An Introduction to Brownian Motion, Wiener Measure, and Partial Differential Equations

Prof. Michael Mascagni

Applied and Computational Mathematics Division, Information Technology Laboratory
National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA
AND
Department of Computer Science
Department of Mathematics
Department of Scientific Computing
Graduate Program in Molecular Biophysics
Florida State University, Tallahassee, FL 32306 USA
E-mail: mascagni@fsu.edu or mascagni@math.ethz.ch or mascagni@nist.gov
URL: http://www.cs.fsu.edu/~mascagni

NUT
Aational Instivite of
Standords and Technology
U.S. Departhen of Commerce.

Outline of the Lectures

Introduction to Brownian Motion as a Measure
Definitions
Donsker's Invariance Principal
Properties of Brownian Motion
The Feynman-Kac Formula
Explicit Representation of Brownian Motion
The Karhunen-Loève Expansion
Explicit Computation of Wiener Integrals
The Schrödinger Equation
Proof of the Arcsin Law
Advanced Topics
Action Asymptotics
Brownian Scaling
Local Time
Donsker-Varadhan Asymptotics
Can One Hear the Shape of a Drum?
Probabilistic Potential Theory

Introduction to Brownian Motion

- Let $\Omega=\{\beta \in C[0,1] ; \beta(0)=0\} \stackrel{\text { def }}{=} C_{0}[0,1]$, be an infinitely dimensional space we consider for placing a probability measure
- Consider (Ω, \mathcal{B}, P), where \mathcal{B} is the set of measurable subsets (a σ-algebra) and P is the probability measure on Ω
- We would like to answer questions like $P\left[\int_{0}^{1} \beta^{2}(s) d s \leq \alpha\right]$?
- We now construct Brownian motion (BM) via some limit ideas
- Central Limit Theorem (CLT): let X_{1}, X_{2}, \ldots be independent, identically distributed(i.i.d.) with $E\left[X_{i}\right]=0, \operatorname{Var}\left[X_{i}\right]=1$ and define $S_{n}=\sum_{i=1}^{n} X_{i}$

1. Note if $X_{1}^{*}, X_{2}^{*}, \ldots$ are i.i.d. with $E\left[X_{i}^{*}\right]=\mu, \operatorname{Var}\left[X_{i}^{*}\right]=\sigma^{2}<\infty$, then

$$
X_{i}=\frac{X_{i}^{*}-\mu}{\sigma} \text { has } E\left[X_{i}\right]=0, \operatorname{Var}\left[X_{i}\right]=1
$$

2. Then $\frac{S_{n}}{\sqrt{n}}$ converges in distribution to $N(0,1)$ as $n \rightarrow \infty$

NisT

Introduction to Brownian Motion

- Let X_{1}, X_{2}, \ldots be as before, then it follows from the CLT that

$$
\lim _{n \rightarrow \infty} P\left[\frac{S_{n}}{\sqrt{n}} \leq \alpha\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-\frac{u^{2}}{2}} d u
$$

- Erdös and Kac proved (we will find the $\sigma_{i}(\cdot)$'s):

1. $\lim _{n \rightarrow \infty} P\left[\max \left(\frac{s_{1}}{\sqrt{n}}, \frac{s_{2}}{\sqrt{n}}, \ldots, \frac{s_{n}}{\sqrt{n}}\right) \leq \alpha\right]=\sigma_{1}(\alpha)=\sqrt{\frac{2}{\pi}} \int_{0}^{\alpha} e^{-\frac{u^{2}}{2}} d u$
2. $\lim _{n \rightarrow \infty} P\left[\frac{S_{1}^{2}+S_{2}^{2}+\cdots+S_{n}^{2}}{n^{2}} \leq \alpha\right]=\sigma_{2}(\alpha)$
3. $\lim _{n \rightarrow \infty} P\left[\frac{S_{1}+S_{2}+\cdots+S_{n}}{n^{3 / 2}} \leq \alpha\right]=\sigma_{3}(\alpha)$

- Let $N_{n}=\#\left\{S_{1}, \ldots, S_{n} \mid S_{i}>0\right\}$, then

$$
\lim _{n \rightarrow \infty} P\left[\frac{N_{n}}{n} \leq \alpha\right]= \begin{cases}0, & \text { if } \alpha \leq 0 \\ \frac{2}{\pi} \arcsin \sqrt{\alpha}, & \text { if } 0 \leq \alpha \leq 1 \\ 1, & \text { if } \alpha \geq 1\end{cases}
$$

Definitions

- X_{1}, X_{2}, \ldots are as above, and $\forall n \in \mathbb{N}$ and $t \in[0,1]$ define

$$
\chi^{(n)}(t)= \begin{cases}\frac{S_{1}}{\sqrt{n}}, & t=0 \\ \frac{S_{i}}{\sqrt{n}}, & \frac{i-1}{n}<t \leq \frac{i}{n}, \quad i=1,2, \ldots, n\end{cases}
$$

- Let \mathcal{R} denote the space of Riemann integrable functions on $[0,1]$.
- Theorem: $F: \mathcal{R} \rightarrow \mathbb{R}$ and with some weak hypotheses, then

$$
\lim _{n \rightarrow \infty} P\left[F\left(\chi^{(n)}(\cdot)\right) \leq \alpha\right]=P_{W}[F(\beta) \leq \alpha]
$$

where P_{W} denotes the probability called "Wiener measure," and this result is called Donsker's Invariance Principal

Examples of Donsker's Invariance Principal

1. $F[\beta]=\int_{0}^{1} \beta^{2}(s) d s$, then by the theorem

$$
\lim _{n \rightarrow \infty} P\left[\sum_{i=1}^{n} \frac{S_{i}^{2}}{n^{2}} \leq \alpha\right]=P_{W}\left[\int_{0}^{1} \beta^{2}(s) d s \leq \alpha\right]
$$

2. $F[\beta]=\beta(1)$, then

$$
\lim _{n \rightarrow \infty} P\left[\frac{S_{n}}{\sqrt{n}} \leq \alpha\right]=P_{w}[\beta(1) \leq \alpha]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-\frac{u^{2}}{2}} d u
$$

3. $F[\beta]=\int_{0}^{1} \frac{1+\operatorname{sgn}_{\beta(s)}}{2} d s$, where $\operatorname{sgn}(x)=\left\{\begin{array}{ll}1, & : \quad x>0 \\ -1, & : \quad x \leq 0\end{array}\right.$ Then

$$
\lim _{n \rightarrow \infty} P\left[\frac{N_{n}}{n} \leq \alpha\right]=P_{w}\left[\int_{0}^{1} \frac{1+\operatorname{sgn} \beta(s)}{2} d s \leq \alpha\right]
$$

Defining Wiener Measure Using Cylinder Sets

- For any integer n, any choice of $0<\tau_{1}<\cdots<\tau_{n} \leq 1$, and any Lebesgue measurable (\mathcal{L}-mb) set, $E \in \mathbb{R}^{n}$ define the "interval"

$$
I=I\left(n ; \tau_{1} ; \ldots ; \tau_{n} ; E\right):=\left\{\beta(\cdot) \in C_{0}[0,1] ;\left(\beta\left(\tau_{1}\right), \ldots, \beta\left(\tau_{n}\right)\right) \in E\right\}
$$

- Let \mathcal{A} be the class of intervals containing all the $/$ for all $n, \tau_{1}, \ldots, \tau_{n}$ and all $\mathcal{L}-\mathrm{mb}$ sets $E \in \mathbb{R}^{n}$, then \mathcal{A} is an algebra of sets in $C_{0}[0,1]$
- The l's are the cylinder sets upon which we will define Wiener measure, and then standard measure theoretic ideas to extend to all measurable subsets of the infinite dimensional space, $C_{0}[0,1]$

Defining Wiener Measure Using Cylinder Sets

- Given I, we define its measure as

$$
\begin{aligned}
\mu(I)= & \frac{1}{\sqrt{(2 \pi)^{n} \tau_{1}\left(\tau_{2}-\tau_{1}\right) \cdots\left(\tau_{n}-\tau_{n-1}\right)}} \\
& \int \cdots \int_{E} e^{-\frac{u_{1}^{2}}{2 \tau_{1}}-\frac{\left(u_{2}-u_{1}\right)^{2}}{2\left(\tau_{2}-\tau_{1}\right)}-\cdots-\frac{\left(u_{n}-u_{n-1}\right)^{2}}{2\left(\tau_{n}-\tau_{n-1}\right.}} d u_{1} \cdots d u_{n} .
\end{aligned}
$$

- Let \mathcal{B} be the smallest σ-algebra generated by \mathcal{A}, this is the class of Wiener measurable (W-mb) sets in $C_{0}[0,1]$
- This extension of Wiener measure, also creates a probability measure on $C_{0}[0,1]$, and expectation w.r.t. Wiener measure will be referred to as a

1. Wiener integral or Wiener integration
2. Brownian motion expectation

Examples

- Let $A \in \mathbb{R}^{n \times n}$ with $A_{i j}=\min \left(\tau_{i}, \tau_{j}\right)$, i.e for the case $n=3, \quad \tau_{1}<\tau_{2}<\tau_{3}$ we have

$$
\boldsymbol{A}=\left(\begin{array}{lll}
\tau_{1} & \tau_{1} & \tau_{1} \\
\tau_{1} & \tau_{2} & \tau_{2} \\
\tau_{1} & \tau_{2} & \tau_{3}
\end{array}\right)
$$

and in general we can write $U=\left(u_{1}, \ldots, u_{n}\right)^{\top}$ and

$$
\mu(I)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} A}} \int \cdots \int_{E} e^{-U^{\top} A^{-1} U} d u_{1} \ldots d u_{n}
$$

- Let $\beta(\cdot)$ be a BM, and $0<\tau_{1}<\tau_{2}<1$, then

$$
\begin{aligned}
P\left[a_{1}\right. & \left.\leq \beta\left(\tau_{1}\right) \leq b_{1}\right]=\frac{1}{2 \pi \tau_{1}} \int_{a_{1}}^{b_{1}} e^{-\frac{u^{2}}{2 \tau_{1}}} d u \text { and } \\
P\left[a_{1}\right. & \left.\leq \beta\left(\tau_{1}\right) \leq b_{1} \cap a_{2} \leq \beta\left(\tau_{2}\right) \leq b_{2}\right] \\
& =\frac{1}{\sqrt{(2 \pi)^{2} \tau_{1}\left(\tau_{2}-\tau_{1}\right)}} \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} e^{-\frac{u^{2}}{2 \tau_{1}}-\frac{\left(u_{2}-u_{1}\right)^{2}}{2\left(\tau_{2}-\tau_{1}\right)}} d u_{1} d u_{2}
\end{aligned}
$$

Useful Properties of Brownian Motion

- Theorem: Let $I=\bigcup_{j=1}^{\infty} I_{j}$ where $I_{j} \cap I_{k}=\emptyset \forall i \neq k$ and $I, I_{1}, I_{2}, \cdots \in \mathcal{A}$, then $\mu(I)=\sum_{j=1}^{\infty} \mu\left(l_{j}\right)$
- we will see that the $\mathrm{BM}, \beta(t)$, satisfies:

1. Almost every (AE) path is non-differentiable at every point
2. AE path satisfies a Hölder condition of order $\alpha<\frac{1}{2}$, i.e.

$$
|\beta(s)-\beta(t)| \leq L|s-t|^{\alpha}
$$

3. $E[\beta(t)]=0$
4. $E\left[\beta^{2}(t)\right]=t$, and so $\beta(t) \sim N(0, t)$
5. $\beta(0)=0, \beta(t)-\beta(s) \sim N(0, t-s)$
6. $E[\beta(t) \beta(s)]=\min (s, t)$

Useful Properties of Brownian Motion

- Let $E \in \mathbb{R}^{n}(\mathcal{L}-m b), 0<\tau_{1}<\cdots<\tau_{n}<1, I=I\left(n ; \tau_{1} ; \ldots ; \tau_{n} ; E\right)$, then

$$
\begin{array}{r}
\mu(I)=\int \cdots \int_{E} p\left(\tau_{1}, 0, u_{1}\right) p\left(\tau_{2}-\tau_{1}, u_{1}, u_{2}\right) \cdots \\
p\left(\tau_{N}-\tau_{n-1}, u_{n}, u_{n-1}\right) d u_{1} \cdots d u_{n}
\end{array}
$$

where $p(t, x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-y)^{2}}{2 t}}$

- Note that $p(t, x, y)=\psi(t, x, y)$, the fundamental solution for the initial value problem for the heat/diffusion equation

$$
\psi_{t}=\frac{1}{2} \psi_{y y}, \quad \psi(0, x, y)=\delta(y-x)
$$

- μ is finitely additive since integrals are additive set functions

Useful Properties of Brownian Motion

- Theorem 1: Let $a>0,0<\gamma<\frac{1}{2}$ and define

$$
\boldsymbol{A}_{\mathrm{a}, \gamma}=\left\{\beta \in C_{0}[0,1] ;\left|\beta\left(\tau_{2}\right)-\beta\left(\tau_{1}\right)\right| \leq a\left|\tau_{2}-\tau_{1}\right|^{\gamma} \forall \tau_{1}, \tau_{2} \in[0,1]\right\}
$$

For any interval $I \subset C_{0}[0,1]$ s.t. $I \cap A_{a, \gamma}=\emptyset$ there is a K indepedent of a for which

$$
m(I)<K a^{-\frac{4}{1-2 \gamma}}
$$

- Remark: $A_{a, \gamma}$ is a compact set in $C_{0}[0,1]$ and eventually one can prove that AE $\beta \in C_{0}[0,1]$ satisfy some Hölder condition
- Theorem 2: μ is countably additive on \mathcal{A}, i.e. if $I_{n} \in \mathcal{A}, n \in \mathbb{N}$ disjoint $\left(I_{j} \cap I_{k}=\emptyset, j \neq k\right)$ then

$$
I=\bigcup_{n=1}^{\infty} I_{n} \in \mathcal{A} \Rightarrow \mu(I)=\sum_{n=1}^{\infty} \mu\left(I_{n}\right)
$$

Useful Properties of Brownian Motion

- Suppose $F: C_{0}[0,1] \rightarrow \mathbb{R}$ is a measurable functional, i.e. $\left\{\beta \in C_{0}[0,1] ; F[\beta] \leq \alpha\right\}$ is measurable $\forall \alpha$
- We can consider

$$
E[F]=E_{W}[F[\beta(\cdot)]]=\int F[\beta(\cdot)] \delta_{W}, \text { a Wiener integral }
$$

- Consider $C_{x}[0, t]=\{f \in C[0, t] ; f(0)=x\}$, then

$$
P[\beta(0)=x, \beta(t) \in A]=\frac{1}{\sqrt{2 \pi t}} \int_{A} e^{-\frac{(y-x)^{2}}{2 t}} d y
$$

- Furthermore

$$
\begin{array}{r}
E[\beta(\tau)]=\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} u e^{-\frac{u^{2}}{2 \tau}} d u=0, \forall \tau>0 \\
E\left[g\left(\beta\left(\tau_{1}\right), \ldots, \beta\left(\tau_{n}\right)\right)\right]=\frac{1}{\sqrt{(2 \pi)^{n} \tau_{1}\left(\tau_{2}-\tau_{1}\right) \cdots\left(\tau_{n}-\tau_{n-1}\right)}} \times \\
\int \cdots \int g\left(u_{1}, \ldots, u_{n}\right) e^{-\frac{v_{1}^{2}}{2 \tau_{1}}-\frac{\left(u_{2}-u_{1}\right)^{2}}{2\left(\tau_{2}-\tau_{1}\right)}-\cdots-\frac{\left(u_{n}-u_{n-1}\right)^{2}}{2\left(\tau_{n}-\tau_{n-1}\right.}} d u_{1} \cdots d u_{n}
\end{array}
$$

Useful Properties of Brownian Motion

- Let us now consider, without proof, a large deviation result for BM:
- Theorem (The Law of the Iterated Logarithm for BM): Let $\beta(s) \in$ $C_{0}[0, \infty)$ be ordinary Brownian Motion, then
(1)

$$
P\left(\limsup _{t \rightarrow \infty} \frac{\beta(t)}{\sqrt{2 t \ln \ln t}}=1\right)=1
$$

(2)

$$
P\left(\liminf _{t \rightarrow \infty} \frac{\beta(t)}{\sqrt{2 t \ln \ln t}}=-1\right)=1
$$

Dirac Delta Function

- Let g be Borel measurable (B-mb), then

$$
E[g(\beta(\tau))]=\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} g(u) e^{-\frac{\nu^{2}}{2 \tau}} d u
$$

- Let $g(u)=\delta(u-x)$, using the Dirac delta function, then

$$
E[\delta(\beta(t)-x)]=\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{\infty} \delta(u-x) e^{-\frac{u^{2}}{2 t}} d u=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
$$

thus $u(x, t)=E[\delta(\beta(t)-x)]=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$ is the fundamental solution of the heat equation

$$
u_{t}=\frac{1}{2} u_{x x}, u(x, 0)=\delta(x)
$$

The Feynman-Kac Formula

- Consider now $V(x) \geq 0$ continuous and consider the equation

$$
u_{t}=\frac{1}{2} u_{x x}-V(x) u, u(x, 0)=\delta(x)
$$

then we can write

$$
u(x, t)=E\left[e^{-\int_{0}^{t} v(\beta(s)) d s} \delta(\beta(t)-x)\right]
$$

This is the Feynman-Kac formula

- Example:

$$
\begin{aligned}
V(x)=\frac{x^{2}}{2}, u_{t} & =\frac{1}{2} u_{x x}-\frac{x^{2}}{2} u, u(x, 0)=\delta(x), \text { then } \\
u(x, t) & =E\left[e^{-\frac{1}{2} \int_{0}^{t} \beta^{2}(s) d s} \delta(\beta(t)-x)\right]
\end{aligned}
$$

The Feynman-Kac Formula

- The following is clearly true:

$$
\begin{aligned}
P[\beta(\tau) \leq x]= & P\left(\left\{\beta \in C_{0}[0, \tau] ; \beta(\tau) \in E=(-\infty, x]\right\}\right)= \\
& \frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{x} e^{-\frac{u^{2}}{2 \tau}} d u, \text { and similarly }
\end{aligned}
$$

With $0=\tau_{0} \leq \tau_{1} \cdots \leq \tau_{n}$ we have

$$
\begin{aligned}
& P\left[\beta\left(\tau_{1}\right) \leq x_{1}, \ldots, \beta\left(\tau_{n}\right) \leq x_{n}\right]=\frac{(2 \pi)^{-n / 2}}{\sqrt{\left(\tau_{1}-\tau_{0}\right)\left(\tau_{2}-\tau_{1}\right) \cdots\left(\tau_{n}-\tau_{n-1}\right)}} \times \\
& \int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{1}} e^{-\frac{u_{1}^{2}}{2 \tau_{1}}-\frac{\left(u_{2}-u_{1}\right)^{2}}{2\left(\tau_{2}-\tau_{1}\right)}-\cdots-\frac{\left(u_{n}-u_{n-1}\right)^{2}}{2\left(\tau_{n}-\tau_{n-1}\right)}} d u_{1} \cdots d u_{n}
\end{aligned}
$$

- Hence with $A_{i j}=\min \left(\tau_{i}, \tau_{j}\right)$

$$
\begin{aligned}
& E\left[g\left(\beta\left(\tau_{1}\right), \ldots, \beta\left(\tau_{n}\right)\right)\right]=\frac{1}{\sqrt{(2 \pi)^{n}|A|}} \times \\
& \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(u_{1}, \cdots, u_{n}\right) e^{-\frac{1}{2} U^{\top} A^{-1} U} d u_{1} \cdots d u_{n}
\end{aligned}
$$

Feynman-Kac Formula: Derivation

- Let us consider the Wiener integral below, where expectation is taken over all of $C_{0}[0, t]$

$$
E\left\{e^{-\int_{0}^{t} V(\beta(\tau)) d \tau}\right\}
$$

- We will show that this is equal to the solution of the Bloch equation using an elementary proof of Kac
- We assume that $0 \leq V(x)<M$ is bounded from above and non-negative; however, the upper bound will be relaxed
- We know

$$
e^{-\int_{0}^{t} V(\beta(\tau)) d \tau}=\sum_{k=0}^{\infty}(-1)^{k}\left[\int_{0}^{t} V(\beta(\tau)) d \tau\right]^{k} / k!
$$

- Since $V(\cdot)$ is bounded we also have

$$
0<\int_{0}^{t} V(\beta(\tau)) d \tau<M t
$$

- This allows us to use Fubini's theorem as follows

$$
E\left\{e^{-\int_{0}^{t} V(\beta(\tau)) d \tau}\right\}=\sum_{k=0}^{\infty}(-1)^{k} E\left\{\left[\int_{0}^{t} V(\beta(\tau)) d \tau\right]^{k}\right\} / k!
$$

Feynman-Kac Formula: Derivation

- Now let us consider the moments

$$
\mu_{k}(t)=E\left\{\left[\int_{0}^{t} V(\beta(\tau)) d \tau\right]^{k}\right\}
$$

- Consider first $k=1$

$$
E\left\{\int_{0}^{t} V(\beta(\tau)) d \tau\right\} \stackrel{\text { Fubini }}{=} \int_{0}^{t} E\{V(\beta(\tau))\} d \tau=\int_{0}^{t} \int_{-\infty}^{\infty} V(\xi) \frac{1}{\sqrt{2 \pi \tau}} e^{-\frac{\xi^{2}}{2 \tau}} d \xi d \tau
$$

- The case $k=2$ is a bit more complicated

$$
\begin{gathered}
E\left\{\left[\int_{0}^{t} V(\beta(\tau)) d \tau\right]^{2}\right\}=2!E\left\{\int_{0}^{t} \int_{0}^{\tau_{2}} V\left(\beta\left(\tau_{1}\right)\right) V\left(\beta\left(\tau_{2}\right)\right) d \tau_{1} d \tau_{2}\right\} \stackrel{\text { Fubini }}{=} \\
2!\int_{0}^{t} \int_{0}^{\tau_{2}} E\left\{V\left(\beta\left(\tau_{1}\right)\right) V\left(\beta\left(\tau_{2}\right)\right)\right\} d \tau_{1} d \tau_{2}= \\
2!\int_{0}^{t} \int_{0}^{\tau_{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V\left(\xi_{1}\right) V\left(\xi_{2}\right) \frac{e^{-\frac{\xi_{1}^{2}}{2 \tau_{1}}}}{\sqrt{2 \pi \tau_{1}}} \frac{e^{-\frac{\left(\xi_{2}-\xi_{1}\right)^{2}}{2\left(\tau_{2}-\tau_{1}\right)}}}{\sqrt{2 \pi\left(\tau_{2}-\tau_{1}\right)}} d \xi_{1} d \xi_{2} d \tau_{1} d \tau_{2} \text { N!T }
\end{gathered}
$$

Feynman-Kac Formula: Derivation

- For general k we will proceed by defining the function $Q_{n}(x, t)$ as follows

1. $Q_{0}(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$
2. $Q_{n+1}(x, t)=\int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi(\tau-t)}} e^{-\frac{(x-\xi)^{2}}{2(\tau-t)}} V(\xi) Q_{n}(\xi, \tau) d \xi d \tau$

- We have that $\mu_{k}(t)=k!\int_{0}^{t} Q_{k}(x, t) d x$
- By the boundedness of $V(\cdot)$ we also have, by induction, that

$$
0 \leq Q_{n}(x, t) \leq \frac{(M t)^{n}}{n!} Q_{0}(x, t)
$$

- Now define $Q(x, t)=\sum_{k=0}^{\infty}(-1)^{k} Q_{k}(x, t)$
- This series converges for all x and $t \neq 0$ and $|Q(x, t)|<e^{M t} Q_{0}(x, t)$
- One can easily check that the definitions of the $Q_{k}(x, t)$'s ensures that $Q(x, t)$ satisfies the following integral equation

$$
Q(x, t)+\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{\sqrt{(t-\tau)}} e^{-\frac{(x-\xi)^{2}}{2(t-\tau)}} V(\xi) Q(\xi, \tau) d \xi d \tau=Q_{0}(x, t)
$$

Feynman-Kac Formula: Derivation

- It also follows that

$$
E\left\{e^{-\int_{0}^{t} V(\beta(\tau)) d \tau}\right\}=\int_{-\infty}^{\infty} Q(x, t) d x
$$

- Recall that his Wiener integral is over all of $C_{0}[0, t]$, let us restrict this only to $a<\beta(t)<b$, thus

$$
E\left\{e^{-\int_{0}^{t} V(\beta(\tau)) d \tau} ; a<\beta(t)<b\right\}=\int_{a}^{b} Q(x, t) d x
$$

- This tell us immediately that $Q(x, t) \geq 0$
- Now we will relax the upper bound on $V(\cdot)$ by considering the function

$$
V_{M}(x)= \begin{cases}V(x), & \text { if } V(x) \leq M \\ M, & \text { if } V(x) \geq M\end{cases}
$$

and we denote $Q^{(M)}(x, t)$ as the respective " Q " function

Feynman-Kac Formula: Derivation

- By the additivity of Wiener measure we have that

$$
\lim _{M \rightarrow \infty} E\left\{e^{-\int_{0}^{t} V_{M}(\beta(\tau)) d \tau} ; a<\beta(t)<b\right\}=E\left\{e^{-\int_{0}^{t} V(\beta(\tau)) d \tau} ; a<\beta(t)<b\right\}
$$

- Furthermore, as $M \rightarrow \infty$ the functions $Q^{(M)}(x, t)$ form a decreasing sequence with $\lim _{M \rightarrow \infty} Q^{(M)}(x, t)=Q(x, t)$ existing with the resulting limiting function, $Q(x, t)$ satisfying the (Bloch) equation

$$
\frac{\partial Q}{\partial t}=\frac{1}{2} \frac{\partial^{2} Q}{\partial x^{2}}-V(x) Q
$$

with the initial condition $Q(x, t) \rightarrow \delta(x)$ as $t \rightarrow 0$

Feynman-Kac Formula: Derivation Variation

- Recall the integral equation solved by $Q(x, t)$

$$
Q(x, t)+\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{\sqrt{(t-\tau)}} e^{-\frac{(x-\xi)^{2}}{2(t-\tau)}} V(\xi) Q(\xi, \tau) d \xi d \tau=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
$$

- Let us define $\Psi(x)=\int_{-\infty}^{\infty} Q(x, t) e^{-s t} d t$ with $s>0$, this is the Laplace transform of $Q(x, t)$
- Now multiply the integral equation by $e^{-s t}$ and integrate out t to get the equation satisfied by the Laplace transform of $Q(x, t)$

$$
\Psi(x)+\frac{1}{\sqrt{2 s}} \int_{-\infty}^{\infty} e^{-\sqrt{2 s}|x-\xi|} V(\xi) \Psi(\xi) d \xi=\frac{1}{\sqrt{2 s}} e^{-\sqrt{2 s}|x|}
$$

- It is easy to verify that $\Psi(x)$ also satisfies the following differential equation

$$
\frac{1}{2} \psi^{\prime \prime}-(s+V(x)) \psi=0, \text { with the following conditions }
$$

1. $\Psi \rightarrow 0$ as $|x| \rightarrow \infty$
2. Ψ^{\prime} is continuous except at $x=0$
3. $\Psi^{\prime}(-0)-\Psi^{\prime}(-0)=2$

Explicit Representation of Brownian Motion

- Suppose that $F[\beta]=\int_{0}^{t} \beta^{2}(s) d s$, then it follows

$$
E\left[\int_{0}^{t} \beta^{2}(s) d s\right] \stackrel{\text { Fubini }}{=} \int_{0}^{t} E\left[\beta^{2}(s)\right] d s=\int_{0}^{t} s d s=\frac{t^{2}}{2}
$$

- To compute $E\left[e^{\int_{0}^{t} \beta(s) d s}\right]$, we need to do some classical analysis
- Consider the eigenvalue problem for this integral equation

$$
\rho \int_{0}^{t} u(s) \min (\tau, s) d s=u(\tau)
$$

- Find eigenvalues $\rho_{0}, \rho_{1}, \ldots$ and corresponding orthonormalized eigenfunctions $u_{0}(\tau), u_{1}(\tau), \ldots$ with $\int_{0}^{t} u_{j}(\tau) u_{k}(\tau) d \tau=\delta_{j k}, \forall j, k \geq 0$

Explicit Representation of Brownian Motion

- For $t>\tau$ we have

$$
\begin{aligned}
\rho \int_{0}^{\tau} s u(s) d s+\rho \int_{\tau}^{t} \tau u(s) d s & =u(\tau) \\
\stackrel{\text { d }}{d \tau} \rho \tau u(\tau)-\rho \tau u(\tau)+\rho \int_{\tau}^{t} u(s) d s & =u^{\prime}(\tau) \\
\stackrel{\frac{d}{d \tau}}{\Longrightarrow}-\rho u(\tau) & =u^{\prime \prime}(\tau)
\end{aligned}
$$

Thus $u^{\prime \prime}(\tau)+\rho u(\tau)=0$ and with $u(0)=0, u^{\prime}(t)=0$ we get

$$
\left.\begin{array}{l}
\rho_{k}=\left(k+\frac{1}{2}\right)^{2} \frac{\pi^{2}}{t^{2}} \\
u_{k}(s)=\sqrt{\frac{2}{t}} \sin \left(\left(k+\frac{1}{2}\right) \frac{\pi s}{t}\right)
\end{array}\right\} \quad k=0,1,2, \ldots
$$

- By the spectral theorem the integral equation kernel can be represented as:

$$
\min (s, \tau)=\sum_{k=0}^{\infty} \frac{u_{k}(s) u_{k}(\tau)}{\rho_{k}}
$$

Explicit Representation of Brownian Motion

- Let $\alpha_{0}(\omega), \alpha_{1}(\omega), \ldots$ be i.i.d. $N(0,1)$, then we claim that the following is an explicit representation of BM

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\alpha_{k}(\omega) u_{k}(\tau)}{\sqrt{\rho_{k}}}=\beta(\tau) \tag{2.1}
\end{equation*}
$$

- This is a Fourier series with random coefficients and we will prove that this converges for AE path ω with the following properties

1. We use ω to denote an individual sample of i.i.d. $N(0,1) \alpha_{i}(\omega)$'s
2. $E\left[\alpha_{i}(\omega)\right]=0, \forall i \geq 0$
3. $E\left[\alpha_{i}(\omega) \alpha_{j}(\omega)\right]=\bar{\delta}_{i j}, \forall i, j \geq 0$

- This is the simplest version of the Karhunen-Loève expansion of stochastic processes

N 너․
Stanonor Instutur oce

Explicit Representation of Brownian Motion (Proof)

- We now use the representation (2.1) to compute some expectations w.r.t. the α_{i} 's $\sim N(0,1)$

$$
\begin{aligned}
& E\left[\sum_{k=0}^{\infty} \frac{\alpha_{k}(\omega)}{\sqrt{\rho_{k}}} u_{k}(\tau)\right] \stackrel{\text { i.i.d. } N(0,1)}{=} \text { \& Fubini } \\
& \sum_{k=0}^{\infty} \frac{E\left[\alpha_{k}(\omega)\right] u_{k}(\tau)}{\sqrt{\rho_{k}}}=\sum_{k=0}^{\infty} \frac{0 \times u_{k}(\tau)}{\sqrt{\rho_{k}}}=0=E[\beta(\tau)]
\end{aligned}
$$

- We now use the representation (2.1) to compute some expectations

$$
\begin{aligned}
& E\left[\sum_{k=0}^{\infty} \frac{\alpha_{k}(\omega)}{\sqrt{\rho_{k}}} u_{k}(\tau) \sum_{l=0}^{\infty} \frac{\alpha_{l}(\omega)}{\sqrt{\rho_{l}}} u_{l}(\tau)\right] \stackrel{\text { i.i.d.N(0,1) }}{=} \\
& \sum_{k=0}^{\infty} \frac{u_{k}^{2}(\tau)}{\rho_{k}}=\min (\tau, \tau)=\tau=E\left[\beta^{2}(\tau)\right]
\end{aligned}
$$

Explicit Representation of Brownian Motion (Proof)

- Similarly we compute

$$
\begin{aligned}
& E\left[\sum_{k=0}^{\infty} \frac{\alpha_{k}(\omega)}{\sqrt{\rho_{k}}} u_{k}(\tau) \sum_{l=0}^{\infty} \frac{\alpha_{l}(\omega)}{\sqrt{\rho_{l}}} u_{l}(s)\right] \stackrel{\text { i.i.d.N(0,1) }}{=} \\
& \sum_{k=0}^{\infty} \frac{u_{k}(\tau) u_{k}(s)}{\rho_{k}}=\min (\tau, s)=E[\beta(\tau) \beta(s)]
\end{aligned}
$$

- We have computed the mean, variance, and correlation of the process defined in (2.1), and it is clear that it is $\sim N(0, \tau)$ and hence Brownian motion, $\beta(\tau)$

An Introduction to the Karhunen-Loève Expansion

- Karhunen-Loève (KL) expansion writes the stochastic processes $Y(\omega, t)$ as a stochastic linear combination of a set of orthonormal, deterministic functions in $L^{2},\left\{e_{i}(t)\right\}_{i=0}^{\infty}$

$$
Y(\omega, t)=\sum_{i=0}^{\infty} Z_{i}(\omega) e_{i}(t)
$$

1. Given the covariance function of the random process $Y(\omega, t)$ as $C_{Y Y}(s, \tau)$ the KL expansion is

$$
Y(\omega, t)=\sum_{i=0}^{\infty} \sqrt{\lambda_{i}} \xi_{i}(\omega) \phi_{i}(t)
$$

2. Here λ_{i} and $\phi_{i}(t)$ are the eigenvalues and L^{2}-orthonormal eigenfunctions of the covariance function and $\xi_{i}(\omega) \phi_{i}(t)$ are i.i.d. random variables whose distribution depends on $Y(\omega, t)$, i.e. $Z_{i}(\omega)=\sqrt{\lambda_{i}} \xi_{i}(\omega)$, and $e_{i}(t)=\phi_{i}(t)$
3. It can be shown that such an expansion converges to the stochastic process in L^{2} (in distribution)

An Introduction to the Karhunen-Loève Expansion
4. By the spectral theorem, we can expand the covariance, thought of as an integral equation kernel, as follows

$$
C_{Y Y}(s, \tau)=\sum_{i=0}^{\infty} \lambda_{i} \phi_{i}(s) \phi_{i}(\tau)
$$

5. Here λ_{i} and $\phi_{i}(t)$ are the eigenvalues and eigenfunctions of the following integral equation

$$
\int_{0}^{\infty} C_{Y Y}(s, \tau) \phi_{j}(\tau) d \tau=\lambda_{j} \phi_{j}(s)
$$

- For ordinary BM, $Y(\omega, t)=\beta(t)$, we have from above

1. $C_{Y Y}(s, \tau)=C_{\beta \beta}(s, \tau)=\min (s, \tau)$
2. $\lambda_{j}=\frac{1}{\rho_{j}}$, where $\rho_{j}=\left(j+\frac{1}{2}\right)^{2} \frac{\pi^{2}}{s^{2}}$
3. $\phi_{j}(t)=u_{j}(t)=\sqrt{\frac{2}{s}} \sin \left(\left(j+\frac{1}{2}\right) \frac{\pi t}{s}\right)$
4. $\xi_{j}(\omega)=\alpha_{j}(\omega) \sim N(0,1)$
5. $Y(\omega, t)=\sum_{j=0}^{\infty} \frac{\alpha_{j}(\omega) u_{j}(t)}{\sqrt{\bar{P}_{j}}}=\beta(t)$

Explicit Computation of Wiener Integrals

- We are now in position to compute

$$
\begin{aligned}
& E\left[e^{\int_{0}^{t} \beta(s) d s}\right]=E\left[e^{\int_{0}^{t} \sum_{k=0}^{\infty} \frac{\alpha_{k} u_{k}(s)}{\sqrt{\rho_{k}}} d s}\right]= \\
& E\left[e^{\sum_{k=0}^{\infty} \int_{0}^{t} \frac{\alpha_{k}}{\sqrt{\rho_{k}}} u_{k}(s) d s}\right] \stackrel{\text { indep. }}{=} \prod_{k=0}^{\infty} E\left[e^{\left.\frac{\alpha_{k}}{\sqrt{\rho_{k}} \int_{0}^{t} u_{k}(s) d s}\right]=}\right. \\
& \prod_{k=0}^{\infty} e^{\frac{1}{2 \rho_{k}}\left(\int_{0}^{t} u_{k}(s) d s\right)^{2}}=e^{\frac{1}{2} \int_{0}^{t} \int_{0}^{t} \sum_{k=0}^{\infty} \frac{u_{k}(s) u_{k}(\tau)}{\rho_{k}} d s d \tau}= \\
& e^{\frac{1}{2} \int_{0}^{t} \int_{0}^{t} \min (s, \tau) d s d \tau}=e^{\frac{1}{2} \int_{0}^{t}\left[\left(\frac{\tau^{2}}{2}+(\tau(t-\tau))\right] d \tau\right.}=e^{\frac{t^{3}}{6}}
\end{aligned}
$$

- We have used the following results

1. $E\left[e^{\alpha u}\right]=e^{\frac{u^{2}}{2}}$, with $\alpha \sim N(0,1)$ via moment generating function
2. $\int_{0}^{t} \min (s, \tau) d s=\int_{0}^{\tau} s d s+\int_{\tau}^{t} \tau d s=\frac{\tau^{2}}{2}+(\tau(t-\tau))$

Explicit Computation of Wiener Integrals

- Moreover

$$
\begin{aligned}
& E\left[e^{-\frac{\lambda^{2}}{2} \int_{0}^{t} \beta^{2}(s) d s}\right]=E\left[e^{-\frac{\lambda^{2}}{2} \sum_{k=0}^{\infty} \frac{\alpha_{k}^{2}}{\rho_{k}}}\right] \\
& \quad \stackrel{\text { indep. }}{=} \prod_{k=0}^{\infty} E\left[e^{-\frac{\lambda^{2}}{2} \frac{\alpha_{k}^{2}}{\rho_{k}}}\right]=\prod_{k=0}^{\infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{\lambda^{2}}{2} \frac{\alpha^{2}}{\rho_{k}}} e^{-\frac{\alpha^{2}}{2}} d \alpha \\
& \quad=\prod_{k=0}^{\infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{\alpha^{2}}{2}\left(1+\frac{\lambda^{2}}{\rho_{k}}\right)} d \alpha \\
& \quad=\prod_{k=0}^{\infty} \frac{1}{\sqrt{1+\frac{\lambda^{2}}{\rho_{k}}}}=\frac{1}{\sqrt{\prod_{k=0}^{\infty}\left(1+\frac{\lambda^{2} t^{2}}{\left(k+\frac{1}{2}\right)^{2}+\pi^{2}}\right)}} \\
& \quad=\frac{1}{\sqrt{\cosh (\lambda t)}}
\end{aligned}
$$

The Schrödinger Equation

- Let us review the Schrödinger equation from quantum mechanics

1. The "standard," time-dependent Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t)=\left[\frac{-\hbar^{2}}{2 m} \Delta+V(\mathbf{x}, t)\right] \Psi(\mathbf{x}, t)=\hat{H}(\mathbf{x}, t) \Psi
$$

2. We can make the equation dimensionless as

$$
-i \frac{\partial}{\partial t} \psi(\mathbf{x}, t)=\left[\frac{1}{2} \Delta-V(\mathbf{r}, t)\right] \psi(\mathbf{x}, t)=H(\mathbf{x}, t) \psi
$$

3. We also are interested in the spectral properties of the time-independent problem

$$
\left[\frac{1}{2} \Delta-V(\mathbf{x}, t)\right] \psi(\mathbf{x}, t)=H(\mathbf{x}, t) \psi=\lambda \psi
$$

The Schrödinger and Bloch Equations

- We now arrive at the Bloch equation

1. Consider transformation (analytic continuation) of the Schrödinger to imaginary time, $\tau=i t$, this gives us the Bloch equation, but is sometimes also called the Schrödinger equation (going back to $u(\mathbf{x}, t)$)

$$
\frac{\partial u(\mathbf{x}, t)}{\partial \tau}=\frac{1}{2} \Delta u(\mathbf{x}, t)-V(\mathbf{x}, t) u(\mathbf{x}, t)
$$

2. The time dependent Bloch equation can be solved via separation of variables as

$$
\begin{aligned}
& u(\mathbf{x}, t)=U(\mathbf{x}) T(t), \text { and so we apply this to the Bloch equation } \\
& \frac{\partial u(\mathbf{x}, t)}{\partial t}=U(\mathbf{x}) T^{\prime}(t)=\left[\frac{1}{2} \Delta U(\mathbf{x})-V(\mathbf{x}, t) U(\mathbf{x})\right] T(t)
\end{aligned}
$$

The Schrödinger and Bloch Equations

3. Placing the time and space dependent on different sides of the equation gives

$$
\frac{T^{\prime}(t)}{T(t)}=\lambda=\frac{\left[\frac{1}{2} \Delta-V(\mathbf{x}, t)\right] U(\mathbf{x})}{U(\mathbf{x})}, \text { where } \lambda \text { is constant }
$$

4. Thus we have that $T(t)$ and $U(\mathbf{x})$ satisfy the following equations

$$
\begin{array}{r}
T^{\prime}(t)-\lambda T(t)=0, \\
{\left[\frac{1}{2} \Delta-V(\mathbf{x}, t)\right] U(\mathbf{x})=\lambda U(\mathbf{x})}
\end{array}
$$

5. Thus the λ_{j} 's and $\psi_{j}(\mathbf{x}, t)$'s are eigenvalues and eigenfunctions of the above eigenvalue problem, and the solution by separation variables is

$$
u(\mathbf{x}, t)=\sum_{j=1}^{\infty} c_{j} e^{-\lambda_{j} t} \psi_{j}(\mathbf{x}) \text {, where, } c_{j}=\int_{-\infty}^{\infty} u_{0}(\mathbf{x}) \psi_{j}(\mathbf{x}) d \mathbf{x}
$$

The Schrödinger and Bloch Equations

- Let $\lambda=1$, as $t \rightarrow \infty, E\left[e^{-\frac{1}{2} \int_{0}^{t} \beta^{2}(s) d s}\right]=\frac{1}{\sqrt{\cosh (t)}} \sim \sqrt{2} e^{-\frac{t}{2}}$ and

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln E\left[e^{-\frac{1}{2} \int_{0}^{t} \beta^{2}(s) d s}\right]=-\frac{1}{2} .
$$

- Theorem: If $V(y) \rightarrow \infty$ as $|y| \rightarrow \infty$, then

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln E\left[e^{-\int_{0}^{t} V(\beta(s)) d s}\right]=-\lambda_{1},
$$

where λ_{1} is the lowest eigenvalue of the Bloch equation

$$
\frac{1}{2} \psi^{\prime \prime}(y)-V(y) \psi(y)=\lambda \psi(y)
$$

The Schrödinger and Bloch Equations

- Feynmann-Kac: Let V be measurable and bounded below, then the solution of the Bloch equation

$$
u_{t}=\frac{1}{2} u_{x x}-V(x) u, \quad u(x, 0)=u_{0}(x)
$$

is $u(x, t)=E_{x}\left[e^{-\int_{0}^{t} v(\beta(s)) d s} u_{0}(\beta(t))\right]$

- This equation is the imaginary time analog of the Schrödinger

$$
\frac{1}{2} \psi^{\prime \prime}(y)-V(y) \psi(y)=\lambda \psi(y)
$$

Equation

1. Special case: $V \equiv 0$:

$$
E_{x}\left[u_{0}(\beta(t))\right]=\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{\infty} u_{0}(y) e^{-\frac{(x-y)^{2}}{2 t}} d y=u(x, t)
$$

Another special case

2. For $V(x)=\frac{x^{2}}{2}, u_{0} \equiv 1$:

$$
\begin{aligned}
u(x, t) & ==E_{x}\left[e^{-\frac{1}{2} \int_{0}^{t} \beta^{2}(s) d s} \cdot 1\right]=E_{0}\left[e^{-\frac{1}{2} \int_{0}^{t}(\beta(s)+x)^{2} d s}\right] \\
& =e^{-\frac{x^{2} t}{2}} E\left[e^{-x \int_{0}^{t} \beta(s) d s-\frac{1}{2} \int_{0}^{t} \beta^{2}(s) d s}\right] \\
& =e^{-\frac{x^{2} t}{2}} E\left[e^{\left.-x \sum_{k=0}^{\infty} \frac{\alpha_{k}}{\sqrt{\rho_{k}} \int_{0}^{t} u_{k}(s) d s-\frac{1}{2} \sum_{k=0}^{\infty} \frac{\alpha_{k}^{2}}{\rho_{k}}}\right]}\right. \\
& =e^{-\frac{x^{2} t}{2}} \prod_{k=0}^{\infty} E\left[e^{\left.-x \frac{\alpha_{k}}{\sqrt{\rho_{k}} \int_{0}^{t} u_{k}(s) d s-\frac{1}{2} \frac{\alpha_{k}^{2}}{\rho_{k}}}\right]}\right. \\
& =e^{-\frac{x^{2} t}{2}} \prod_{k=0}^{\infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x \frac{\alpha}{\sqrt{\rho_{k}}} \int_{0}^{t} u_{k}(s) d s-\frac{\alpha^{2}}{2}\left(1+\frac{1}{\rho_{k}}\right)} d \alpha \\
& =e^{-\frac{x^{2} t}{2}} \frac{1}{\sqrt{\cosh (t)}} e^{\frac{x^{2}}{2} \int_{0}^{t} \int_{0}^{t} \sum_{k=0}^{\infty} \frac{u_{k}(s) u_{k}(\tau)}{\rho_{k}+1}} d s d \tau
\end{aligned}
$$

- Define $R\left(s, \tau ;-\lambda^{2}\right)$ such that

$$
\min (s, \tau)=\lambda^{2} \int_{0}^{t} \min (s, \xi) R\left(\xi, \tau ;-\lambda^{2}\right) d \xi
$$

Note that $R(s, \tau ;-1)=-\sum_{k=0}^{\infty} \frac{u_{k}(s) u_{k}(\tau)}{\rho_{k}+1}$.

- Consider

$$
\begin{aligned}
-\sum_{k=0}^{\infty} \frac{u_{k}(s) u_{k}(\tau)}{\rho_{k}+\lambda^{2}} & +\sum_{k=0}^{\infty} \frac{u_{k}(s) u_{k}(\tau)}{\rho_{k}} \\
& =\lambda^{2} \int_{0}^{t} \sum_{k=0}^{\infty} \frac{u_{k}(s) u_{k}(\xi)}{\rho_{k}} \sum_{l=0}^{\infty} \frac{u_{l}(\xi) u_{l}(\tau)}{\rho_{k}+\lambda^{2}} d \xi
\end{aligned}
$$

- For $0 \leq s \leq t$ we have

$$
R\left(s, \tau ;-\lambda^{2}\right)= \begin{cases}-\frac{\cosh (\lambda(t-\tau)) \sinh (\lambda s)}{\lambda \cosh (\lambda t)} & s \leq \tau \\ -\frac{\cosh (\lambda(t-s) \sinh (\lambda \tau)}{\lambda \cosh (\lambda t)} & s \geq \tau\end{cases}
$$

- Thus

$$
u(x, t)=\frac{1}{\sqrt{\cosh (t)}} e^{-\frac{x^{2}}{2}\left(t+\int_{0}^{t} \int_{0}^{t} R(s, \tau ;-1) d s d \tau\right)}=\frac{1}{\sqrt{\cosh (t)}} e^{-\frac{x^{2} \tanh t}{2}}
$$

- Exercise: compute $u(x, t)$ for $V(x)=\frac{x^{2}}{2}, u_{0}(x)=x$. Hint: the solution is $u(x, t)=E_{x}\left[e^{-\frac{1}{2} \int_{0}^{t} \beta^{2}(s) d s} \beta(t)\right]$. Calculate

$$
\tilde{u}(x, t, \lambda)=E_{X}\left[e^{\lambda \beta(t)-\frac{1}{2} \int_{0}^{t} \beta^{2}(s) d s}\right], \quad u(x, t)=\left.\frac{d}{d \lambda} \tilde{u}(x, t, \lambda)\right|_{\lambda=0} .
$$

Proof of the Arcsin Law

- Theorem: Let X_{1}, X_{2}, \ldots be i.i.d. r.v.'s with $E\left[X_{i}\right]=0, \operatorname{Var}\left(X_{i}\right)=1$, and N_{n} is the number of partial sums $S_{j}=\sum_{i=1}^{j} X_{i}$ out of S_{1}, \ldots, S_{n} which are ≥ 0 :

$$
\lim _{n \rightarrow \infty} P\left[\frac{N_{n}}{n}<\alpha\right]=\Sigma(\alpha)= \begin{cases}0 & \alpha<0 \\ \frac{2}{\pi} \arcsin \sqrt{\alpha} & 0 \leq \alpha \leq 1 \\ 1 & \alpha \geq 1\end{cases}
$$

- Proof: (Using the Feynman-Kac formula and Donsker's Invariance Principal) Define the random step function

$$
X^{(n)}(\tau)= \begin{cases}\frac{S_{1}}{\sqrt{n}} & \tau=0 \\ \frac{S_{i}}{\sqrt{n}} & \frac{i-1}{n}<\tau \leq \frac{i}{n}\end{cases}
$$

The invariance principle states that for a large class of functionals \mathcal{F} and $F \in \mathcal{F}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[F\left[X^{(n)}(\cdot)\right] \leq \alpha\right]=P_{B M}[F[\beta(\cdot)] \leq \alpha] \tag{2.2}
\end{equation*}
$$

Proof of the Arcsin Law

- For example, let

$$
F[\beta]=\int_{0}^{t} \frac{1+\operatorname{sgn}[\beta(s)]}{2} d s, \text { where } \operatorname{sgn}(x)= \begin{cases}1 & x \geq 0 \\ -1 & x<0\end{cases}
$$

- Then (2.2) says that

$$
\lim _{n \rightarrow \infty} P\left[\frac{N_{n}}{n} \leq \alpha\right]=P_{B M}\left[\int_{0}^{1} \frac{1+\operatorname{sgn}[\beta(s)]}{2} d s \leq \alpha\right]
$$

of the Brownian motion that is positive

- We drop the BM from the probabilities as it is understood

Proof of the Arcsin Law

- Let

$$
\sigma(\alpha, t)=P\left[\int_{0}^{t} \frac{1+\operatorname{sgn}[\beta(s)]}{2} d s \leq \alpha\right]
$$

- Then for $\lambda>0$ we can define the Laplace Transform/Moment Generating Function of $\sigma(\alpha, t)$

$$
E\left[e^{-\lambda \int_{0}^{t} \frac{1+\operatorname{sgn}[\beta(s)]}{2} d s}\right]=\int_{0}^{\infty} e^{-\lambda \alpha} d \sigma(\alpha, t)
$$

- Now define

$$
u(x, t ; \lambda)=E\left[e^{-\lambda \int_{0}^{t} \frac{1+\operatorname{sgn}[\beta(s)]}{2} d s} \delta(\beta(t)-x)\right]
$$

Proof of the Arcsin Law

- By Feynman-Kac this is a solution to the following PDE

$$
\begin{gathered}
u(x, t ; \lambda)_{t}=\frac{1}{2} u(x, t ; \lambda)_{x x}-\lambda V(x) u(x, t ; \lambda), \quad u(x, 0 ; \lambda)=\delta(x) \\
\text { where } V(x)= \begin{cases}1 & x \geq 0 \\
0 & x<0\end{cases}
\end{gathered}
$$

- We also realize that

$$
\begin{gathered}
\int_{-\infty}^{\infty} u(x, t ; \lambda) d x=\int_{-\infty}^{\infty} E\left[e^{-\lambda \int_{0}^{t} \frac{1+\operatorname{sgnn}[\beta(s)]}{2} d s} \delta(\beta(t)-x)\right] d x \stackrel{F u b i n i}{=} \\
E\left[\int_{-\infty}^{\infty} e^{-\lambda \int_{0}^{t} \frac{t+\operatorname{sgn}[\beta(s)]}{2} d s} \delta(\beta(t)-x) d x\right]=E\left[e^{-\lambda \int_{0}^{t} \frac{1+\operatorname{sgn}[\mid(s)]}{2} d s}\right]= \\
\int_{0}^{\infty} e^{-\lambda \alpha} d \sigma(\alpha, t)
\end{gathered}
$$

Proof of the Arcsin Law

- It is know that $u(x, t ; \lambda)$ also solves the following integral equation

$$
\begin{gathered}
u(x, t ; \lambda)=\frac{1}{\sqrt{2 \pi t}} e^{\frac{-x^{2}}{2 t}}- \\
\lambda \int_{0}^{t} d \tau \int_{-\infty}^{\infty} d \xi V(\xi) u(\xi, \tau ; \lambda) \frac{1}{\sqrt{2 \pi(t-\tau)}} e^{\frac{-(x-\xi)^{2}}{2(t-\tau)}}
\end{gathered}
$$

- Now we apply the heat equation operator, $\frac{\partial}{\partial t}-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}$ to this

$$
\frac{\partial u}{\partial t}-\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}=0-\lambda V(x) u(x, t ; \lambda)
$$

- And we the Laplace transform of $u(x, t ; \lambda)$

$$
\Psi(x, s ; \lambda)=\int_{-\infty}^{\infty} e^{-s t} u(x, t ; \lambda) d t
$$

Proof of the Arcsin Law

- If we take the Laplace transform of the integral equation we get

$$
\begin{aligned}
& \Psi(x, s ; \lambda)=\frac{1}{\sqrt{2 s}} e^{-\sqrt{2 s}|x|} \\
& -\lambda \int_{-\infty}^{\infty} d \xi V(\xi) \Psi(\xi, s ; \lambda) \frac{1}{\sqrt{2 s}} e^{-\sqrt{2 s}|x-\xi|}
\end{aligned}
$$

- This is equivalent to the following ordinary differential equation (ODE)

$$
\begin{aligned}
& \frac{1}{2} \Psi^{\prime \prime}(x)-(s+\lambda V(x)) \Psi(x)=0, \Psi \rightarrow 0 \text { as }|x| \rightarrow \infty \\
& \Psi(x) \text { and } \Psi^{\prime}(x) \text { is continuous at } x \neq 0, \text { and } \Psi^{\prime}\left(0^{-}\right)-\Psi^{\prime}\left(0^{+}\right)=2
\end{aligned}
$$

Proof of the Arcsin Law

- The solution to the above ODE is

$$
\Psi(x, s ; \lambda)= \begin{cases}\frac{\sqrt{2}}{\sqrt{s+\lambda}+\sqrt{s}} e^{-\sqrt{2(s+\lambda)} x} & x \geq 0 \\ \frac{\sqrt{2}}{\sqrt{s+\lambda}+\sqrt{s}} e^{-\sqrt{2 s} x} & x<0\end{cases}
$$

- Thus we have that

$$
\int_{-\infty}^{\infty} \Psi(x, s ; \lambda) d x=\frac{1}{\sqrt{s(s+\lambda)}}
$$

- So we have the following

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \Psi(x, s ; \lambda) d x=\int_{0}^{\infty} e^{-s t} \int_{-\infty}^{\infty} u(x, t ; \lambda) d x d s= \\
\int_{0}^{\infty} e^{-s t} \int_{0}^{\infty} e^{-\lambda \alpha} d \sigma(\alpha, t) d s=\frac{1}{\sqrt{s(s+\lambda)}}
\end{array}
$$

Proof of the Arcsin Law

- The last line test us that we know the Laplace transform of

$$
F(t)=\int_{0}^{\infty} e^{-\lambda \alpha} d \sigma(\alpha, t)
$$

- The inverse Laplace transform of $\frac{1}{\sqrt{s(s+\lambda)}}$ tells us that

$$
F(t)=e^{-\frac{\lambda t}{2}} I_{0}\left(\frac{\lambda t}{2}\right)=\int_{0}^{\infty} e^{-\lambda \alpha} \sigma^{\prime}(\alpha, t) d \alpha
$$

- Which is itself the Laplace transform of $\sigma^{\prime}(\alpha, t)$, so we have

$$
\sigma^{\prime}(\alpha, t)= \begin{cases}\frac{1}{\pi \sqrt{\alpha(t-\alpha)}} & 0<\alpha<t \\ 0 & \alpha>t\end{cases}
$$

Proof of the Arcsin Law

- We now integrate the previous result

$$
\int_{-\infty}^{\alpha} \sigma^{\prime}(\bar{\alpha}, t) d \bar{\alpha}=\sigma(\alpha, t)= \begin{cases}0 & 0<\alpha \\ \frac{2}{\pi} \arcsin \sqrt{\frac{\alpha}{t}} & 0<\alpha<t \\ 1 & \alpha>t\end{cases}
$$

- Setting $t=1$ we get the Arcsin Law

$$
\sigma(\alpha, 1)=\Sigma(\alpha)=\left\{\begin{array}{ll}
0 & 0<\alpha \\
\frac{2}{\pi} \arcsin \sqrt{t} & 0<\alpha<1 \\
1 & \alpha>1
\end{array}\right. \text { Q. E. D. }
$$

Another Wiener Integral

- We wish to compute the probability of

$$
P\left\{\max _{0 \leq s \leq t} \beta(s) \leq \alpha\right\}
$$

- By Donsker's Invariance Principal this is equal to

$$
\lim _{n \rightarrow \infty}\left\{\max \left(\frac{S_{1}}{\sqrt{n}}, \frac{S_{2}}{\sqrt{n}}, \cdots, \frac{S_{n}}{\sqrt{n}}\right) \leq \alpha\right\}=P\left\{\max _{0 \leq s \leq t} \beta(s) \leq \alpha\right\}=H(\alpha, t)
$$

- Consider the step-function potential

$$
V_{\alpha}(x)= \begin{cases}1 & x \geq \alpha \\ 0 & x<\alpha\end{cases}
$$

- Since $\beta(\cdot)$ is a continuous function AE, if $\max _{0 \leq s \leq t} \beta(s) \leq \alpha$ then $V_{\alpha}(\beta(s))=0$ on a set of positive measure

Another Wiener Integral

- Consider the following Wiener integral

$$
\lim _{\lambda \rightarrow \infty} E\left[e^{-\lambda \int_{0}^{t} v_{\alpha}(\beta(s)) d s}\right]=H(\alpha, t)
$$

- This is because the λ limit kills walks that exceed α and only count the walks that satisfy the condition
- for a fixed λ this is, by Feynman-Kac, the solution to

$$
\begin{gathered}
u(x, t ; \lambda)_{t}=\frac{1}{2} u(x, t ; \lambda)_{x x}-\lambda V(x) u(x, t ; \lambda), \quad u(x, 0 ; \lambda)=1 \\
\text { where } V(x)= \begin{cases}1 & x \geq \alpha \\
0 & x<\alpha\end{cases}
\end{gathered}
$$

- The solution of the PDE is very similar to the solution of the PDE from the Arcsin Law, and is left to the reader

$$
H(\alpha, t)=\sqrt{\frac{2}{\pi}} \int_{0}^{\frac{\alpha}{\sqrt{t}}} e^{-\frac{u^{2}}{2}} d u
$$

Action Asympotics: A Heuristic for Wiener Integrals

- Von Neumann proved that there is no translationally invariant Haar measure in function space; Wiener measure is not translationally invariant
- Consider the following problem where we write our heuristic via a "flat" integral

$$
E\{F[\beta]\} "="] F[\beta] e^{-\frac{1}{2} \int_{0}^{t}\left[\beta^{\prime}(\tau)\right]^{2} d \tau} \delta \beta
$$

- Here we define the Action as

$$
A[\beta]=-\frac{1}{2} \int_{0}^{t}\left[\beta^{\prime}(\tau)\right]^{2} d \tau
$$

- This is obviously a heuristic, as BM is nondifferentiable AE

Action Asympotics: A Heuristic for Wiener Integrals

- Now consider computing the following with Action Asymptotics

$$
E\left[e^{\frac{1}{\sqrt{\epsilon}} \int_{0}^{t} \beta(s) d s}\right]
$$

- We first compute this using our standard techniques

$$
\begin{gathered}
E\left[e^{\frac{1}{\sqrt{\epsilon}} \int_{0}^{t} \beta(s) d s}\right]=E\left[e^{\frac{1}{\sqrt{\epsilon}} \int_{0}^{t} \sum_{k=0}^{\infty} \frac{\alpha_{k} u_{k}(s)}{\sqrt{\rho_{k}}} d s}=\right. \\
E\left[e^{\frac{1}{\sqrt{\epsilon}} \sum_{k=0}^{\infty} \frac{\alpha_{k}}{\sqrt{\rho_{k}}} \int_{0}^{t} u_{k}(s) d s}\right] \stackrel{\text { indep. }}{=} \prod_{k=0}^{\infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\frac{\alpha}{\sqrt{\epsilon \rho_{k}}} \int_{0}^{t} u_{k}(s) d s} e^{-\frac{\alpha^{2}}{2}} d \alpha=
\end{gathered}
$$

- And thus

$$
\lim _{\epsilon \rightarrow 0} \epsilon \ln E\left[e^{\frac{1}{\sqrt{\epsilon}} \int_{0}^{t} \beta(s) d s}\right]=\frac{t^{3}}{6}
$$

Action Asympotics: A Heuristic for Wiener Integrals

- Let's "derive" the action asymptotics heuristic with a construction due to Kac and Feynman by considering

$$
F(t)=E\left\{e^{-\int_{0}^{t} V(\beta(\tau)) d \tau}\right\}
$$

where $\beta(\cdot) \in C_{0}[0, t]$, and the expectation is taken w.r.t. Wiener measure

- Since we assume that $V(\cdot)$ is continuous and non-negative, and $\left.\beta(\cdot) \in C_{0}[0, t]\right)$ is continuous, $F(t)$ exists as $\int_{0}^{t} V(\beta(\tau)) d \tau$ is measurable
- Now let us consider a discrete approximation of this Wiener integral by breaking it up into N sized time intervals of size t / N, which gives us $F(t)$ from bounded convergence and the Riemann summability

$$
F(t)=\lim _{N \rightarrow \infty} E\left\{e^{-\frac{t}{N} \sum_{k=1}^{N} V\left(\beta\left(\frac{t k}{N}\right)\right)}\right\}
$$

Action Asympotics: A Heuristic for Wiener Integrals

- If we consider the expectation in the limit we can rewrite it as follows

$$
\begin{gathered}
\lim _{N \rightarrow \infty} E\left\{e^{-\frac{t}{N} \sum_{k=1}^{N} v\left(\beta\left(\frac{t k}{N}\right)\right)}\right\}=\lim _{N \rightarrow \infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-h \sum_{k=1}^{N} v\left(\beta_{k}\right)} \times \\
P\left(0, \beta_{1} ; h\right) P\left(\beta_{1}, \beta_{2} ; h\right) \cdots P\left(\beta_{N-1}, \beta_{N} ; h\right) d \beta_{1} d \beta_{2} \cdots d \beta_{N}
\end{gathered}
$$

where we have

1. $h=\frac{t}{N}$
2. $\beta_{k}=\beta(k h)$
3. $P\left(\beta_{k-1}, \beta_{k} ; h\right)=\frac{1}{\sqrt{2 \pi h}} e^{-\frac{\left(\beta_{k}-\beta_{k-1}\right)^{2}}{2 h}}$

- This limit exists and is equal to the Wiener integral
- However, Feynman chose to rewrite the above as (suppressing the limit) with $\beta_{0}=0$

$$
\frac{1}{(2 \pi h)^{N / 2}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-h\left\{\sum_{k=1}^{N} v\left(\beta_{k}\right)+\frac{1}{2} \sum_{k=1}^{N}\left(\frac{\beta_{k}-\beta_{k-1}}{h}\right)^{2}\right\}} d \beta_{1} d \beta_{2} \cdots d \beta_{N}
$$

Action Asympotics: A Heuristic for Wiener Integrals

- If we look at the exponent in Feynman's we notice that

$$
\left\{\sum_{k=1}^{N} V\left(\beta_{k}\right)+\frac{1}{2} \sum_{k=1}^{N}\left(\frac{\beta_{k}-\beta_{k-1}}{h}\right)^{2}\right\} h^{h \rightarrow 0} \int_{0}^{t}\left\{\frac{1}{2}\left(\frac{d \beta}{d \tau}\right)^{2}+V(\beta(\tau))\right\} d \tau
$$

- This is the Hamiltonian the along the path, $\beta(\tau)$, and with the classical action along the path is

$$
\int_{0}^{t}\left\{\frac{1}{2}\left(\frac{d \beta}{d \tau}\right)^{2}-V(\beta(\tau))\right\} d \tau
$$

- thus Feynman writes the above integral instead as

$$
F(t)=E\left\{e^{-\int_{0}^{t} V(\beta(\tau)) d \tau}\right\}=\int e^{-\left[\int_{0}^{t}\left\{\frac{1}{2}\left(\frac{d \beta}{d \tau}\right)^{2}+V(\beta(\tau))\right\} d \tau\right]} d(\text { path })
$$

Action Asympotics: A Heuristic for Wiener Integral

- How does $E\left[e^{\frac{1}{\epsilon} F[\sqrt{\epsilon} \beta]}\right]$ behave as $\epsilon \rightarrow 0$?
- We can approach this with Action Asymptotics

$$
\left.E\left[e^{\frac{1}{\epsilon} F[\sqrt{\epsilon} \beta]}\right] "="\right] e^{\frac{1}{\epsilon} F[\sqrt{\epsilon} \beta]} e^{-\frac{1}{2} \int_{0}^{t}\left[\beta^{\prime}(s)\right]^{2} d s} \delta \beta
$$

- Now let $\sqrt{\epsilon} \beta=\omega$

$$
"=" \int e^{\frac{1}{\epsilon}\left[F[\omega]-\frac{1}{2} \int_{0}^{t}\left[\omega \omega^{\prime}(s)\right]^{2} d s\right]} \delta \beta
$$

- Using Laplace asymptotics the above will behave like

$$
e^{\frac{1}{\epsilon} \sup _{\omega \in C_{0}^{*}[0, f]}\left[F[\omega]-\frac{1}{2} \int_{0}^{t}\left[\omega^{\prime}(s)\right)^{2} d s\right]}
$$

- Where the space $C_{0}^{*}[0, t]$ is made up functions, $\omega(t)$, with

1. $\omega(t)$ continuous in $[0, t]$
2. $\omega(0)=0$
3. $\omega^{\prime}(t) \in L^{2}[0, t]$

Action Asympotics: Examples

- A conjecture using Action Asymptotics

$$
\lim _{\epsilon \rightarrow 0} \epsilon \ln E\left[e^{\frac{1}{\epsilon} F[\sqrt{ } \beta]}\right]=\sup _{\omega \in C_{0}^{*}[0, t]}\left[F[\omega]-\frac{1}{2} \int_{0}^{t}\left[\omega^{\prime}(s)\right]^{2} d s\right]
$$

- Consider $F[\beta]=\int_{0}^{t} \beta(s) d s$

$$
E\left[e^{\frac{1}{\epsilon} F[\sqrt{\epsilon} \beta]}\right]=E\left[e^{\frac{1}{\sqrt{\epsilon}} \int_{0}^{t} \beta(s) d s}\right]
$$

- From the conjecture we have that

$$
\lim _{\epsilon \rightarrow 0} \epsilon \ln E\left[e^{\frac{1}{\sqrt{\epsilon}} \int_{0}^{t} \beta(s) d s}\right]=\sup _{\omega \in C_{0}^{*}[0, t]}\left[\int_{0}^{t} \omega(s) d s-\frac{1}{2} \int_{0}^{t}\left[\omega^{\prime}(s)\right]^{2} d s\right]
$$

Action Asympotics: Examples

- From the calculus of variations we have that the Euler equation for following maximum principle is

$$
\sup _{\omega \in C_{0}^{*}[0, t]}\left[\int_{0}^{t} \omega(s) d s-\frac{1}{2} \int_{0}^{t}\left[\omega^{\prime}(s)\right]^{2} d s\right] \Longrightarrow
$$

$$
\begin{aligned}
& \text { 1. } 1+\omega^{\prime \prime}(s)=0 \\
& \text { 2. } \omega(0)=0 \\
& \text { 3. } \omega^{\prime}(t)=0
\end{aligned}
$$

- The solution is $\omega(s)=-\frac{s^{2}}{2}+t s$ and $\omega^{\prime}(s)=-s+t$ so

$$
\int_{0}^{t}\left(-\frac{s^{2}}{2}+t s\right) d s-\frac{1}{2} \int_{0}^{t}[s-t]^{2} d s=\frac{t^{3}}{6}
$$

Brownian Scaling

- Recall some basic properties of the BM, $\beta(\cdot)$ and constant, \boldsymbol{c} :

1. $\beta(\tau) \sim N(0, \tau)$
2. $\beta(c \tau) \sim N(0, c \tau)$
3. $\sqrt{c} \beta(\tau) \sim N(0, c \tau)$
4. $E[\beta(\tau) \beta(s)]=\min (\tau, s)$
5. $E[\beta(c \tau) \beta(c s)]=c \min (\tau, s)$
6. $E[\beta(c \tau) \beta(c s)]=E[\sqrt{c} \beta(\tau) \sqrt{c} \beta(s)]=c E[\beta(\tau) \beta(s)]=c \min (\tau, s)$

- Now consider the following

$$
\begin{aligned}
E\left[e^{\sup _{0 \leq s \leq t} \beta(s)}\right]= & E\left[e^{\sup _{0 \leq \tau \leq 1} \beta(t \tau)}\right]= \\
E\left[e^{\sup _{0 \leq \tau \leq 1} \sqrt{t} \beta(\tau)}\right]= & E\left[e^{t \sup _{0 \leq \tau \leq 1} \frac{1}{\sqrt{t}} \beta(\tau)}\right]= \\
E\left[e^{\frac{1}{\epsilon} \sup _{0 \leq \tau \leq 1} \sqrt{\epsilon} \beta(\tau)}\right] & \text { using the substitution } t=\frac{1}{\epsilon}
\end{aligned}
$$

Action Asympotics: Examples

- So we now have that

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln E\left[e^{\sup _{0 \leq s \leq t} \beta(s)}\right]=\lim _{\epsilon \rightarrow 0} \epsilon \ln E\left[e^{\frac{1}{\epsilon} \sup _{0 \leq \tau \leq 1} \sqrt{\epsilon} \beta(\tau)}\right]
$$

- By Action Asymptotics we have

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \epsilon \ln E\left[e^{\frac{1}{\epsilon} \sup _{0 \leq \tau \leq 1} \sqrt{\epsilon} \beta(\tau)}\right] & =\sup _{\omega \in C_{0}^{*}[0,1]}\left[\sup _{0 \leq \tau \leq 1} \omega(\tau)-\frac{1}{2} \int_{0}^{1}\left[\omega^{\prime}(\tau)\right]^{2} d \tau\right] \\
& =\max _{a>0}\left[a-\frac{a^{2}}{2}\right]=\frac{1}{2}
\end{aligned}
$$

- The supremum comes on straight lines, that minimize arc-length i.e. the second term, so consider $\omega(\tau)=a \tau$, and $a=1$ is the maximizer

Action Asympotics: Examples

- Consider a more complicated problem for Action Asymptotics is

$$
\begin{gathered}
\lim _{\epsilon \rightarrow 0} \frac{E\left[G(\sqrt{\epsilon} \beta(\cdot)) e^{\frac{1}{\epsilon} F(\sqrt{\epsilon} \beta(\cdot))}\right]}{E\left[e^{\frac{1}{\epsilon} F(\sqrt{\epsilon} \beta(\cdot))}\right]} "=" \\
\frac{\left[E\left[G(\sqrt{\epsilon} \beta(\cdot)) e^{\frac{1}{\epsilon} F(\sqrt{\epsilon} \beta(\cdot))-\frac{1}{2} \int_{0}^{t}\left[\beta^{\prime}(s)\right]^{2} d s}\right] \delta \beta\right.}{\left[E\left[e^{\frac{1}{\epsilon} F(\sqrt{\epsilon} \beta(\cdot))-\frac{1}{2} \int_{0}^{t}\left[\beta^{\prime}(s)\right]^{2} d s}\right] \delta \beta\right.}=
\end{gathered}
$$

We now change variables with $x(\cdot)=\sqrt{\epsilon} \beta(\cdot)$

$$
\begin{aligned}
& \xlongequal{\int E\left[G(x(\cdot)) e^{\frac{1}{\epsilon}\left[F(x(\cdot))-\frac{1}{2} \int_{0}^{t}\left[x^{\prime}(s)\right]^{2} d s\right]}\right] \delta x} \\
& \int E\left[e^{\frac{1}{\epsilon}\left[F(x(\cdot))-\frac{1}{2} \int_{0}^{t}\left[x^{\prime}(s)\right]^{2} d s\right]}\right] \delta x
\end{aligned}
$$

Action Asympotics: Examples

- As $\epsilon \rightarrow 0$ the exponential term goes to something like a "delta" function in function space and we get

$$
=G\left[\omega^{*}(\cdot)\right] \text { where } \omega^{*}(\cdot)=\underset{\omega \in C_{0}^{*}[0, t]}{\operatorname{argsup}}[F[\omega]-A[\omega]]
$$

- We now apply this to some PDE problems: Burger's Equation

$$
\begin{aligned}
u_{t}+u u_{x} & =\frac{\epsilon}{2} u_{x x}, \quad-\infty \leq x \leq \infty, \quad t>0 \\
u(x, 0) & =u_{0}(x), \quad \int_{0}^{\infty} u_{0}(\eta) d \eta=o\left(x^{2}\right) \text { as }|x| \rightarrow \infty
\end{aligned}
$$

- We now apply the Hopf-Cole transformation, if we define the solution to Burger's equation $u(x, t)=-\epsilon \frac{v_{x}(x, t)}{v(x, t)}=-\epsilon \partial_{x}[\ln v(x, t)]$ then $v(x, t)$ satisfies

$$
v_{t}=\frac{\epsilon}{2} v_{x x}, \quad v(x, 0)=e^{-\frac{1}{\epsilon} \int_{0}^{x} u_{0}(\eta) d \eta}
$$

Action Asympotics: Examples

- So by Feynman-Kac we can write the solution as

$$
v(x, t ; \epsilon)=\frac{1}{\sqrt{2 \pi t \epsilon}} \int_{-\infty}^{\infty} e^{-\frac{1}{\epsilon} \int_{0}^{y} u_{0}(\eta) d \eta} e^{-\frac{(x-y)^{2}}{2 \epsilon t}} d y
$$

- We now apply the Hopf-Cole transformation (taking the logarithmic derivative)

$$
u(x, t ; \epsilon)=\frac{\int_{-\infty}^{\infty} \frac{(x-y)}{t} e^{-\frac{1}{\epsilon}\left[\int_{0}^{y} u_{0}(\eta) d \eta+\frac{(y-x)^{2}}{2 t}\right] d y}}{\int_{-\infty}^{\infty} e^{-\frac{1}{\epsilon}\left[\int_{0}^{y} u_{0}(\eta) d \eta+\frac{(y-x)^{2}}{2 t}\right] d y}}
$$

- Now let $F(y)=\int_{0}^{y} u_{0}(\eta) d \eta+\frac{(y-x)^{2}}{2 t}$, this is the function that Action Asymptotics tells us to minimize (due to the negative sign)
- Note that $\lim _{|y| \rightarrow \infty} \frac{F(y)}{y^{2}}=\frac{1}{2 t}$ by the assumptions, and so there is a minimum, $y(x, t)=\operatorname{argmin} F(y)$
- Hopf showed that if at (x, t) there is a single minimizer to $F(y)$ then

$$
\lim _{\epsilon \rightarrow 0} u(x, t ; \epsilon)=\frac{x-y(x, t)}{t}=u_{0}(y(x, t))
$$

NisT
Standori Insenture ond Technole

Action Asympotics: Examples

- Consider the related equation

$$
\begin{aligned}
u_{t}+u u_{x} & =\frac{\epsilon}{2} u_{x x}-v^{\prime}(x), \quad-\infty \leq x \leq \infty, \quad t>0 \\
u(x, 0) & =u_{0}(x), \quad \int_{0}^{\infty} u_{0}(\eta) d \eta=o\left(x^{2}\right) \text { as }|x| \rightarrow \infty
\end{aligned}
$$

- Again we use the Hopf-Cole transformation to get

$$
v_{t}=\frac{\epsilon}{2} v_{x x}-\frac{1}{\epsilon} V^{\prime}(x) v, \quad v(x, 0)=e^{-\frac{1}{\epsilon} \int_{0}^{x} u_{0}(\eta) d \eta}
$$

- And so we can write down the solution to the transformed equation via Feynman-Kac

$$
\begin{gathered}
v(x, t ; \epsilon)=E_{x}\left[e^{-\frac{1}{\epsilon} \int_{0}^{t} V(\sqrt{\epsilon} \beta(s)) d s-\frac{1}{\epsilon} \int_{0}^{\sqrt{\epsilon} \beta(t)} u_{0}(\eta) d \eta}\right] \\
=E_{0}\left[e^{-\frac{1}{\epsilon}\left[\int_{0}^{t} V(\sqrt{\epsilon} \beta(s)+x) d s \int_{0}^{\sqrt{\epsilon} \beta(t)+x} u_{0}(\eta) d \eta\right]}\right]
\end{gathered}
$$

Action Asympotics: Examples

- We now take apply the Hopf-Cole transformation and get

$$
\begin{gathered}
u(x, t ; \epsilon)=\frac{E\left[G[\sqrt{\epsilon} \beta(\cdot)] e^{-\frac{1}{\epsilon} F[\sqrt{\epsilon} \beta(\cdot)]}\right]}{E\left[e^{-\frac{1}{\epsilon} F[\sqrt{\epsilon} \beta(\cdot)]}\right]} \text { where we define } \\
F[\beta(\cdot)]=\int_{0}^{t} V(\sqrt{\epsilon} \beta(s)) d s-\int_{0}^{\sqrt{\epsilon} \beta(t)} u_{0}(\eta) d \eta \\
G[\beta(\cdot)]=\int_{0}^{t} V^{\prime}(\sqrt{\epsilon} \beta(s)+x) d s+u_{0}(\sqrt{\epsilon} \beta(t)+x)
\end{gathered}
$$

Action Asympotics: Examples

- By Action Asymptotics we have that

$$
\lim _{\epsilon \rightarrow 0} u(x, t ; \epsilon)=G\left[\omega^{*}(\cdot)\right] \text { where } \omega^{*}(\cdot)=\underset{\omega \in C_{0}^{*}[0, t]}{\operatorname{arginf}}[F[\omega]+A[\omega]]
$$

- If for $(x, t) \exists$! minimizer, ω^{*}, then the limit exists and is

$$
G\left[\omega^{*}(t)\right]=u(x, t)=\int_{0}^{t} V^{\prime}\left(\omega^{*}(s)+x\right) d s+u_{0}\left(\omega^{*}(t)+x\right)
$$

- Now consider the related variational problem

$$
\inf _{\omega \in C_{0}^{*}[0, t]}\left[\int_{0}^{t} V(\omega(s)+x) d s \int_{0}^{\omega(t)+x} u_{0}(\eta) d \eta+\frac{1}{2} \int_{0}^{t}\left[\omega^{\prime}(s)\right]^{2} d s\right]
$$

- We refer to the functional to be minimized as $H[\omega(\cdot)]$

Action Asympotics: Examples

- To arrive derive an equivalent system via the Calculus of Variations we need to form the Frechet derivative, in the direction of the arbitrary function, Ψ, as follows

$$
\begin{aligned}
\left.\delta H\right|_{\Psi}=\left.\frac{d H[\omega+h \Psi]}{d h}\right|_{h=0} & =\int_{0}^{t} V^{\prime}(\omega(s)+x) \Psi(s) d s+u_{0}(\omega(t)+x) \Psi(t) \\
& +\omega^{\prime}(t) \Psi(t)-\int_{0}^{t} \omega^{\prime \prime}(s) \Psi(s) d s
\end{aligned}
$$

- Note that the last two terms come from the following computation

$$
\begin{aligned}
J[\omega(\cdot)] & \left.\stackrel{\text { def }}{=} \frac{1}{2} \int_{0}^{t}\left[\omega^{\prime}(s)\right]^{2} d s \Longrightarrow \frac{d J[\omega+h \Psi]}{d h}\right|_{h=0} \\
& =\frac{1}{2} \int_{0}^{t}\left[\omega^{\prime}(s)+h \Psi^{\prime}(s)\right]^{2} d s=\int_{0}^{t}\left[\omega^{\prime}(s)+h \Psi^{\prime}(s)\right]^{2} d s \\
& =\int_{0}^{t} \omega^{\prime}(s) \Psi^{\prime}(s) d s=\int_{0}^{t} \omega^{\prime}(s) d \Psi^{\prime}(s)
\end{aligned}
$$

Action Asympotics: Examples

- We now integrate by parts using the natural boundary conditions

1. $\omega(0)=0$
2. $\omega^{\prime}(0)=0$

$$
\int_{0}^{t} \omega^{\prime}(s) d \psi^{\prime}(s)=\omega^{\prime}(t) \psi^{\prime}(s)-\int_{0}^{t} \omega^{\prime \prime}(s) \Psi d s
$$

- So the solution to this problem is

1. $V^{\prime}(\omega(s)+x)=\omega^{\prime \prime}(s)$ for $0 \leq s \leq t$
2. $\omega(0)=0$
3. $\omega^{\prime}(t)=-u_{0}(\omega(s)+x)$

- We can now apply this Hpof's result with $V \equiv 0$

1. $\omega^{\prime \prime}(s)=0$ for $0 \leq s \leq t$
2. $\omega(0)=0$
3. $\omega^{\prime}(t)=-u_{0}(\omega(s)+x)$

- The solution is then very simply

1. $\omega(s)=$ cs for some constant, c
2. $\omega^{\prime}(s)=c=-u_{0}(c t+x)$
3. Let $c=\frac{y(x, t)-x}{t}=-u_{0}(y(x, t))$ or $u_{0}(t(x, t))=\frac{x-y(x, t)}{t}$

- With a unique $y(x, t)$ we get a unique $\omega^{*}(s)=\left(\frac{x-y(x, t)}{t}\right) s$

Action Asympotics

- We now consider some tools with the "flat integral"
- The Cameron-Martin Translation Formula

$$
E\{F[\beta+y]\} \text {, with } y \in C_{0}[0, t]
$$

- We now use the "flat integral"

$$
\begin{aligned}
E\{F[\beta+y]\} " & ="] F[\beta+y] e^{-\frac{1}{2} \int 0_{0}^{t}\left[\beta^{\prime}(s)\right]^{2} d s} \delta \beta, \text { and let } \omega=\beta+y \\
" & ="] F[\omega] e^{-\frac{1}{2} \int_{0}^{t}\left[\omega^{\prime}(s)-y^{\prime}(s)\right]^{2} d s} \delta \omega \\
" & =" e^{\left.\left.-\frac{1}{2} \int t_{0}^{t} \right\rvert\, y^{\prime}(s)\right]^{2} d s}\left[F[\omega] e^{+\int_{0}^{t}\left[\omega^{\prime}(s) y^{\prime}(s)\right] d s-\frac{1}{2} \int_{0}^{t}[\omega \prime(s)]^{2} d s} \delta \omega\right. \\
" & =" e^{-\frac{1}{2} \int_{0}^{t}\left[y^{\prime}(s)\right]^{2} d s} E\left\{F[\beta] \int_{0}^{\int_{0}^{t} y^{\prime}(s) d \beta(s)}\right\}
\end{aligned}
$$

- And so our result is that

$$
E\{F[\beta+y]\}=e^{-\frac{1}{2} \int_{0}^{t}\left[y^{\prime}(s)\right]^{2} d s} E\left\{F[\beta] e^{\int_{0}^{t} y^{\prime}(s) d \beta(s)}\right\} \text {, with } y \in C_{0}[0, t]
$$

Local Time

- Spectral Theory:
- If $V(x) \geq 0$ and $V(x) \rightarrow 0$ as $|x| \rightarrow \infty$ then the eigenvalue problem

$$
\frac{1}{2} \Psi^{\prime \prime}(x)-V(x) \Psi(x)=-\lambda \Psi(x)
$$

1. Has discrete spectrum: $\lambda_{1}, \lambda_{2}, \cdots$
2. With corresponding eigenfunctions: $\Psi_{1}, \Psi_{2}, \ldots$

- Theorem (1949):

$$
\lim _{t \rightarrow \infty} \frac{1}{t} E\left[e^{-\frac{1}{2} \int_{0}^{t} V(\beta(s)) d s}\right]=-\lambda_{1}
$$

Note: The expectation can start at any x due to ergodicity

- Proof We will first prove this using Feynman-Kac

$$
u(x, t)=E_{X}\left[e^{-\frac{1}{2} \int_{0}^{t} v(\beta(s)) d s}\right]
$$

Local Time

- Satisfies the following PDE

$$
u_{t}=\frac{1}{2} u_{x x}-V(x) u, \quad u(x, 0)=1
$$

- By separation of variables we have

$$
u(x, t)=\sum_{j=1}^{\infty} c_{j} e^{-\lambda_{j} t} \psi_{j}(x), \text { where }, c_{j}=\int_{-\infty}^{\infty} u(x, 0) \psi_{j}(y) d y
$$

- But since $u(x, 0)=1$ we have that $c_{j}=\int_{-\infty}^{\infty} \psi_{j}(y) d y, \forall j \geq 0$, and so the two representations must be equal

$$
u(x, t)=E_{x}\left[e^{-\frac{1}{2} \int_{0}^{t} v(\beta(s)) d s}\right]=\sum_{j=1}^{\infty} e^{-\lambda_{j} t} \psi_{j}(x) \int_{-\infty}^{\infty} \psi_{j}(y) d y
$$

- And so the largest eigenvalue, λ_{1}, controls the behavior

$$
\lim _{t \rightarrow \infty} \frac{1}{t} E\left[e^{-\frac{1}{2} \int_{0}^{t} V(\beta(s)) d s}\right]=-\lambda_{1}
$$

Local Time

- We also have a variational representation of λ_{1}

$$
\lambda_{1}=\inf _{\substack{\psi \in L^{2} \\\|\Psi\|=1}}\left[\int_{-\infty}^{\infty} V(y) \Psi^{2}(y) d y+\frac{1}{2} \int_{-\infty}^{\infty}\left[\Psi^{\prime}(y)\right]^{2} d y\right]
$$

- Which has a corresponding Euler equation

$$
\frac{1}{2} \Psi^{\prime \prime}(x)-V(x) \Psi(x)=-\lambda \Psi(x)
$$

- We notice that in the Wiener integral representation, $E\left[e^{-\frac{1}{2} \int_{0}^{t} V(\beta(s)) d s}\right]$, since the internal integral is in an negative exponential, the main contribution comes for paths that remain close to where $V(\cdot)$ is smallest, which leads us to dissect this problem as follows
- Let $\beta(s), 0 \leq s<\infty ; \beta(0)=x$ be BM for $t>0$ and consider the proportion of time that $\beta(\cdot)$ spends in a set $A \subset \mathbb{R}$

$$
\ell_{t}(\beta(\cdot), \cdot)=\frac{1}{t} \int_{0}^{t} \chi_{A}(\beta(s)) d s
$$

Local Time

- Some properties of $L_{t}(\beta(\cdot), \cdot)$ with $t>0, x$ fixed, and $\beta(\cdot)$ a particular, fixed, path

1. $L_{t}(\beta(\cdot), \cdot)$ is a countable additive, non-negative function
2. $L_{t}(\beta(\cdot), \mathbb{R})=1$
3. $L_{t}(\beta(\cdot), \cdot): C_{x}[0, t] \rightarrow \mathcal{M}$, the space of probability measures on \mathbb{R}

- As a set function, $L_{t}(\beta(\cdot), \cdot)$ for fixed $x \in \mathbb{R}$ and $t>0$ and for almost all $\beta(\cdot)$ has a density function which we call the normalized local time

$$
\begin{aligned}
& \ell_{t}(\beta(\cdot), y)=\frac{1}{t} \int_{0}^{t} \delta(\beta(s)-y) d y \text { and } \\
& L_{t}(\beta(\cdot), A)=\int_{-\infty}^{\infty} \chi_{A}(y) \ell_{t}(\beta(\cdot), y) d y
\end{aligned}
$$

- $\ell_{t}(\beta(\cdot), \cdot) \rightarrow 0$ as Table $\rightarrow \infty$ for compact A and almost every $\beta(\cdot)$
- Now consider the following representation

$$
E_{X}\left[e^{-\int_{0}^{t} v(\beta(s)) d s}\right]=E_{X}\left[e^{-t \int_{-\infty}^{\infty} v(y) \ell_{t}(\beta(\cdot), y) d y}\right]
$$

Local Time

- For fixed $x \in \mathbb{R}$ and $t>0$ we define a probability measure on \mathcal{M}, $Q_{x, t}=P L_{t}^{-1}$, as follows
- If $C \subset \mathcal{M}$ then we can write

$$
Q_{x, t}(C)=P\left\{\beta(\cdot) \in C_{x}[0, \infty]: L_{t}(\beta(\cdot), \cdot) \in C\right\}
$$

- $L_{t}(\beta(\cdot), \cdot)$ is an occupation measure so we can write

$$
\begin{gathered}
E_{X}\left[e^{-\int_{0}^{t} V(\beta(s)) d s}\right]=E_{X}\left[e^{-t \int_{-\infty}^{\infty} V(y) \ell_{t}(\beta(\cdot), y) d y}\right]=E_{X}\left[e^{-t \int_{-\infty}^{\infty} V(y) d L_{t}(\beta(\cdot), y)}\right] \\
E_{X}^{Q_{x, t}}\left[e^{-t \int_{-\infty}^{\infty} V(y) \mu(d y)}\right]=E_{x}^{Q_{x, t}}\left[e^{-t \int_{-\infty}^{\infty} V(y) f(y) d y}\right]
\end{gathered}
$$

- We define \mathcal{F} as the space of probability density functions on \mathbb{R}, then this an expected value on \mathcal{F}
- To understand how the expected value on \mathcal{F} behaves as $t \rightarrow \infty$, we need to understand how $Q_{x, t}$ and therefore also how $L_{t}(\beta(\cdot), A)$ behaves as $t \rightarrow \infty$

Local Time

- Long time behavior of local time measures

1. $L_{t}(\beta(\cdot), A) \rightarrow 0$ as $t \rightarrow \infty$ for $A \subset \mathbb{R}$, compact, and $A E \beta(\cdot)$
2. $\ell_{t}(\beta(\cdot), A) \rightarrow 0$ as $t \rightarrow \infty$ for $A \subset \mathbb{R}$, compact, and $\mathrm{AE} \beta(\cdot)$ by the ergodic theorem for BM , if $\beta(\cdot)$ were not BM , then this would converge AE to the invariant measure
3. $Q_{x, t}(C) \rightarrow 0$ as $t \rightarrow \infty$ if $C \subset \mathcal{M}, C \neq \mathcal{M}$, i.e. C is a reasonable set

- Theorem on Speed of Convergence: We first need to put the Levý topology on \mathcal{F}

1. If $C \in \mathcal{F}$ is closed, then

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \ln Q_{x, t}(C) \leq \inf _{t \in C} I(f)
$$

2. If $G \in \mathcal{F}$ is open, then

$$
\liminf _{t \rightarrow \infty} \frac{1}{t} \ln Q_{x, t}(C) \geq \inf _{f \in G} I(f)
$$

3. Where

$$
I(f)=\frac{1}{8} \int_{-\infty}^{\infty}\left\{\left[f^{\prime}(y)\right]^{2} / f(y)\right\} d y
$$

Donsker-Varadhan Asympotics

- This is a simple case of what is referred to as "Donsker-Varadhan Asymptotics" and are a large deviation result
- An example, suppose $f(y) \sim N\left(0, \sigma^{2}\right)$, i.e. $f(y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{y^{2}}{2 \sigma^{2}}}$, then $f^{\prime}(y)=-\frac{y}{\sigma^{3} \sqrt{2 \pi}} e^{-\frac{y^{2}}{2 \sigma^{2}}}$ and $f^{\prime}(y)^{2}=\frac{y^{2}}{\sigma^{6} 2 \pi} e^{-2\left(\frac{y^{2}}{2 \sigma^{2}}\right)}$ and finally we have $I(f)=\frac{1}{8} \int_{-\infty}^{\infty}\left\{\left[f^{\prime}(y)\right]^{2} / f(y)\right\} d y=\frac{1}{8} \frac{1}{\sigma^{4}} \int_{-\infty}^{\infty} \frac{y^{2}}{\sigma \sqrt{2 \pi}} e^{-\frac{y^{2}}{2 \sigma^{2}}} d y=\frac{\sigma^{2}}{8 \sigma^{4}}=\frac{1}{8 \sigma^{2}}$

Note: the last integral is the variance, σ^{2}, of a $N\left(0, \sigma^{2}\right)$ random variable

- We refer to the functional $I: \mathcal{F} \rightarrow[0, \infty]$ as the entropy, and roughly speaking

$$
Q_{x, t}(f) \sim e^{-t \text { inf }_{f \in A} l(f)} \text { for "nice" } A
$$

Donsker-Varadhan Asympotics

- Now let us apply the "Entropy Asymptotics" with the "Flat Integral"

$$
\begin{aligned}
E_{x}\left[e^{-\frac{1}{2} \int_{0}^{t} V(\beta(s)) d s}\right] & =E_{x}^{Q_{x}, t}\left[e^{-t \int_{-\infty}^{\infty} V(y) f(y) d y}\right] \text { for } t \text { large } \\
" & ="] e^{-t \int_{-\infty}^{\infty} V(y) f(y) d y} e^{-t(f)} \delta f \\
" & ="\left[e^{-t\left[\int_{-\infty}^{\infty} V(y) f(y) d y+l(f)\right]} \delta f\right.
\end{aligned}
$$

- As $t \rightarrow \infty$ we use Laplace asymptotics to get

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln E_{x}\left[e^{-\frac{1}{2} \int_{0}^{t} V(\beta(s)) d s}\right]=-\inf _{f \in y}\left[\int_{-\infty}^{\infty} V(y) f(y) d y+\frac{1}{8} \int_{-\infty}^{\infty} \frac{\left[f^{\prime}(y)\right]^{2}}{f(y)} d y\right]
$$

- Let $\sqrt{f(y)}=\Psi(y)$, then $\int_{-\infty}^{\infty} \Psi^{2}(y) d y=\int_{-\infty}^{\infty} f(y) d y=1$ since $f(y)$ is a p.d.f., and so $\Psi(\cdot) \in L^{2}[-\infty, \infty]$ and $\|\Psi\|=1$

Donsker-Varadhan Asympotics

- We now transform the "Entropy Asymptotics" expression with some substitutions

1. Let $\sqrt{f(y)}=\Psi(y)$, then $\int_{-\infty}^{\infty} \Psi^{2}(y) d y=\int_{-\infty}^{\infty} f(y) d y=1$ since $f(y)$ is a p.d.f., and so $\Psi(\cdot) \in L^{2}[-\infty, \infty]$ and $\|\Psi\|=1$
2. Also $\Psi^{\prime}(y)=\frac{1}{2 \sqrt{f(y)}} f^{\prime}(y)$, and so $\left[\Psi^{\prime}(y)\right]^{2}=\frac{1}{4}\left(\frac{f^{\prime}(y)^{2}}{f(y)}\right)$

- These allow us to write

$$
\begin{aligned}
& -\inf _{f \in y}\left[\int_{-\infty}^{\infty} V(y) f(y) d y+\frac{1}{8} \int_{-\infty}^{\infty} \frac{\left[f^{\prime}(y)\right]^{2}}{f(y)} d y\right]= \\
-\inf _{\substack{\Psi \in L^{2} \\
\|\Psi\|=1}}\left[\int_{-\infty}^{\infty} V(y) \Psi^{2}(y) d y+\frac{1}{2} \int_{-\infty}^{\infty}\left[\Psi^{\prime}(y)\right]^{2} d y\right] & =-\lambda_{1}
\end{aligned}
$$

- Theorem:Let $\Phi: \mathcal{F} \rightarrow \mathbb{R}$ be bounded and continuous then, by the "general structure theorem"

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln E_{x}^{Q_{X}, t}\left[e^{-t \Phi(f)}\right]=\lim _{t \rightarrow \infty} \frac{1}{t} \ln E_{X}\left[e^{-t \Phi\left(\ell_{t}(\beta(\cdot), \cdot)\right)}\right]=-\inf _{f \in \mathcal{F}}[\Phi(f)+I(f)]
$$

Donsker-Varadhan Asympotics

- This is more subtle than action asymptotics, for example consider

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln E_{x}^{Q_{x}, t}\left[e^{+t \Phi(f)}\right]=\sup _{f \in \mathcal{F}}[\Phi(f)-I(f)]
$$

1. There is always a fight between the two terms in the supremum
2. In statistical mechanics we often consider $\alpha \Phi(f)$ and want to compute $\sup _{f \in \mathcal{F}}[\alpha \Phi(f)-l(f)]=g(\alpha)$, where α is a convex function of α
3. Them may be a critical value of α, call it α_{0}, where there is a phase transition, this is due to nonuniqueness in the f that maximized the functional

An Example Using Action and Entropy Asymptotics

- Now we will use "Entropy Asymptotics" to revisit a topic we have already considered
- Recall that

$$
\begin{aligned}
& \quad P\left\{\sup _{0 \leq s \leq t} \beta(s) \leq \alpha\right\}=\sqrt{\frac{2}{\pi t}} \int_{0}^{\alpha} e^{-\frac{u^{2}}{2 t}} d u \text {, so that we also have } \\
& E\left[e^{\sup _{0 \leq s \leq t} \beta(s)}\right]=h(t)=\int_{0}^{\infty} e^{\alpha} d P\left\{\sup _{0 \leq s \leq t} \beta(s) \leq \alpha\right\}=\int_{0}^{\infty} e^{\alpha} \sqrt{\frac{2}{\pi t}} e^{-\frac{\alpha^{2}}{2 t}} d \alpha \\
& \int_{0}^{\infty} e^{\alpha} \sqrt{\frac{2}{\pi t}} e^{-\frac{\alpha^{2}}{2 t}} d \alpha=\sqrt{\frac{2}{\pi t}} \int_{0}^{\infty} e^{-\frac{(\alpha-t)^{2}}{2 t}} e^{+\frac{t}{2}} d \alpha=\sqrt{\frac{2}{\pi}} e^{\frac{t}{2}} \int_{\sqrt{t}}^{\infty} e^{-\frac{u^{2}}{2}} d u \\
& \text { with the substitution } u=\frac{\alpha-t}{\sqrt{t}}
\end{aligned}
$$

- Then we have

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln h(t)=\sqrt{\frac{2}{\pi}} e^{\frac{t}{2}} \int_{\sqrt{t}}^{\infty} e^{-\frac{v^{2}}{2}} d u=\frac{1}{2}
$$

An Example Using Action and Entropy Asymptotics

- First we turn the $t \rightarrow \infty$ limit into an $\epsilon \rightarrow 0$ limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln E\left[e^{\sup _{0 \leq s \leq t} \beta(s)}\right]=\lim _{\epsilon \rightarrow 0} \epsilon \ln E\left[e^{\frac{1}{\epsilon} \sup _{0 \leq \tau \leq 1} \sqrt{\epsilon} \beta(\tau)}\right]
$$

- Recall that by Action Asymptotics we have

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \epsilon \ln E\left[e^{\frac{1}{\epsilon} \sup _{0 \leq \tau \leq 1} \sqrt{\epsilon} \beta(\tau)}\right] & =\sup _{\omega \in C_{0}^{*}[0,1]}\left[\sup _{0 \leq \tau \leq 1} \omega(\tau)-\frac{1}{2} \int_{0}^{1}\left[\omega^{\prime}(\tau)\right]^{2} d \tau\right] \\
& =\max _{a>0}\left[a-\frac{a^{2}}{2}\right]=\frac{1}{2}
\end{aligned}
$$

- The supremum comes on straight lines, that minimize arc-length i.e. the second term, so consider $\omega(\tau)=a \tau$, and $a=1$ is the maximizer

An Example Using Action and Entropy Asymptotics

- Now we solve the same problem using Entropy Asymptotics by using a result of Paul Levý that the following have the same probability distributions

$$
P\left\{\sup _{0 \leq s \leq t} \beta(s) \leq \alpha\right\}=P\left\{t \ell_{t}(\beta(\cdot), 0)\right\}
$$

- Thus we have that

$$
h(t)=E\left[e^{\sup _{0 \leq s \leq t} \beta(s)}\right]=E\left[e^{t \ell_{t}(\beta(\cdot), 0)}\right]=E\left[e^{t \Phi\left[\ell_{t}(\beta(\cdot), 0)\right]}\right] \text {, where } \Phi[f]=f(0)
$$

- So from Entropy Asymptotics we get

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln h(t)=\lim _{t \rightarrow \infty} \frac{1}{t} E\left[e^{t \Phi\left[\ell_{t}(\beta(\cdot), 0)\right]}\right]=\sup _{f \in \mathcal{F}}\left[f(0)-\frac{1}{8} \int_{-\infty}^{\infty} \frac{\left[f^{\prime}(y)\right]^{2}}{f(y)} d y\right]
$$

- Recall that $f \in \mathcal{F}$ is a probability distribution, and so the maximizing family of functions (proven below) is $f_{a}(y)=a e^{-2 a|y|}$

An Example Using Action and Entropy Asymptotics

- Recall that $f \in \mathcal{F}$ is a probability distribution, and so the maximizing family of functions (proven below) is $f_{a}(y)=a e^{-2 a|y|}$
- We can write

$$
\begin{gathered}
f_{a}(y)=a e^{-2 a|y|}=\left\{\begin{array}{ll}
a e^{-2 a y} & y \geq 0 \\
a e^{2 a y} & y<0
\end{array}, \text { so } f_{a}^{\prime}(y)=\left\{\begin{array}{ll}
-2 a^{2} e^{-2 a y} & y \geq 0 \\
2 a^{2} e^{2 a y} & y<0
\end{array},\right. \text { and so }\right. \\
{\left[f_{a}^{\prime}(y)\right]^{2}=\left\{\begin{array}{ll}
4 a^{4} e^{-4 a y} & y \geq 0 \\
4 a^{4} e^{4 a y} & y<0
\end{array}=4 a^{4} e^{-4 a|y|}\right.}
\end{gathered}
$$

- This gives us

$$
\begin{aligned}
& \sup _{a>0}\left[f(0)-\frac{1}{8} \int_{-\infty}^{\infty} \frac{\left[f^{\prime}(y)\right]^{2}}{f(y)} d y\right]=\sup _{a>0}\left[a-\frac{1}{8} \int_{-\infty}^{\infty} 4 a^{3} e^{-2 a|y|} d y\right] \\
= & \sup _{a>0}\left[a-\frac{a^{2}}{2} \int_{-\infty}^{\infty} a e^{-2 a|y|} d y\right]=\sup _{a>0}\left[a-\frac{a^{2}}{2}\right]=\frac{1}{2}, \text { which occurs at } a=1
\end{aligned}
$$

An Example Using Action and Entropy Asymptotics

- Now we find the maximizing family of functions by the same transformation as before

$$
\begin{aligned}
& \text { 1. } \sqrt{f(y)}=\Psi(y) \text { or } f(y)=\Psi^{2}(y) \text {, and so } \\
& \text { 2. } f(0)=\Psi^{2}(0) \\
& \text { 3. } \frac{1}{4}\left(\frac{f^{\prime}(y)^{2}}{f(y)}\right)=\left[\Psi^{\prime}(y)\right]^{2}
\end{aligned}
$$

- And so we obtain

$$
\sup _{f \in \mathcal{F}}\left[f(0)-\frac{1}{8} \int_{-\infty}^{\infty} \frac{\left[f^{\prime}(y)\right]^{2}}{f(y)} d y\right]=\sup _{\substack{\Psi \in L^{2} \\\|\Psi\| \mid=1}}\left[\Psi^{2}(0)-\frac{1}{2} \int_{-\infty}^{\infty}\left[\Psi^{\prime}(y)\right]^{2} d y\right]
$$

- Let $\Psi(0)=$ a we get the following constrained Euler-Lagrange equation

$$
\Psi^{\prime \prime}(y)-2 \lambda \Psi(y), \quad \Psi(0)=a
$$

- This is maximized with a stretched version of $\Psi(y)=e^{-2|y|}$

Kac's Drum

- Let $\Omega \subset \mathbb{R}^{2}$ be an open domain with sufficiently smooth boundary, $\partial \Omega$, so that the following problem has a unique solution

$$
\frac{1}{2} \Delta u+\lambda u=0, \text { with } u=0 \text { on } \partial \Omega
$$

- Under these circumstances we know that

1. $\exists 0<\lambda_{1}<\lambda_{2}<\cdots$ a discrete spectrum
2. $\exists u_{1}(x, y)<u_{1}(x, y)<\cdots$ corresponding normalized eigenfunctions

- Consider

$$
C(\lambda)=\sum_{\lambda_{j}<\lambda} 1=\# \text { of eigenvalues }<\lambda
$$

- $C(\lambda)$ is an increasing function in λ, and Hermen Weyl proved that

$$
C(\lambda) \sim \frac{|\Omega| \lambda}{2 \pi} \text { as } \lambda \rightarrow \infty
$$

- Additionally, Carlemann proved that

$$
\sum_{\lambda_{j}<\lambda} u(x, y) \sim \frac{\lambda}{2 \pi}, \forall(x, y) \in \Omega \text { as } \lambda \rightarrow \infty
$$

Kac's Drum

- Now consider starting a BM at $\left(x_{0}, y_{0}\right) \in \Omega$
- Let $p\left(x_{0}, y_{0}, x, y, t\right)$ be the probability density function of a 2D BM starting at $\left(x_{0}, y_{0}\right)$ reaching (x, y) at time t without hitting $\partial \Omega$
- Einstein-Smoluchowski: Then $p\left(x_{0}, y_{0}, x, y, t\right)$ is the solution to

$$
\begin{aligned}
\frac{\partial p}{\partial t} & =\frac{1}{2} \Delta p \text { in } \Omega \\
p & =0 \text { on } \partial \Omega, \quad \forall t>0
\end{aligned}
$$

- We note that as $t \rightarrow 0$

$$
\int_{\Omega} g(x, y) p\left(x_{0}, y_{0}, x, y, t\right) d x d y \rightarrow g\left(x_{0}, y_{0}\right)
$$

- Assume we can find p using separation of variables: $p\left(x_{0}, y_{0}, x, y, t\right)=T(t) U(x, y)$, then

$$
\begin{aligned}
T^{\prime} U & =\frac{T}{2} \Delta U, \quad U=0 \text { on } \partial \Omega, \quad \forall t>0 \\
\frac{T^{\prime}}{T} & =\frac{\Delta U}{2}=-\lambda \text { yields } \\
T(t) & =e^{-\lambda t}, \text { and } U=\text { the eigenfunction corresponding to } \lambda
\end{aligned}
$$

Kac's Drum

- So this means that we can write explicitly

$$
\begin{aligned}
p\left(x_{0}, y_{0}, x, y, t\right) & =\sum_{j=1}^{\infty} e^{-\lambda_{j} t} u_{j}\left(x_{0}, y_{0}\right) u_{j}(x, y), \text { and so we know } \\
p\left(x_{0}, y_{0}, x_{0}, y_{0}, t\right) & =\sum_{j=1}^{\infty} e^{-\lambda_{j} t} u_{j}^{2}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

- Let $p^{*}\left(x_{0}, y_{0}, x, y, t\right)$ be the probability density function of unrestricted 2D BM starting at $\left(x_{0}, y_{0}\right)$ reaching (x, y) at time t

$$
p^{*}\left(x_{0}, y_{0}, x, y, t\right)=\frac{1}{2 \pi t} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 t}-\frac{\left(y-y_{0}\right)^{2}}{2 t}}
$$

- Thus we conclude that

$$
\sum_{j=1}^{\infty} e^{-\lambda_{j} t} u_{j}^{2}\left(x_{0}, y_{0}\right) \sim p^{*}\left(x_{0}, y_{0}, x, y, t\right) \sim \frac{1}{2 \pi t} \text { as } t \rightarrow 0
$$

Kac's Drum

- Karamata Tauberian Theorem: Consider

$$
f(t)=\int_{0}^{\infty} e^{-\lambda t} d \alpha(\lambda), \text { and assume }
$$

1. The above Laplace-Stiltje's transform exists
2. $\alpha(\lambda)$ is non-decreasing on $(0, \infty)$

- If $f(t) \sim \boldsymbol{A} t^{-\gamma}$ as $t \rightarrow 0$ for A and γ constants then

$$
\alpha(\lambda) \sim \frac{A \lambda^{\gamma}}{\Gamma(\gamma+1)} \text { as } \lambda \rightarrow \infty(\lambda \rightarrow 0)
$$

- We now apply the Karamata Tauberian Theorem to

$$
f(t)=\int_{0}^{\infty} e^{-\lambda t} d \alpha(\lambda)=\sum_{j=1}^{\infty} e^{-\lambda_{j} t} u_{j}^{2}\left(x_{0}, y_{0}\right), \text { where } \alpha(\lambda)=\sum_{\lambda_{j}<\lambda} u_{j}^{2}\left(x_{0}, y_{0}\right)
$$

- We know $f(t) \sim \frac{1}{2 \pi t}$ as $t \rightarrow 0$, and so $\alpha(\lambda) \sim \frac{\lambda}{2 \pi}$ as $\lambda \rightarrow \infty$
- By integrating this over Ω we get Weyl's theorem

Probabilistic Potential Theory

1. Let $\Omega \in \mathbb{R}^{3}$ be a bounded closed domain
2. Let $\mathbf{r}(t) \in \mathbb{C}$ be a continuous function starting at the origin
3. Let $\chi_{\Omega}(\cdot)$ be the indicator function of Ω

- Consider the following functional on \mathbb{C}

$$
T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))=\int_{0}^{\infty} \chi_{\Omega}(\mathbf{y}+\mathbf{r}(\tau)) d \tau, \quad \mathbf{y} \in \mathbb{R}^{3}
$$

- This functional is the total occupations time of $\mathbf{r}(\cdot)$, a 3D BM, in Ω translated by y
- Now impose Wiener measure on \mathbb{C} and consider the following Wiener integral

$$
E\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))\right\}=\int_{0}^{\infty} P\{\mathbf{y}+\mathbf{r}(\tau) \in \Omega\} d \tau
$$

- Note that because we are using Wiener measure we know

$$
P\{\mathbf{y}+\mathbf{r}(\tau) \in \Omega\}=\frac{1}{(2 \pi \tau)^{3 / 2}} \int_{0}^{\infty} e^{-\frac{|\mathbf{r}-\mathbf{y}|^{2}}{2 \tau}} d \mathbf{r}
$$

Probabilistic Potential Theory

- We now use Fubini's theorem to exchange the order of integration

$$
\begin{aligned}
E\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))\right\} & =\int_{\Omega} d \mathbf{r} \int_{0}^{\infty} \frac{1}{(2 \pi \tau)^{3 / 2}} e^{-\frac{|\mathbf{r}-\mathbf{y}|^{2}}{2 \tau}} d \tau \\
& =\frac{1}{2 \pi} \int_{\Omega} \frac{d \mathbf{r}}{|\mathbf{r}-\mathbf{y}|}<\infty \text { in } \mathbb{R}^{3}
\end{aligned}
$$

- We see that in \mathbb{R}^{3} AE BM path starting at \mathbf{y} spends a finite amount of time in Ω
- Now consider the k th moment of the occupation time

$$
E\left\{T_{\Omega}^{k}(\mathbf{y}, \mathbf{r}(\cdot))\right\}=\frac{k!}{(2 \pi)^{k}} \int_{\Omega} \stackrel{[k]}{\cdots} \int_{\Omega} \frac{d \mathbf{r}_{1}}{\left|\mathbf{r}_{1}-\mathbf{y}\right|} \frac{d \mathbf{r}_{2}}{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|} \cdots \frac{d \mathbf{r}_{k}}{\left|\mathbf{r}_{k}-\mathbf{r}_{k-1}\right|} \quad k=1,2, \cdots
$$

- We focus on the second moment, $k=2$

$$
E\left\{T_{\Omega}^{2}(\mathbf{y}, \mathbf{r}(\cdot))\right\}=\int_{0}^{\infty} \int_{0}^{\infty} P\left\{\mathbf{y}+\mathbf{r}\left(\tau_{1}\right) \in \Omega\right\} P\left\{\mathbf{y}+\mathbf{r}\left(\tau_{2}\right) \in \Omega\right\} d \tau_{1} d \tau_{2}
$$

Probabilistic Potential Theory

- We focus on the second moment, $k=2$

$$
\begin{gathered}
E\left\{T_{\Omega}^{2}(\mathbf{y}, \mathbf{r}(\cdot))\right\}=\int_{0}^{\infty} \int_{0}^{\infty} P\left\{\mathbf{y}+\mathbf{r}\left(\tau_{1}\right) \in \Omega\right\} P\left\{\mathbf{y}+\mathbf{r}\left(\tau_{2}\right) \in \Omega\right\} d \tau_{1} d \tau_{2} \\
=2 \iint_{0 \leq \tau_{1}<\tau_{2}<\infty} d \tau_{1} d \tau_{2} \int_{\Omega} \int_{\Omega} \frac{1}{\left(2 \pi \tau_{1}\right)^{3 / 2}} e^{-\frac{\left|\mathbf{r}_{1}-\mathbf{y}\right|^{2}}{2 \tau}} \frac{1}{\left[2 \pi\left(\tau_{2}-\tau_{1}\right)\right]^{3 / 2}} e^{-\frac{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|^{2}}{2\left(\tau_{2}-\tau_{1}\right)}} d \mathbf{r}_{1} d \mathbf{r}_{2} \\
=\frac{2}{(2 \pi)^{2}} \int_{\Omega} \int_{\Omega} \frac{d \mathbf{r}_{1}}{\left|\mathbf{r}_{1}-\mathbf{y}\right|} \frac{d \mathbf{r}_{2}}{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|}
\end{gathered}
$$

- The formula for the k th moment suggests that we should consider the following eigenvalue problem

$$
\frac{1}{2 \pi} \int_{\Omega} \frac{\phi(\boldsymbol{\rho})}{|\mathbf{r}-\boldsymbol{\rho}|} d \boldsymbol{\rho}=\lambda \phi(\mathbf{r}), \quad \mathbf{r} \in \Omega
$$

Probabilistic Potential Theory

- The integral kernel in the eigenvalue problem is Hilbert-Schmidt

1. Since the single integral is convergent, we have

$$
\int_{\Omega} \int_{\Omega} \frac{1}{|\mathbf{r}-\boldsymbol{\rho}|^{2}} d \mathbf{r} d \boldsymbol{\rho}<\infty
$$

2. We also need to show that the kernel is positive definite:

$$
\int_{\Omega} \int_{\Omega} \frac{\phi(\mathbf{r}) \phi(\boldsymbol{\rho})}{|\mathbf{r}-\boldsymbol{\rho}|} d \mathbf{r} d \boldsymbol{\rho}>0 \quad \forall \phi(\boldsymbol{\rho}) \neq 0 \text { in } L^{2}(\Omega)
$$

Note that:

$$
\begin{gathered}
\frac{1}{2 \pi} \frac{1}{|\mathbf{r}-\boldsymbol{\rho}|}=\int_{0}^{\infty} \frac{1}{(2 \pi \tau)^{3 / 2}} e^{-\frac{|\mathbf{r}-\mathbf{y}|^{2}}{2 \tau}} d \tau= \\
\int_{0}^{\infty} d \tau \frac{1}{(2 \pi \tau)^{3 / 2}} \frac{\tau^{3 / 2}}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{i \zeta \cdot(\mathbf{r}-\boldsymbol{\rho})} e^{\frac{-|\zeta|^{2} \tau}{2}} d \zeta= \\
\frac{1}{(2 \pi)^{3}} \int_{0}^{\infty} d \tau \int_{\mathbb{R}^{3}} d \zeta e^{i \zeta \cdot(\mathbf{r}-\rho)} e^{\frac{-|\zeta|^{2} \tau}{2}}
\end{gathered}
$$

Probabilistic Potential Theory

- So

$$
\begin{gathered}
\int_{\Omega} \int_{\Omega} \frac{\phi(\mathbf{r}) \phi(\boldsymbol{\rho})}{|\mathbf{r}-\boldsymbol{\rho}|} d \mathbf{r} d \boldsymbol{\rho}= \\
\frac{1}{(2 \pi)^{3}} \int_{0}^{\infty} d \tau \int_{\mathbb{R}^{3}} d \zeta e^{\frac{-|\zeta|^{2} \tau}{2}}\left|\int_{\Omega} \phi(\rho) e^{i \zeta \cdot \rho} d \rho\right|^{2}>0, \forall \phi(\rho) \neq 0 \text { in } L^{2}(\Omega)
\end{gathered}
$$

- With the kernel being Hilbert-Schmidt, we know that the integral equation has

1. Discrete spectrum: λ_{1}, λ_{2},
2. With corresponding eigenfunctions that form a complete, orthonormal basis for $L^{2}(\Omega)$

- Lemma:

$$
\frac{1}{k!} E\left\{T_{\Omega}^{k}(\mathbf{y}, \mathbf{r}(\cdot))\right\}=\sum_{j=1}^{\infty} \lambda_{j}^{k-1} \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho})}{|\boldsymbol{\rho}-\mathbf{y}|} d \rho
$$

1. This holds for all $y \in \mathbb{R}^{3}$
2. If $y \in \Omega$, then we note that

$$
\frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho})}{|\boldsymbol{\rho}-\mathbf{y}|} d \boldsymbol{\rho}=\lambda_{j} \phi_{j}(\mathbf{y})
$$

Probabilistic Potential Theory

- Proof: Recall that

$$
\frac{1}{k!} E\left\{T_{\Omega}^{k}(\mathbf{y}, \mathbf{r}(\cdot))\right\}=\frac{1}{(2 \pi)^{k}} \int_{\Omega} \stackrel{[k]}{\cdots} \int_{\Omega} \frac{d \mathbf{r}_{1}}{\left|\mathbf{r}_{1}-\mathbf{y}\right|} \frac{d \mathbf{r}_{2}}{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|} \cdots \frac{d \mathbf{r}_{k}}{\left|\mathbf{r}_{k}-\mathbf{r}_{k-1}\right|}
$$

- We recognize this as an iterated integral equation of the form

$$
a\left(\mathbf{y}, \mathbf{r}_{1}\right) a\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \cdots a\left(\mathbf{r}_{k-1}, \mathbf{r}_{k}\right)
$$

- We can then rewrite this using Mercer's theorem representation of the kernel of the integral operator

$$
\frac{1}{|\boldsymbol{\rho}-\mathbf{y}|}=\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(\boldsymbol{\rho}) \phi_{j}(\mathbf{y})
$$

- Next we apply Mercer's theorem only to the terms not involving y to get

$$
\frac{1}{k!} E\left\{T_{\Omega}^{k}(\mathbf{y}, \mathbf{r}(\cdot))\right\}=\frac{1}{2 \pi} \int_{\Omega} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{y}\right|} \int_{\Omega} \sum_{j=1}^{\infty} \lambda_{j}^{k-1} \phi_{j}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{k}\right) d \mathbf{r}_{1} d \mathbf{r}_{k}
$$

Probabilistic Potential Theory

- To review we have that

$$
\frac{1}{k!} E\left\{T_{\Omega}^{k}(\mathbf{y}, \mathbf{r}(\cdot))\right\}= \begin{cases}\sum_{j=1}^{\infty} \lambda_{j}^{k-1} \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\rho)}{|\rho-\mathbf{y}|} d \boldsymbol{\rho}, & \mathbf{y} \in \mathbb{R}^{3} \\ \sum_{j=1}^{\infty} \lambda_{j}^{k} \int_{\Omega} \phi_{j}(\mathbf{r}) \phi_{j}(\mathbf{y}) d \mathbf{r}, & \mathbf{y} \in \Omega\end{cases}
$$

- Now let us consider the moment generation function (Laplace transform) with $z \in \mathbb{C}$

$$
E\left\{e^{\left.z_{\Omega}(\mathbf{y}, \mathbf{r} \cdot)\right)}\right\}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} E\left\{T_{\Omega}^{k}(\mathbf{y}, \mathbf{r}(\cdot))\right\}
$$

- Now we use the above lemma to get

$$
=1+\frac{z}{2 \pi} \sum_{j=1}^{\infty}\left(\frac{1}{1-\lambda_{j} z}\right) \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho})}{|\boldsymbol{\rho}-\mathbf{y}|} d \rho
$$

1. This series converges if $|z|<\frac{1}{\lambda_{\text {max }}}$
2. The moment generating function is analytic if $\Re\{z\}<0$ since $T_{\Omega} \geq 0$
3. The last series is analytic for $\Re\{z\}<0$, so by analytic continuation this identity holds with $\Re\{z\}<0$

Probabilistic Potential Theory

- Let $u>0$ and define

$$
\begin{equation*}
h(\mathbf{y}, u)=E\left\{e^{-u T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))}\right\}=1-\frac{u}{2 \pi} \sum_{j=1}^{\infty}\left(\frac{1}{1+\lambda_{j} u}\right) \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho})}{|\boldsymbol{\rho}-\mathbf{y}|} d \boldsymbol{\rho} \tag{*}
\end{equation*}
$$

- This series converges on compact sets in \mathbb{C} because

1.

$$
\frac{1}{1+\lambda_{j} u}<1
$$

2.

$$
\begin{gathered}
\left(\sum_{j=1}^{\infty} \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho})}{|\boldsymbol{\rho}-\mathbf{y}|} d \boldsymbol{\rho}\right)^{2} \leq \sum_{j=1}^{\infty}\left(\int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r}\right)^{2} \sum_{j=1}^{\infty}\left(\int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho})}{|\boldsymbol{\rho}-\mathbf{y}|} d \boldsymbol{\rho}\right)^{2}= \\
|\Omega| \int_{\Omega} \frac{d \boldsymbol{\rho}}{|\boldsymbol{\rho}-\mathbf{y}|}<\infty
\end{gathered}
$$

- This gives uniform convergence via the Weierstrass M-test and thus this is also analytic

Probabilistic Potential Theory

- If $\mathbf{y} \in \Omega$ then we get

$$
h(\mathbf{y}, u)=1-\sum_{j=1}^{\infty}\left(\frac{\lambda_{j} u}{1+\lambda_{j} u}\right) \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \phi_{j}(\mathbf{y})
$$

- And so we can multiply both sides by $\frac{1}{2 \pi|\mathbf{y}-\boldsymbol{r}|}$ and integrate over Ω

$$
\frac{1}{2 \pi} \int_{\Omega} \frac{h(\mathbf{y}, u) d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}=\frac{1}{2 \pi} \int_{\Omega} \frac{d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}-\sum_{j=1}^{\infty}\left(\frac{\lambda_{j} u}{1+\lambda_{j} u}\right) \int_{\Omega} \phi_{j}(\rho) d \rho \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\mathbf{y}) d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}
$$

- But we know that

$$
\frac{1}{2 \pi} \int_{\Omega} \frac{d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}=\sum_{j=1}^{\infty} \int_{\Omega} \phi_{j}(\rho) d \rho \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\mathbf{y}) d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}
$$

- Thus we cane write that

$$
\frac{1}{2 \pi} \int_{\Omega} \frac{h(\mathbf{y}, u) d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}=\sum_{j=1}^{\infty}\left(\frac{1}{1+\lambda_{j} u}\right) \int_{\Omega} \phi_{j}(\rho) d \rho \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\mathbf{y}) d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}
$$

Probabilistic Potential Theory

- We recognize the left hand side of the previous equation from (*), and so we use this ro rewrite this as

$$
\frac{1}{2 \pi} \int_{\Omega} \frac{h(\mathbf{y}, u) d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}=\frac{1}{u}(1-h(\mathbf{r}, u)), \quad \forall \mathbf{r} \in \mathbb{R}^{3}
$$

- Moreover, if we rename variables we get

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\Omega} \frac{h(\rho, u) d \rho}{|\mathbf{y}-\boldsymbol{\rho}|}=\frac{1}{u}(1-h(\mathbf{y}, u)), \quad \forall \mathbf{y} \in \mathbb{R}^{3} \tag{**}
\end{equation*}
$$

- We now make some important observations

1. From (*) we see that if $\mathbf{y} \notin \Omega$ then $h(\mathbf{y}, u)$ is harmonic in \mathbf{y}, and the series in ${ }^{*}$) converges uniformly on compact Ω 's
2. Again from (*) we get

$$
\begin{aligned}
h(\mathbf{y}, u)>1-\frac{u}{2 \pi}\left\{\sum_{j=1}^{\infty}\left(\int_{\Omega} \phi_{j}(\rho) d \rho\right)^{2}\right\}^{1 / 2}\left\{\sum_{j=1}^{\infty}\left(\int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho})}{|\boldsymbol{\rho}-\mathbf{y}|} d \rho\right)^{2}\right\}^{1 / 2} \\
>1-\frac{u}{2 \pi}|\Omega|^{1 / 2}\left(\int_{\Omega} \frac{d \rho}{|\boldsymbol{\rho}-\mathbf{y}|}\right)^{1 / 2}
\end{aligned}
$$

Probabilistic Potential Theory

3. So we now know that $0 \leq h(\mathbf{y}, u) \leq 1$, and so

$$
\begin{equation*}
\lim _{u \nearrow \infty} h(\mathbf{y}, u)=1 \tag{***}
\end{equation*}
$$

4. And for from Courant-Hilbert II, pp. 245-246

$$
\Delta\left(\int_{\Omega} \frac{h(\mathbf{y}, u) d \mathbf{y}}{|\mathbf{y}-\mathbf{r}|}\right)=-4 \pi h(\mathbf{y}, u)
$$

- Now apply the Laplacian to both sides of $\left({ }^{* *)}\right.$ to get

$$
-2 h(\mathbf{y}, u)=-\frac{1}{u} \Delta h(\mathbf{y}, u)
$$

or we get

$$
\frac{1}{2} \Delta h(\mathbf{y}, u)-u h(\mathbf{y}, u)=0, \quad \mathbf{y} \in \Omega
$$

- Now consider $\mathcal{U}(\mathbf{y})=\lim _{u \nearrow \infty}(1-h(\mathbf{y}, u))=P\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\}$, this is the capacitory potential (capacitance) and follows easily from the definition of the moment generating function

Probabilistic Potential Theory

- Example: Let Ω be a sphere of radius 1 centered at the origin

1. $h(\mathbf{y}, u)$ is clearly spherically symmetric
2. $h(\mathbf{y}, u)$ is harmonic outside Ω, so we have

$$
h(\mathbf{y}, u)=\frac{\alpha(u)}{|\mathbf{y}|}+\beta(u), \quad \mathbf{y} \notin \Omega
$$

3. From (${ }^{* * *}$) we see that $\beta(u)=1$ and so $h(\mathbf{y}, u)=\frac{\alpha(u)}{|\mathbf{y}|}+1$ for $\mathbf{y} \in \Omega$
4. We also know that for $y \in \Omega$ we have

$$
h(\mathbf{y}, u)=\gamma(u) \frac{\sinh (\sqrt{2 u}|\mathbf{y}|)}{|\mathbf{y}|}
$$

5. If we substitute this into the equation $\left(^{* *}\right)$ we get that $\gamma(u)=\frac{1}{\sqrt{2 u} \cosh (a \sqrt{2 u})}$
6. $h(\mathbf{y}, u)$ is continuous $\forall \mathbf{y}$ so from the uniform convergence of the series, and so

$$
\frac{\alpha(u)}{a}+1=\frac{1}{\sqrt{2 u}} \frac{\sinh (\sqrt{2 u} a)}{\cosh (\sqrt{2 u} a)} \frac{1}{a}
$$

to finally give us

$$
h(\mathbf{y}, u)= \begin{cases}1-\frac{1}{|\mathbf{y}|}\left(1-\frac{\tanh (a \sqrt{2 u})}{a \sqrt{2 u}}\right), & \mathbf{y} \notin \Omega \\ \frac{\sin h(\sqrt{2 u}|\mathbf{y}|)}{\sqrt{2 u} \cosh (\sqrt{2 u a})|\mathbf{y}|}, & \mathbf{y} \in \Omega\end{cases}
$$

Probabilistic Potential Theory

- Recall that

$$
\mathcal{U}(\mathbf{y})=\lim _{u \nearrow \infty}(1-h(\mathbf{y}, u))=P\left\{T_{S(0, a)}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\}= \begin{cases}\frac{a}{|\mathbf{y}|}, & \mathbf{y} \notin \Omega \\ 1, & \mathbf{y} \in \Omega\end{cases}
$$

- This is the capacitory potential of $S(0, a)$
- Now back to the general case, $\forall \mathbf{y} \in \mathbb{R}^{3}$ we have

$$
1-E\left\{e^{-u T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))}\right\}=\sum_{j=1}^{\infty}\left(\frac{1}{\lambda_{j}+\frac{1}{u}}\right) \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho}) d \boldsymbol{\rho}}{|\boldsymbol{\rho}-\mathbf{y}|}
$$

1. We note that $0 \leq 1-h(\mathbf{y}, u) \leq 1$
2. The function $1-h(\mathbf{y}, u)$ is non-decreasing in $u: 1-h\left(\mathbf{y}, u_{1}\right) \leq 1-h\left(\mathbf{y}, u_{2}\right)$
if $u_{1}<u_{2}$
3. This is true due to the following
$3.10 \leq e^{-u T_{\Omega}(y, r(\cdot))} \leq 1$ and

$$
\lim _{u \backslash \infty} e^{-u T_{\Omega}(y, r(\cdot))}= \begin{cases}0, & T_{\Omega}>0 \\ 1, & T_{\Omega}=0\end{cases}
$$

Probabilistic Potential Theory

- From the previous results and the bounded convergence theorem we have

$$
\mathcal{U}(\mathbf{y})=\lim _{u \nearrow \infty}(1-h(\mathbf{y}, u))=P\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\}
$$

and hence also

$$
\mathcal{U}(\mathbf{y})=\lim _{u \nearrow \infty} \sum_{j=1}^{\infty}\left(\frac{1}{\frac{1}{u}+\lambda_{j}}\right) \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho}) d \boldsymbol{\rho}}{|\boldsymbol{\rho}-\mathbf{y}|}
$$

and this holds $\forall \mathbf{y} \in \mathbb{R}^{3}$
Case 1. Let $\mathbf{y} \in \Omega^{\circ}$ (the interior), clearly the continuity of $\mathbf{r}(\cdot)$ immediately implies

$$
\mathcal{U}(\mathbf{y})=P\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\}=1
$$

Remark: with $\mathbf{y} \in \Omega^{\circ}$ we have $\mathcal{U}(\mathbf{y})=1$ and so we have the following summability result

$$
1=\lim _{u \nearrow \infty} \sum_{j=1}^{\infty}\left(\frac{\lambda_{j}}{\lambda_{j}+\frac{1}{u}}\right) \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho}) d \boldsymbol{\rho}}{|\boldsymbol{\rho}-\mathbf{y}|}
$$

NKT

Probabilistic Potential Theory

Case 2. Let $\mathbf{y} \notin \Omega$, we already know that $1-h(\mathbf{y}, u)$ is harmonic in \mathbf{y}, and it is nondecreasing in u, and the previous limit in u exists and equals $P\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\}$, thus by Harnack's theorem, $\mathcal{U}(\mathbf{y})$ is harmonic with $\mathbf{y} \notin \Omega$. Assume that $\Omega \subset S(0, a)$, then

$$
P\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\} \leq P\left\{T_{S(0, a)}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\}
$$

From the last problem this means

$$
P\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\} \leq \frac{a}{|\mathbf{y}|}, \quad \mathbf{y} \notin S(0, a)
$$

and so $\lim _{|\mathbf{y}| \rightarrow \infty} \mathcal{U}(\mathbf{y})=0$
Case 3. Let $\mathbf{y}_{o} \in \partial \Omega$, and assume that it is regular in the sense of Poincaré: \exists a sphere $S\left(\mathbf{y}_{*}, \epsilon\right)$ lying completely in Ω so that $\mathbf{y}_{o} \in S\left(\mathbf{y}_{*}, \epsilon\right)$ Consider now $\mathbf{y} \notin \Omega$

$$
\mathcal{U}(\mathbf{y})=P\left\{T_{\Omega}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\} \geq P\left\{T_{S(0, a)}(\mathbf{y}, \mathbf{r}(\cdot))>0\right\}=\frac{\epsilon}{\left|\mathbf{y}-\mathbf{y}_{*}\right|}
$$

As $\mathbf{y} \rightarrow \mathbf{y}_{0}$ with $\mathbf{y} \notin \Omega$ we have $\frac{\epsilon}{\left|\mathbf{y}-\mathbf{y}_{*}\right|} \rightarrow \frac{\epsilon}{\left|\mathbf{y}_{o}-\mathbf{y}_{*}\right|}$, and since $\mathcal{U}(\mathbf{y}) \leq 1$ we have finally that

$$
\lim _{\mathbf{y} \rightarrow \mathbf{y}_{o}} \mathcal{U}(\mathbf{y})=1
$$

Probabilistic Potential Theory

- Thus if Ω is a closed and bounded region, each point on the boundary that is regular in the Poincaré sense has $\mathcal{U}(\mathbf{y})$ as the capacitory potential of Ω
- Recall that

$$
\mathcal{U}(\mathbf{y})=\lim _{\delta \rightarrow 0} \sum_{j=1}^{\infty}\left(\frac{1}{\lambda_{j}+\delta}\right) \int_{\Omega} \phi_{j}(\mathbf{r}) d \mathbf{r} \frac{1}{2 \pi} \int_{\Omega} \frac{\phi_{j}(\boldsymbol{\rho}) d \boldsymbol{\rho}}{|\boldsymbol{\rho}-\mathbf{y}|}
$$

- We note that this implies that

$$
\lim _{|y| \rightarrow \infty}|\mathbf{y}|(1-h(|\mathbf{y}|, u))=\frac{1}{2 \pi} \int_{\Omega} u h(\rho, u) d \rho
$$

- Again assume that $\Omega \in S(0, a)$, then $h(\mathbf{y}, u)=E\left\{e^{-u T_{\Omega}}\right\} \geq\left\{e^{-u T_{S(0, a)}}\right\}$, there for $\mathbf{y} \notin S(0, a)$ we have $h(\mathbf{y}, u) \geq 1-\frac{a}{|y|}$ or $1-h(\mathbf{y}, u) \leq \frac{a}{|y|}$ and so

$$
\frac{u}{2 \pi} \int_{\Omega} h(\rho, u) d \rho \leq a
$$

(C)Michael Mascagni, 2016

NuT
National Institute of

