{#’<a]:z(a): %arcsin\/& 0<a<1
1 a>1

» Proof: (Using the Feynman-Kac formula and Donsker’s Invariance
Principal) Define the random step function

@) % T=0
X0y =% i cr<i
vn n —n
The invariance principle states that for a large class of functionals F and
FeF
im P[F[X7()] < a] = Pou[F[5()] < o]

n— oo
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Proof of the Arcsin Law

» For example, let

("1 +sgn[B(s)] _J1 x>0
F 5] _/0 — ds, where sgn(x) = 1 x<o0

» Then (2.2) says that

lim P{%ga}:PBM[/;%nw(s)]dsga]

n— oo

of the Brownian motion that is positive
» We drop the BM from the probabilities as it is understood
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Proof of the Arcsin Law

> Let
a(a,t):P[/Ot%n[’B(s)]dsga}

» Then for A > 0 we can define the Laplace Transform/Moment Generating
Function of o(a, t)

E |:e_>‘f0t 1+SQZ[3(S)]V ds:| — /oo e—)\a dO'(O[, t)
0
» Now define

1+sgn[B(s)]

i, t:3) = £ e 50 )]
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Proof of the Arcsin Law
Proof of the Arcsin Law

» By Feynman-Kac this is a solution to the following PDE

u(x, ) = %u(x, £ A ) — AVOOUGE ), U(x, 0 \) = 6(x)

1 x>0

where V(x) = {0 x<0

» We also realize that

/ U(X, t; )\) dx = / E [ Y fr 1+sgn[ﬁ(s] ds(S(ﬁ(t) ):| dXFlgni
£ |:/oo o f Hsania(e)] ds&(ﬁ(t) —X) de| _ [ e S sanlse)] ds:| _

/ e do(a, 1)
0
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Proof of the Arcsin Law

» Itis know that u(x, t; \) also solves the following integral equation

;’(2
e 2t —

u(x,t\) =

1
vert
1 —(x—£)?

t [eS)
/\/0 d7'/7oo d§V(£)u(§,r;)\)me 2(1—r)

kel

» Now we apply the heat equation operator, 5; — %3"’—; to this

ou _1&u
at ~ 20x

» And we the Laplace transform of u(x, t; \)

=0—-AV(X)u(x, t;\)

W(x, s 2) = / e~Stu(x, t: \)dlt

— 00
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Proof of the Arcsin Law

» |f we take the Laplace transform of the integral equation we get

W(x,s:\) = g VEI

V25
Y a1 —vEsix—g
A / dEV(OW(E i) e

» This is equivalent to the following ordinary differential equation (ODE)
%\U”(X) —(8+AV(xX)¥W(x) =0,¥ — 0as |x| — oo

W(x) and W' (x) is continuous at x # 0, and ¥'(07) — W/(0") =2
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Proof of the Arcsin Law

» The solution to the above ODE is

V2 —1/2(s+2)x
W(x, s \) = { VoAva© x=0
> V2 e—\/ZSX X < O
VS+A+/s

» Thus we have that
1

/_oo V(x,s;\)dx = 7%9(5 Y

» So we have the following

/ V(x,s;\) dx:/ e*s’/ u(x, t; \)dxds =

/‘ _st/ ’\“daat)ds_\/ﬁ
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Proof of the Arcsin Law

» The last line test us that we know the Laplace transform of

F(t) = /0 " e do(a, f)

1

£/ 8(s+X)

F(t):e%/o(%):/ e’ (a, 1) da
0

» The inverse Laplace transform of tells us that

» Which is itself the Laplace transform of o’ («, t), so we have

1

O'I(Oé, t) — 7/ a(t—a)

0 a>t

O<acx<t
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Proof of the Arcsin Law

» We now integrate the previous result

o 0 0<a
/ o/ (8, £) da = oo, t) = { 2arcsin/T 0 <a <t
e 1 a>t

» Setting t = 1 we get the Arcsin Law

0<a
arcsinv/t 0<a<1 Q.E.D
a>1

ola,1) =X(a) =

— 30 O
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Proof of the Arcsin Law

Another Wiener Integral

v

We wish to compute the probability of

P {Orgsaéﬁ(S) < a}

v

By Donsker’s Invariance Principal this is equal to

Consider the step-function potential

1 x>«
Va(X):{O X;oz

v

v

Since 3(-) is a continuous function AE, if maxo<s<: 5(s) < « then
V. (B(s)) = 0 on a set of positive measure
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— Proof of the Arcsin Law

Another Wiener Integral

» Consider the following Wiener integral

im £ [¢7 8P| = p(a, 1)

A—o0

» This is because the X limit kills walks that exceed « and only count the
walks that satisfy the condition

» for a fixed X this is, by Feynman-Kac, the solution to
U(X, £ \)e = %u(x, £ A ) — AVOOU(X EA), (X, 0:0) = 1

1 x>«
0 x<a

where V(x) = {

» The solution of the PDE is very similar to the solution of the PDE from
the Arcsin Law, and is left to the reader

Hia,t) =+/2 [V e % au
) T 0
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Action Asympotics: A Heuristic for Wiener Integrals

» Von Neumann proved that there is no translationally invariant Haar
measure in function space; Wiener measure is not translationally
invariant

» Consider the following problem where we write our heuristic via a “flat”
integral

E{FI8)} " = "J_F[me*% il e s
» Here we define the Action as
t
A =% [ B or
0

» This is obviously a heuristic, as BM is nondifferentiable AE
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Action Asympotics: A Heuristic for Wiener Integrals

» Now consider computing the following with Action Asymptotics
E [eﬁ JE8(s) ds}

» We first compute this using our standard techniques
£ [eﬁ JE8(s) ds] _ E { o TR %k(s)ds} _

E [eﬁ >0 5—[’;7 S uk(s) ds] indep. H / e\/W JE uk(s) ds ,L  do —
k=

» And thus
fo B(s)ds| t
Ve —
I|m elnE [e } 6




Brownian Motion

Advanced Topics
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Action Asympotics: A Heuristic for Wiener Integrals

» Let’s “derive” the action asymptotics heuristic with a construction due to
Kac and Feynman by considering

F(t)y=E {ef JEvB) dT}

where §(-) € Gy[0, t], and the expectation is taken w.r.t. Wiener measure
» Since we assume that V/(-) is continuous and non-negative, and

B(:) € G0, t]) is continuous, F(t) exists as f0' V(B(7)) dr is measurable
» Now let us consider a discrete approximation of this Wiener integral by

breaking it up into N sized time intervals of size t/N, which gives us F(t)
from bounded convergence and the Riemann summability

F(t) _ N||_rpoo E {e—ﬁ >N V(ﬁ(%))}

@ N

A e
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Action Asympotics: A Heuristic for Wiener Integrals

» If we consider the expectation in the limit we can rewrite it as follows

lim £ { g% Zka VA % — lim / / oM VB o
N—oo T Nooo
P(0, B1; hYP(B1, B2; h) - - - P(Bn_1, Bn; h) dB1 dfa - - - dBn
where we have
1. h= ﬁ
2. Bk = B(kh)
N Y

3. P(Bk—1,Bk: h) = Wi 2h

» This limit exists and is equal to the Wiener integral

» However, Feynman chose to rewrite the above as (suppressing the limit)
with 5o =0

— 2
/ / Zk 1 V(ﬁk)‘*’ Ek 1(%) }
27Th (2rh)N/2
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Action Asympotics: A Heuristic for Wiener Integrals

» If we look at the exponent in Feynman’s we notice that

{kz,_v; V(B + ;kﬁ; <ﬂk_hﬁk_1)2} hhj)/ot {; (Zf)z + V(ﬂ(r))} dr

» This is the Hamiltonian the along the path, 3(7), and with the classical
action along the path is

“f1 (dB\?
/ {Z(dT) V(B § o
» thus Feynman writes the above integral instead as

Ft) = E{e‘ I V(/a(f))df} _ /e_ ({582 +visern } ar] d(path)
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Action Asympotics: A Heuristic for Wiener Integral

v

How does E [e%F[\/EBJ] behave as e — 07

We can approach this with Action Asymptotics

v

E [e%F[\/Eﬂ]] “_ ,-J_engm L CIETP

v

Now let /€8 = w

w_ ”J_e‘g[/—'[w]—% fot[w’(s)]zds](sﬁ

Using Laplace asymptotics the above will behave like

v

ot SPwecslo[Flel=7 gl ()P as]

v

Where the space C;|0, t] is made up functions, w(t), with
1. w(t) continuous in [0, ]
2. w(0)=0
3. W'(t) € L]0, 1]
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Action Asympotics: Examples

» A conjecture using Action Asymptotics

t
lim eln E [e%FWE‘”] — sup {F[w] -1 / [w'(S)lzdS]
e—0 UJGCS[O,t] 2 0

» Consider F[3] = [, A(s) ds
E[e!FVel] = £ [ev 879%]

» From the conjecture we have that

. [t p(s)ds t 10 e
imeln E [eﬁ 0 ] = sup {/ w(s)ds — f/ [w'(9)] ds]
e—0 0 2 0

weCgo,1
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Action Asympotics: Examples

» From the calculus of variations we have that the Euler equation for
following maximum principle is

sup [ /O ") ds—% /0 t[w’(s)]st} —

weCs 0,1

1. 14+w’(s)=0

2. w(0)=0
3. W(t)=0
» The solution is w(s) = —% +tsand w'(s) = —s+tso

t 32 1 t 5 t3
/O (—?+ts) ds—i/o[s—t] ds_g
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Brownian Scaling

» Recall some basic properties of the BM, §(-) and constant, c:
B(r) ~ N(O, 7)

B(er) ~ N(O, cT)

VepB(r) ~ N(0, cr)

E[B(r)B(s)] = min(r, 5)

E[B(cT)B(cs)] = cmin(T, s) .
E[B(cr)B(cs)] = E[vVcB(r)V/eB(s)] = cE[B(r)B(s)] = cmin(r, s)
» Now consider the following

E [eSUPogsgzﬁ(s)] - E [eSUPog-rg ﬂ(“’)] —

ocohwNd

E [GSUPOSTQ \ﬁﬂ(‘f)] - E [e'SUPogrg ﬁﬁ(‘r)} _

E [e% SUPo< 7 <1 \/E/B(T)] using the substitution t = 12
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Brownian Scaling

Action Asympotics: Examples

» So we now have that
im LinE [eS”posSstﬁ(s)] — limelnE [e% SUPo< - <1 \/EB(T)]
t—oo [ e—0

» By Action Asymptotics we have

lim eln E [eé SUPo< <1 ﬁﬂ(”] = sup | sup w(r)— */ [/ (r)]Pdr
e—0 weCg0,1] [0<r<1

= max|a— a1_1

- a>0 2 - 2

» The supremum comes on straight lines, that minimize arc-length i.e. the
second term, so consider w(7) = ar, and a = 1 is the maximizer
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Action Asympotics: Examples

» Consider a more complicated problem for Action Asymptotics is

E [G(vep()) e (VO] |
o E [e%F(\/Eﬂ(-))]

J_E [G(\@g(.)) et F(VaB() =4 Ii[8 &) ds} 58
J—E [e%F(\/E/i’(A))—% S8 ()1 ds} 53
We now change variables with x(-) = v/€5(+)
J_E [G () et [FOx(n-1 i ()P dS]] Sx
J_ E [et[Fx()= [l (s)2 ds]] 5x
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— Brownian Scaling

Action Asympotics: Examples

» As ¢ — 0 the exponential term goes to something like a “delta” function
in function space and we get

= G[w*(-)] where w™(:) = argsup [Flw] — Alw]]

weCs0,1

» We now apply this to some PDE problems: Burger’'s Equation

Ur+ uuxy = %uxx, —c0o<x<o0, t>0
u(x,0) = wo(x), / Uo(n) dn = 0(x°) as x| — oo
0
» We now apply the Hopf-Cole transformation, if we define the solution to
Burger's equation u(x, t) = —e {50 = —edx[In v(x, 1)) then v(x, 1)
satisfies

1
Vi = %Vxxa v(x,0) = g < Jo to(mdn
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Action Asympotics: Examples

» So by Feynman-Kac we can write the solution as

v(x,t;€) L o) o = U5 dy
\/ mte
» We now apply the Hopf-Cole transformation (taking the logarithmic
derivative)
o wengt (12 votm o+ 0522 | @y
u(x, tie) = —=1 .
et (12 votmy an+ 0522 |
» Now let F(y) = [ uo(n) dn + Y5 X) , this is the function that Action

Asymptotlcs tells us to minimize (due to the negative sign)

» Note that lim,| % = 1 by the assumptions, and so there is a
minimum, y(x, t) = argmin F(y)

» Hopf showed that if at (x, t) there is a single minimizer to F(y) then
_x—yx 1)
N t

lim u(x, t; €) = uo(y(x,1))
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Action Asympotics: Examples

» Consider the related equation

Ur+uux = %uxx - V'(x), —c0<x<o0, t>0
u(x,0) = up(x), / uo(n) dn = o(x?) as |x| — oo
0

» Again we use the Hopf-Cole transformation to get

€
5 Vixx

» And so we can write down the solution to the transformed equation via
Feynman-Kac

Vi = —%V/(x)v, v(x,0) =e" &5 o) dn

Vixte) = Es { LR vves(s) ds— 1 /0 o) dn}

_Eo{ L[4 VVeB(s)tx) as 20 <n)dn}]
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Brownian Scaling

Action Asympotics: Examples

» We now take apply the Hopf-Cole transformation and get

E [Glves(-)e™ V0]

u(x, te) = : where we define
E [ o~ LFIVEB(- )1]

VEB(t)

Fsen = | V(v/eB(s)) ds — [ ity

Gt = | Y EBLS) + x) ds 4 to(v/EB(D) 4 X)
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Action Asympotics: Examples

v

By Action Asymptotics we have that

lim u(x, t; €) = Glw*(-)] where w*(-) = arginf [F[w] + A[w]]
€0 weCH[0,1]

v

If for (x, t) 3! minimizer, w*, then the limit exists and is

Glw"(1)] = u(x, t) = /Ot V/(w"(S) + x) ds + Uo(w™ () + X)

v

Now consider the related variational problem

nf [ [ vt 0 7 wman+ § [ ds]

weCs[0.1]

v

We refer to the functional to be minimized as H{w(+)]
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Action Asympotics: Examples

» To arrive derive an equivalent system via the Calculus of Variations we
need to form the Frechet derivative, in the direction of the arbitrary
function, W, as follows

6H|y =

e :/t V'(w(s) + x)W(s) ds + to(w(t) + x)W(t)
h=0 0

W (W(1) /0 W (8)W(s) ds

» Note that the last two terms come from the following computation

y def 1 /[ (o) ds — dJ[wd:h\lJ]

h=0

=3 /0 [w'(8) + hV'(s)]? ds = /0 t[w'(S) + hv'(s)] ds
_ / ' (s)V(s) ds = / " (s) dV(s)
0 0
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Action Asympotics: Examples

» We now integrate by parts using the natural boundary conditions
1. w(0)=0
2. W' (0)=0

/o W (8) AW/ (8) = ' ()W (s) — /0 " (s)W ds

So the solution to this problem is
1. V(w(s)+x) =w"(s)for0<s<t
2. w(0)=0
3. W/(t) = —up(w(s) + x)
» We can now apply this Hpof’s result with V =0
1. w’(s)=0for0<s<t
2. w(0)=0
3. W/(t) = —up(w(s) + x)
The solution is then very simply
1. w(s) = cs for some constant, ¢
2. W'(s) =c=—up(ct+x)
3. Letc = Y0=X — _yo(y(x, 1)) or wp(t(x, 1)) = X20

v

v

v

With a unique y(x, t) we get a unique w*(s) = (L,(“)) s
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Action Asympotics

» We now consider some tools with the “flat integral”
» The Cameron-Martin Translation Formula

E{F[B+ yl}, with y € Go[0, {]

» We now use the “flat integral”
E{F[B+yl}"= ”J_F[,B +yle 2 B OFds5 andletw = B+ y
“ HJ_,:[w]e—% Sl ()= ()P ds 5,
“ _ gz ol GF dsJ_ Flw]e" ol () (o ds—3 Jgl/(s)F a5 5,

“ e b [V OFdsE {,:[5] NAAC) dﬁ(S)}
» And so our result is that
E{F(p-+ )} = o 2RV T CE {Flae OO}, withy < Colo.t
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Local Time

v

Spectral Theory:

v

If V(x) > 0and V(x) — 0 as |x| — oo then the eigenvalue problem

%\U"(x) ~V(X)W(X) = —A¥(x)

1. Has discrete spectrum: A, Ao, - - -
2. With corresponding eigenfunctions: W4, Wy, - - -

Theorem (1949):

v

lim 1TE [e—%fo’ V(ﬁ(s))ds] =\

t—oo

Note: The expectation can start at any x due to ergodicity

v

Proof We will first prove this using Feynman-Kac

u(x,t) = Ex [e—% I V(B(S))ds}
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Local Time

» Satisfies the following PDE

ur = %uxx —V(xX)u, u(x,0)=1

» By separation of variables we have

1) = > g8 (x), where, 6= [ u(x.0)u(y) oy
j=1 e
» But since u(x,0) = 1 we have that ¢; = [*_4;(y) dy, Vj > 0, and so the
two representations must be equal
o) = B [e HREO 4] = S ey [T ) ay
J=1 e

» And so the largest eigenvalue, A1, controls the behavior

lim 1?E e 2 VCN®] — 3 O

t—oo
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Local Time

» We also have a variational representation of A4
=it [ [T v [ wmre|
R R o

» Which has a corresponding Euler equation
1w”(x) ~ V)W) = —AU(x)

» We notice that in the Wiener integral representation, E [e zhov )ds]

since the internal integral is in an negative exponential, the main
contribution comes for paths that remain close to where V(-) is smallest,
which leads us to dissect this problem as follows

» Let 5(s), 0 < s < oo; B(0) = x be BM for t > 0 and consider the
proportion of time that 5(-) spendsinaset A C R

a(B(),) =1 / X(B(s)) ds
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Local Time

» Some properties of L:(3(-),-) with t > 0, x fixed, and §(-) a particular,
fixed, path

1. Ly(B(-),-) is a countable additive, non-negative function
2. Li(B(-),R) =1
3. Li(B(:),) : C«[0, t] — M, the space of probability measures on R

» As a set function, L:(3(-), -) for fixed x € R and ¢ > 0 and for almost all
B(-) has a density function which we call the normalized local time

a(B(),y) = 11‘/0 5(8(s) — y) dy and

LEOA = [ XuE0 .9y

> 4(B(-),-) — 0 as Table — oo for compact A and almost every 5(-)
» Now consider the following representation

E, [e— Js V(/a(s»ds] — E, [e—tff?,o V(y)e(B().y) dy}
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Local Time

» For fixed x € R and t > 0 we define a probability measure on M,
Qi = PL; ", as follows

» If C C M then we can write
Q«:(C) = P{B(:) € Cx[0,00] : Li(B(-),") € C}
» L+(58(+),-) is an occupation measure so we can write

— JEv(B(s)) ds _ —t 25 VINL(BC)y) dy | —t [2%, V(y) dLe(B(-).¥)
Ex |e E« |e Ei e

ESxt [e—tff‘?,o vmmdy)} — g% [e—tf‘_";, V() dy]

» We define F as the space of probability density functions on R, then this
an expected value on F

» To understand how the expected value on F behaves as t — oo, we
need to understand how Qx,; and therefore also how L:(3(-), A) behaves
ast— oo
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Local Time

» Long time behavior of local time measures

1. Ly(B(-),A) — 0ast — oo for A C R, compact, and AE 3(-)

2. 41(B(-),A) — 0as t — oo for A C R, compact, and AE 3(-) by the ergodic
theorem for BM, if 3(-) were not BM, then this would converge AE to the
invariant measure

3. Qxi(C) > 0ast— ooif CC M, C+#M,ie. Cisareasonable set

» Theorem on Speed of Convergence: We first need to put the Levy
topology on F

1. If C € Fis closed, then

lim sup 1 In Qx+(C) < inf I(f)

oo I fecC
2. If G € Fis open, then

1

. S

fiminf — In Qut(C) > flgé I(f)
3. Where | oo

— _ ! 2
-z Arwrimy o
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Donsker-Varadhan Asympotics

» This is a simple case of what is referred to as “Donsker-Varadhan
Asymptotics" and are a large deviation result

2
» An example, suppose f(y) ~ N(0,5%), i.e. f(y) = re 22 , then

2
_2<L .
222 ) and finally we have

L !
F(y) = ——sbme 22 and () =

[eS) 2 2 2 1

Y -5 o
e 202 d = — = —
—o OV 2T Y
Note: the last integral is the variance, o2, of a N(0, ®) random variable

» We refer to the functional / : 7 — [0, o] as the entropy, and roughly
speaking

=5 | {ror/} a - %l

Qui(f) ~ e 1Mreal® for “nice" A
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Donsker-Varadhan Asympotics

» Now let us apply the “Entropy Asymptotics" with the “Flat Integral”

E, [e—%fo’ V(B(S))dS] — E%[e [ —t[25 VI y)dy} for t large
“ nJ_eftff‘;o V) oy =t 5

. J_ o1 VO m) av10] 5

» As t — oo we use Laplace asymptotics to get

i o [o7t 800 <[ [~ v o+ 5 [ B o

t— o0

» Let /f(y) = W(y), then [ W*(y)dy = [ f(y)dy =1since f(y)isa
p.d.f., and so W(-) € L3[—o0, o0] and ||W]| = 1
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» We now transform the “Entropy Asymptotics" expression with some
substitutions

. Let /f(y) = W(y), then [*°_W2(y)dy = [*°_f(y)dy = 1since f(y)is a
p.d.f., and so W(-) € L?[—o0, o0] and ||W|| = 1

7 ()2
2. Also W'(y) = —+ -1'(y), and so WP =1 (ff% )

» These allow us to write

il dy*s/w[f/fm ¥ =

-t | [T v g [T wore] -

[w]=1

» Theorem:Let ® : 7 — R be bounded and continuous then, by the
“general structure theorem"

lim 1In EX e [ _'°(')] = lim %In Ey [e_t‘b(z’(ﬁ(')"))] —jnt [¢(f)+ I(f)]

t—oo t—oo
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» This is more subtle than action asymptotics, for example consider

lim L in E% [e““’(f)] = sup [®(f) — I(F)]
t feF

t—oo

—_

. There is always a fight between the two terms in the supremum

2. In statistical mechanics we often consider a®(f) and want to compute
supsc = [a®(f) — I(f)] = g(c), where « is a convex function of «

3. Them may be a critical value of o, call it ag, where there is a phase

transition, this is due to nonuniqueness in the f that maximized the functional
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An Example Using Action and Entropy Asymptotics

» Now we will use “Entropy Asymptotics" to revisit a topic we have already
considered

» Recall that

[e% U2
P{ sup B(s) < a} = \/3/ e~ 2 du, so that we also have
0<s<t mt Jo

oo 0(2
E [ePosct#0] = (1) = / e*dP{ sup f( s)ga}:/ e/ 2o % da
0 0<s<t 0 wt
oo Y oo
/ e”‘\/ge*%t2 da=\/£ —legh gth dazwgeé/ ez
nt wt Jo ™ Vi

with the substitution u = 7

t 1
Ilm—lnh(t)_\/>2 ”—§

» Then we have
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» First we turn the t — oo limit into an e — 0 limit

im LinE [eS””osSstﬁ(S)] — limelnE [e% SUPo< - <1 \/EB(T)]
t e—0

t— o0

» Recall that by Action Asymptotics we have

lim eln E [eé SUPo< <1 ﬁﬂ(”] = sup | sup w(r)— / [/ (r)]Pdr
e—0 weCg0,1] [0<r<1

= max|a— a1_1

- a>0 2 - 2

» The supremum comes on straight lines, that minimize arc-length i.e. the
second term, so consider w(7) = ar, and a = 1 is the maximizer
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» Now we solve the same problem using Entropy Asymptotics by using a
result of Paul Levy that the following have the same probability
distributions

P {oiligtﬁ(S) < a} = P{tt(B(-),0)}

» Thus we have that

h(t) = E [eSUPogsgth(S)] - E [eflr(ﬁ(%o)} - E [eto[z,(,@(.),o)]] , where ®[f] = £(0)

» So from Entropy Asymptotics we get

Jim —In h(t) = lim E[ el <>°>1] =sup {f(O) h [f'f((}; ))]2 dy]
feF —o0

» Recall that f € F is a probability distribution, and so the maximizing
family of functions (proven below) is f,(y) = ae~2a!
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An Example Using Action and Entropy Asymptotics

» Recall that f € F is a probability distribution, and so the maximizing
family of functions (proven below) is f,(y) = ae~2a!

» We can write

2y >0 287 y>0
f.(y) = ae 2l — ] € Y22 sof(y) = =~ andso
2 ae®®  y <0 ) 287e*¥ y<0

1roN12 4a*e™*¥ y >0 4 _—4
[ = {4a4e4ay J <0 = 45 e 4V

» This gives us

sup 10) -~ [~ L o] —sup [a-

JR

8
= sup [a — é / ae 23l dy] =sup {a - ] , Which occurs at a =1
a>0 2 —o0 a>0
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\4

Now we find the maximizing family of functions by the same
transformation as before

. V) = W(y) or f(y) = W3(y), and so
f(0) = w2(0)

2
s 3 (%) ~wor
And so we obtain

v

1R .
wel@-5 [ gy )= o [vor-

T dy}

v

Let W(0) = a we get the following constrained Euler-Lagrange equation

V'(y) —2xu(y), V(0)=a

v

This is maximized with a stretched version of W(y) = =2V
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» Let Q c R2 be an open domain with sufficiently smooth boundary, 6,
so that the following problem has a unique solution

%Au+)\u:0, with u = 0 on 9

Under these circumstances we know that
1. 30 < A\ < X2 < --- adiscrete spectrum
2. Jui(x,y) < ui(x,y) < --- corresponding normalized eigenfunctions

Consider

v

v

C(\) = >_ 1= #of eigenvalues < A

Aj<A

v

C(A) is an increasing function in A, and Hermen Weyl proved that

12]A
C(\) o as A\ — oo

v

Additionally, Carlemann proved that

> U(Xa}/)N%,V(X,y)GQaS)\—)oo

A<A
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v

Now consider starting a BM at (xo, o) €

Let p(xo, Yo, X, y, t) be the probability density function of a 2D BM
starting at (xo, yo) reaching (x, y) at time t without hitting 99
Einstein-Smoluchowski: Then p(xo, yo, X, y, t) is the solution to

op 1, .

YTl 2Apan

p=00n0Q, Vt>0
We note thatas t —+ 0

v

v

v

/Qg(xvy)p(X0>y07X7y7 t) dx dy - g(X07y0)

» Assume we can find p using separation of variables:
p(Xo, Yo, X, y, t) = T()U(x, y), then
TU= %AU, U=00ndQ, Vt>0
T _ AU

=5 = —yields

T(t)=e ™, and U = the eigenfunction corresponding to X
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Kac’s Drum
» So this means that we can write explicitly

P(xo0, Yo, X, ¥, 1) = > & M'uj(x, yo)uj(x, y), and so we know
j=1

(XO Yo, Xo, Yo, t) - Z eixjtulz Xo’yo)
j=1

> Let p*(xo, Yo, X, ¥, t) be the probability density function of unrestricted 2D
BM starting at (xo, yo) reaching (x, y) at time ¢

=P -y
2t 2t

N 1
pP (XOuVO»X,,V: t) - 27Tte
» Thus we conclude that

[e o) . 1
Ze NP (X0, Yo) ~ P (X0, Yo, X, Y, B) ~ 57 8 t—0




Brownian Motion

Advanced Topics

— Can One Hear the Shape of a Drum?

Kac’s Drum

» Karamata Tauberian Theorem: Consider

£(1) =/ e M da()), and assume
0

1. The above Laplace-Stiltje’s transform exists
2. a(X) is non-decreasing on (0, o)

If f(f) ~ At~ as t — 0 for A and ~ constants then

AXY
"W

v

as A — oo(A — 0)

» We now apply the Karamata Tauberian Theorem to

f(t) = / e Mda(\) =D e V' (X0, 1), where a(A) = Y uf(x0, o)
0 =

Aj<A

v

We know f(t) ~ 5= as t — 0, and s0 a(A) ~ 5 as A — oo

v

By integrating this over Q we get Weyl’s theorem
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1. Let Q € R® be a bounded closed domain

2. Letr(t) € C be a continuous function starting at the origin
3. Let X, (+) be the indicator function of Q

» Consider the following functional on C

Ta (y.1()) = /0 CXaW () dr, YR

» This functional is the total occupations time of r(-), a 3D BM, in Q
translated by y
» Now impose Wiener measure on C and consider the following Wiener
integral
E(Ta(y.r) = [ Ply+r(r) e ) or
0

» Note that because we are using Wiener measure we know

1 o Jr—y?
P{y+r(T)€Q}:W/OV e 2r dl‘
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Probabilistic Potential Theory

» We now use Fubini’s theorem to exchange the order of integration

ETar) = [ dr [ e F o

:i dr < o inR®
21 Jo [r—y]

» We see that in R® AE BM path starting at y spends a finite amount of
time in Q

» Now consider the kth moment of the occupation time
k! [K] dr4 drs darg
E{TE(y,r(: :7/ k=1,2,---
{T0rO} = oy | vy ol v

» We focus on the second moment, kK = 2
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Probabilistic Potential Theory

» We focus on the second moment, k = 2

E{Tawrn} = [ [ Py e €2 Pl 1) € 2) oo
0 0
5 drd 1 _ \r1;YI2 1 _2|('2*'1 \2) drd
= —_— T - To—T4q
// T 'rz/n/Q (2nn )3/26 27 (2 — 7_1)]3/26 riar

0<T1<Tp <00
/ / dr1
(27 |r1 —y| |r2—r1|

» The formula for the kth moment suggests that we should consider the
following eigenvalue problem

) 4, —
- Q|r_p|dp—)\¢(r), reQ
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Probabilistic Potential Theory

» The integral kernel in the eigenvalue problem is Hilbert-Schmidt
1. Since the single integral is convergent, we have

1
———drdp < oo
/Q/Q Ir—pl?

2. We also need to show that the kernel is positive definite:

/ YONO) e 5> 0 v(p) # 0in 12(9)
ala [r—pl

Note that:
1 1 Ir—y[?

9
- = 2t =
2r Ir—p| /0 (2rr)o/2° T
% 1 73/2 ; —1¢[?r
dr— - i¢-(r—p) de¢ =
/0 T 2rr)372 (21)372 /Rse e %

B A e o
(271')3/0 T/Rs Ce e 2
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[ [ 400) g
(217)3/0oo dT/]Pgs dce 9

» With the kernel being Hilbert-Schmidt, we know that the integral
equation has
1. Discrete spectrum: Ay, Ao, - -
2. With corresponding eigenfunctions that form a complete, orthonormal basis
for L2(Q)
» Lemma:

GE{T )} - 2N Jponnan [ oy e

» So

2
()€ dp| >0, ¥e(p) # 0in L*(Q)

1. This holds for all y € R3
2. If y € Q, then we note that

1 %i(p)
2 do = N\
oy @ = o
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» Proof: Recall that

1 K 1 /[k] dr ar, dry
— E!T r(- -
k! { a ¥, ())} @mk Jo  Jalr—yllre—ri|  [rc—rea]

» We recognize this as an iterated integral equation of the form

a(y,ry)a(rs,r2) - - - a(rg—1,r)

» We can then rewrite this using Mercer’s theorem representation of the
kernel of the integral operator

|p yl Z)‘J¢J(P)¢/ y)

» Next we apply Mercer’s theorem only to the terms not involving y to get

pE{or)} = o [ o ZA“ 16)(11)6)(14) o oy

Ey )

mmmmmmmmmmmmmmm
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» To review we have that

1 . N L gin gt [, A dp y e R
E!T. y, r(- — Q Q |p—y|
{ a ())} {21—1 /\jk Jo 0i(0)85(y) dr, yeQ

» Now let us consider the moment generation function (Laplace transform)

with z € C ok
E{ezTn(Y,rU)} _ Z il {TQ (v, r(- ))}
k=

» Now we use the above lemma to get

e L () Lo [ e

1. This series converges if |z| < —a

2. The moment generating function is analytic if ®{z} < 0 since Tqo >0

3. The last series is analytic for #{z} < 0, so by analytic continuation this
identity holds with ®{z} < 0 ¢
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» Let u > 0 and define

h(y,u) = E{e—“Tn(v,r(»)} _ 1_% i (

1) oo [ %y

)

» This series converges on compact sets in C because

1.
1

1+)\,-u

2
(;/sz¢’(r)d' oy dp) S;(/gvﬂ)dr)zZ( o ”>2:

j=1
d
|Q|/ LA
alp—Yl

» This gives uniform convergence via the Weierstrass M-test and thus
is also analytic y

<1
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v

Ify € Q then we get

oo

ry.0 =1-3 ($255) [emaraw

=1

v

And so we can multiply both sides by m and integrate over Q2

1 [ h(y,u)dy _ / °° ( ) / o(p i(y) dy
2r Jo ly—t 2w Joly -1l T \T+ AU P 2” o ly—r|

But we know that
1 A [ (y)dy
2r nlv Z/¢’(p) 0 Iy - |

Thus we cane write that

A1 [ hyu)dy _ < 1 ¢,(v)dy
2r Jo Iy ,Z< o) Lowaeg [0 P

v

v

Q
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» We recognize the left hand side of the previous equation from (*), and so
we use this ro rewrite this as

h(y,u)dy 1 3
— [ =222 — — (1 —-h R
2r | iy —r =g (- hw), e
» Moreover, if we rename variables we get

1 h(p,u)dp _ 1 3 o
— [ 2ETEP (1 - h(y,u)), VyeER
2x | Ty —pl 5 (y,u)), vy ™)

» We now make some important observations

1. From (*) we see that if y ¢ Q then h(y, u) is harmonic in y, and the series in
(*) converges uniformly on compact Q's
2. Again from (*) we get

— {2_: (/Q(bj(p)dp)z}‘/z{i (/Q |ﬁj£p))'| dp)2}1/2

Jj=1

1/2
>1_i|m1/2< L)
2m alp—yl
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3. So we now know that 0 < h(y,u) < 1, and so
Jim_h(y. u) = 1 ()
4. And for from Courant-Hilbert II, pp. 245-246

h(y, u)ay\ _
o (7o) = e

» Now apply the Laplacian to both sides of (**) to get
~2h(y, u) = — ARy, 1)

or we get

%Ah(y7 U) - Uh(yv U) = 07 ye Q

» Now consider U(y) = limy ~o (1 — A(Y, 1)) = P{Ta(y,r(-)) > 0}, this is
the capacitory potential (capacitance) and follows easily from the
definition of the moment generating function
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» Example: Let Q be a sphere of radius 1 centered at the origin

1.
2.

. If we substitute this into the equation (**) we get that v(u) =
. h(y, u) is continuous Vy so from the uniform convergence of the series, and

h(y, u) is clearly spherically symmetric
h(y, u) is harmonic outside ©, so we have

ry.0) = 2D + 4w, g0
. From (***) we see that 8(u) = 1 and so h(y, u) = olt) 4 o for yeQ
. We also know that for y € Q we have
sinh(v2u
hly.u) = () S Z D)

1
V/2u cosh(av/2u)

SO

o(u) 4 _ 1 sinh(v2ua) 1

a = V2u cosh(v/2ua) a

to finally give us

1 _ tanh(av/2u)
hyuy=d 'V (1-=522), ven
sinh(+v/2uly|) yeQ

V2u cosh(v2ua)ly|’
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» Recall that

uy) = Jim (1~ Ay, 1) = P {Tsp.a(y.1()) > 0} = {1“ yes

» This is the capacitory potential of S(0, a)
» Now back to the general case, vy € R® we have

1_E{e—uTn<v,r(-»}: ( ) / oo L #i(p) dp

a lp—yl

Y

. Wenotethat0 < 1 — h(y,u) <1

. The function 1 — h(y, u) is non-decreasing in u: 1 — h(y, u1) < 1 — h(y, u2)
if uy < U
3. This is true due to the following
3.1 0 < e UTaWr() < { and
3.2

. - . 0, Ta >0
| uTq(y.r()) _ > e
e € 1, Ta=0
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» From the previous results and the bounded convergence theorem we
have

uly) = lim (1= hly, u)) = P{Ta(y,r(-)) > 0}

and hence also

T mar [ 4P dp
“(W—J'/mm;(;H,.)/Q@(’)d’zw R

1

and this holds Yy € R®
Case 1. Lety € Q° (the interior), clearly the continuity of r(-) immediately implies
ufy) = P{Ta(y,r(-)) > 0} =1

Remark: with y € Q° we have U/(y) = 1 and so we have the following
summability result

_ #i(p)dp
= 1( ;)/‘M 2r Ja lp—yl
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Case 2. Lety ¢ Q, we already know that 1 — h(y, u) is harmonic iny, and it is
nondecreasing in u, and the previous limit in u exists and equals
P{Ta(y,r(-)) > 0}, thus by Harnack’s theorem, Z/(y) is harmonic with
y ¢ Q. Assume that Q C S(0, a), then

P{Ta(y.r(-)) > 0} < P{Ts@,(y.r()) > 0}
From the last problem this means

P{Ta(y,r(:)) >0} < =, ¥ ¢ S(0,a)

and so limy . U(y) =0
Case 3. Lety, € 09, and assume that it is regular in the sense of Poincaré: 3 a
sphere S(y,, €) lying completely in Q so thaty, € S(y,, ¢) Consider now

y¢Q
Uy) = P{Ta(y,r(-)) > 0} > P{Ts0,5(y,r(-)) >0} =

Asy — y, withy ¢ Q we have
have finally that

€
ly — V.l

— and since U(y) < 1 we

€
Ty=v.1 V [ Yo—V.l”

Jim 24(y) =1 @ N

N
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» Thus if Q is a closed and bounded region, each point on the boundary
that is regular in the Poincaré sense has U/(y) as the capacitory potential
of Q

» Recall that

= 1 [ ¢i(p)dp
-5 () oo 20

» We note that this implies that
. 1
im_y|(1 ~ h(lyl.v)) = 5 | u(p.u)dp
ly|— oo 21 Jq

» Again assume that Q € S(0, a), then h(y,u) = E {e"*"2} > {e"“Ts0.a },

there fory ¢ S(0, a) we have h(y,u) > 1 — ﬁ or1—h(y,u) < lj“ and so

u
—_ <
o /Qh(p, uydp<a
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