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THE MONTE CARLO METHOD*
W. F. BAUER

Introduction. Briefly, the Monte Carlo method consists in formulating
a game of chance or a stochastic process which produces a random variable
whose expected value is the solution of a certain problem. An approxima-
tion to the expected value is then obtained by means of sampling from the
resulting distribution. As in almost all numerical processes, only an ap-
proximation to the correct answer is obtained. In this case, instead of the
primary source of error being due to numerical round-off, the primary
source of error is due to the fact that only a finite sample can be taken.
It follows, of course, that the degree of accuracy depends on the sample
size.

At the end of this paper a rather extensive bibliography is given. A more
complete list can be found at the end of a paper by Curtiss [1].

Two scientists from Los Alamos, Metropolis and Ulam [9], are generally
credited with having given to the method the picturesque name ‘“Monte
Carlo.” One of the early applications of using the sampling technique was
in solving the problem of neutrons penetrating a slab. The problem, re-
ported by Kahn [7], is essentially a problem in integral equations of the
Fredholm type. Actually the knowledge of the relationship between proba-
bility problems and mathematical equations dates back to such famous
mathematicians as Lagrange and Laplace. Late in the last century Lord
Rayleigh proved that the solution of the ‘“‘drunken walk problem’ where
a random path is obtained by the simple rule that every step of the inebri-
ate is as likely a step forward as a step backward, yields an approximate
solution to a parabolic type partial differential equation in one variable.
In 1928, Courant, Friedrichs and Lewy [17] in their definitive article on
difference equations for partial differential equations, included a treat-
ment of the sampling technique to solve the difference equations corre-
sponding to an elliptic differential equation.

With the advent of the high-speed computing device the picture with
regard to this method of solving problems changed considerably. It sud-
denly became feasible to obtain large samples because of the high computing
speeds available. The modern high-speed machine can generate as many
as 200 random numbers from an arbitrary Gaussian distribution in one
second.! When the method was first introduced in connection with high-

* Received by the editors April 30, 1958 and in revised form August 19, 1958.
1 Methods by which this is done in a machine will be discussed further below.
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speed computers in about 1947, statements were evoked attributing to it
a panacean character. Since then a more sober outlook on the method
prevails. It is generally agreed that although many questions concerning
the method remain unanswered, it should be regarded as another numerical
tool especially suited for certain problems.

The purpose of this article is to provide the reader with description of
the many facets of the Monte Carlo Method. The subject is traversed from
the most elementary to the more difficult techniques, and from the least
practical (but instructive) to the most fruitful applications. One section
deals with the generation of random numbers in the modern electronic
computing machine. Most of the material is of an expository nature.
However, the section on the solution of elliptic partial differential equa-
tions with certain boundary conditions is new. The closing section contains
some general remarks on evaluating the Method.

The evaluation of integrals. Consider the problem of evaluating the
integral / f(x)dx, where f(x) = 0, between thelimitsa and b. This is equiva-

lent to finding the area I under the curve as shown in the figure.
Consider a line y = M such that M > f(z) for all z in (a, b). Then,
since M(b — a) is the area of the rectangle, it is seen that

I<Mb-—a)=A.

Consider the following game: Points (x, y) are chosen in the rectangle at
random according to the rule that the choice of a point anywhere in the
square is ‘““as likely”’ as any other point. The number of times the point
lies in the area under the curve is tallied. The ratio of the number of suc-
cesses S, the points falling in I, to the total number of tries N is the random
variable whose expected value is the ratio of the area under the curve
(the value I) to the area A.

In actual practice the point in the rectangle can be selected by choosing
from two rectangular distributions (each point equally likely) in the x and
y intervals. With the value of x chosen, the quantity y is compared with
f(z) to determine a ‘“‘success” or “failure.”
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According to elementary probability theory the distribution of S suc-
cesses in NV trials has an expected value § = NI/A and a standard devia-

tion of
_ I T

The standard deviation of S/N, the random variable of interest, is simply
o = o/A/N. For large N the probable error in per cent in the ratio S/N
is approximately

. 7/A/N . 1—1/4
= 6745 Zn il 67.45 NTA

One sees that as N increases the probable error decreases. Also, if M is
made small to increase the ratio I/A, a greater accuracy can be attained
with a smaller number of tries.

The above expression for the probable error in the estimate of the
integral is illustrative of the errors in Monte Carlo problems. It is seen,
for example, that to increase the accuracy by one additional decimal, 100
times as many samples must be taken. Third and fourth decimal accuracies
in Monte Carlo processes are frequently difficult because of this relation-
ship between accuracy and sample size.

Suppose, in the above problem that the integral

I = fabg(x) dx

Probable error in per cent

is known where g(r) is an approximation to f(z) and such that f(z) < g(x)
which makes I; > I. Then, in the above discussion, I; is substituted for
A, and for a given number of tries, the probable error is reduced. This im-
plies that an estimate is made of the integral and the success of the method
essentially depends on the degree of approximation of I; to I. The formu-
lation of the random process must be such that each point of the area
represented by I is “as likely”’ to be chosen as any other.

Another application of the sampling method lies in evaluating integrals
of the Stieltjes type. If, for example, the evaluation of the integral

f f(x)dg(x) is desired the procedure is entirely similar to that above except

the sampling in the x coordinate is not done from a rectangular distribu-
tion but rather from a distribution which has the function g(z) as a distri-
bution function.

The method is hardly feasible for application to simple integrals of these
types. However, for complicated integrals in n dimensions (n = 3) the
method becomes more attractive.
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Ordinary differential equations. As another example, consider a game
consisting of a series of turns played by two players G and G’. The proba-
bility that G wins a turn is p, the probability @’ wins is ¢ = 1 — p and
$h is at stake on each turn.

Suppose a total of $b is involved with G having $x and G’ having $b — $z
initially. Graphically, a point is placed on an z-axis

| | | | | | (I
I I [ I I F [
0 — | h| b

X
_

and the interval (0, b) is divided in equal subintervals of length k. A point
starting at £ moves to the right a distance h with probability p and to the
left with probability ¢ = 1 — p and therefore represents the fortune of
player G at any point in the game. Upon reaching b, G wins all the money
and upon reaching 0, G loses all the money to G’. It can be shown [1] in
a rigorous fashion that the probability V(xz) that G wins if he has $zx at
any stage of the game is the solution of the problem consisting of the
difference equation

Vie+h) +V(e—h) —2V@) , p—q[V@+h) — Ve —-hT] _
R + gh [ h :I_o

and the boundary conditions
VO)=0 V(@) =1

The boundary conditions correspond to the rather trivial facts that if G
begins with $0 he has probability 0 of winning and if he begins with $b
he is certain of winning.
In showing that the probability v(xz) of G winning is the solution of the
boundary value problem stated, the probability V,.(xz) of G winning in
exactly m moves is expressed in terms of V,,_,(x + h) and V,._i(x — h).
The summation over m of both members of the resulting equation yields
the expression. The procedure is universal in Monte Carlo problems of this
type and is shown in detail in the proof of Theorem 1 of this paper.
If the amount of money $# involved in each move becomes smaller, and
if p approaches ¢ according to
P — ¢ = ha + 0(h)

for some « then the finite-difference problem goes formally into the problem
d'u du
ax: T2 g =0

u(0) = 0, u(b) = 1.
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Thus the game formulated gives an approximate solution to this
“differential’’ boundary value problem if p and ¢ are approximately equal.

Partial differential equations. Other examples of the Monte Carlo method
lie in the domain of partial differential equations. Consider, for example,
the Dirichlet problem of finding the numerical solution to the Laplace
equation’

Viu =0

with the function values being stipulated around a boundary. The region

of interest is divided into a square grid of mesh size & and it is desired to

obtain the solution of the finite-difference formulas at the node points of

the grid. The finite-difference formula at a node point P takes the form
4

2 u(P;) — 4u(P) = 0

1=1
where P; (j = 1, 2, 3, 4) are the four immediate neighbors of point P. The
boundary conditions can be written

wR) = f(R)

at points R of the boundary where f is a known function.

The game to be played which produces a random function with expected
value corresponding to point P which solves the boundary value problem
is as follows: Random paths starting from point P and ending at the
boundary are generated by the rule that upon reaching any node point the
probability of proceeding to each of the four neighboring points is equally
likely (i.e., each has probability 4). The payoff upon reaching the boundary
at a point R is f(R), and the walk ends. The average payoff after N walks
is the random variable for the point P. A proof of the validity of this
procedure can be found in [17].

Curtiss [1] has published an interesting and rather complete discussion
of the formulation of games for the solution of problems involving the
general linear partial differential operator

Lu] = aes + busy + cuyy + dus + euy,

where the subscripts denote partial derivatives and the quantities a, b, ¢, d,
and e denote constants. Also in another paper, Curtiss [23] has investigated
the problem of the iteration of linear operators by the Monte Carlo method.

2 The operator V2 is the Laplace operator. In two dimensions
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Partial absorption boundary conditions. W. Wasow [11] has formulated
and proved the validity of a random walk procedure to solve the finite-
difference equations corresponding to the boundary value problem

Vu(P) 4+ g(P)u(P) = f(P)
u(R) = h(R)

where f and h are arbitrary functions with characteristics as described by
Wasow. In this statement of the problem the differential equation holds
for points P interior to a region S and the boundary condition for points
(R) on the boundary B of S. It is the purpose here to extend certain of
Wasow’s results to boundary value problems involving the above differen-
tial equation but with the boundary condition of the form

1) n-Vu = pu

where n - Vu is the derivative in the direction of the interior normal to the
boundary and p > 0. The boundary condition (1) is of the type describing,
for example, the transfer of heat into a constant-temperature medium.
Consider here that B is a rectangle® with sides parallel to the axes, and
that a square lattice covers the interior. The difference equation counter-
part to the boundary value problem involving condition (1) is of the form

Au(P) + g(P) u(P) = f(P)

2
w(P.) — u(R) = pu(R)

for points P in S, R on B, where P, is a point interior to B and neighboring

R in the direction of the normal. The symbol A represents the finite-
difference operator

1 4

2 w(P;) — 4u(P)

Au = = 2
corresponding to the Laplace operator, where P;, Py, P;, P,, are the
four neighboring points of P with coordinates (z + h, y), (x — h, ¥y),
(xz, y + h), and (x, y — k). The quantity k is the mesh size of the square
lattice.

Consider the following random walk from a point P in S: At each step
the particle moves in the direction of the coordinate axes to one of its four
neighboring points P;, with the movement to each being equally likely
with probability . The particle has unit mass starting from point P. At

3 The assumption of B as a rectangle is done for the sake of simplicity of expo-
sition; it is not an essential restriction. B could be a polygon with sides parallel
to the axes.
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each move from a general point P’, the mass is multiplied by K(P’) where
2
K@) = [1- ¥ ]

Upon reaching a boundary point R the probability of returning to the
interior point P, (neighboring the point R and situated in the direction of
the normal) with mass unchanged is @ = 1/(1 + p) and the probability
of being absorbed (the walk ends) is 1 — a.

For this random walk the following theorem holds:

THEOREM 1. The expected value G(P, Q) of the mass passing through the
point Q in S with walks starting from point P in S solves the problem

6(P Q)

—1

Au + g(P)u(P
® oPIP) = o
w(P;) — u(R) = pu(R)

provided G(P, Q) s finite. In this statement 6(P, Q) = 1 if P = Q and
(P, Q) =04 P##Q

Proof: Let L.(P, Q) be a partlcular path from P to @ which consists
of m steps interior to B and r returns from the boundary. Let M, .(P, Q)
be the mass upon arrival at @ for this path. The probability of movement
along such a path is 4 "a". The expected mass upon arrival at Q with
paths consisting of m steps and r returns is

(4) gm T(P Q) = 4_; (L %Q)] Mm,r(P, Q)

the summation being over all such paths.
According to the rules of the walk

M, (P, Q) = K(P)Mn-1+(P;, Q)

where P; is a neighboring point of P and where the path for M,,; .(P; , @)
is contained in the one for M, (P, @). By (4) and since there are four
neighbors P;

0u (P, @) = KD Y Y MeaPs, @

=1 [Lyp—1,,(P,Q)]

m—l T(P] bl Q)

5
) K(P)Z

From the rules of the walk go.(P, @) = (P, @) and, since P is not on
the boundary B, g..(P, @) = 0 for all r. Since

G(P, Q) = lim Z g.4(P, Q)

m,r>0 7,j=0
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from: (5) it is seen that
4
LS N

or G(P, Q) satisfies the difference equation in (3).
Next it is seen that

r—1

gm,r—l(Pe y Q) = e Z Mm,r—l(Pe ) Q)

4m [La,r—1(Pe,Q)]

r—1

= 94'7,; Z M m.r(R, Q)
Lo, (B, @]
The latter equality holds because a path which has one more return
from the boundary than the path starting at P, must necessarily have
started from the boundary point B and must result in the same mass at
the point Q. Therefore

gnr(R, Q) = agmr1(Pe, Q)

and, since gno(R, @) = 0 for all m, taking the limiting sum of both mem-
bers produces

G(R, Q) = aG(P., Q).

That is, G(R, Q) satisfies the boundary condition in (3), and the proof of
the theorem is completed.

Except for the factor —1h’K(P) the function G(P, Q) is the Green’s
function of the problem (2). Thus the solution of (2) can be written

uP) = 51 3 6(P, QK@ J(@).

Therefore, the following random walk procedure produces a random vari-
able whose expected value solves (2): At each point @ in the walk from P
as described above, the amount of mass is multiplied by K(Q)f(Q) and the
products added until absorption takes place on the boundary. The random
variable for N walks starting at P is the cumulative sum multipled by
—h°/4N.

The proof of the following establishes the validity of the random walk
procedure for the problem (2):

TaEOREM 2. If g(P) < 0 for all P in S the expected value G(P, Q) repre-
sented by the sum

©) GP,Q) = lm 3 gs(P, Q)

m,r>0 1.1

extsts.
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Proof: Since g(P) < 0 for all P in S, there exists a number M such that
max [K(P)] = M < 1.

P¢S
Also,
Mn (P, Q) = M™

If N.(P, Q) is the number of distinct paths from P to @ with exactly m
interior moves then
gm,T(P) Q) = g‘ Z Mm,r(P’ Q)

4™ (L (PQ)]
< %Nm(P, QM™ < dM™

The last inequality holds because N (P, @) < 4™ since the total number of
distinct paths consisting of m interior moves to any point in S is 4™. The
existence of G(P, Q) follows readily under the realization that the double
sequence of partial sums involved in the sum (6) is monotone nondecreasing
in m and r and the sum is termwise less than the double sum with terms of
the form a"M™ which certainly coverges since0 < a < 1and0 < M < 1.

Random number generation. Since all Monte Carlo techniques require
a random number source, the subject of generating the random numbers
is most important. Perhaps the first extensive project in the generation
of random sequences of numbers was that undertaken by the RAND
Corporation in 1947 and reported by G. W. Brown [20]. The technique
used consisted of generating random digits by counting electronically
pulses from a random frequency pulse source and periodically punching
digits on IBM cards. Some one million random digits were obtained and
tabulated by this “electronic roulette wheel.”

With the advent of the stored program computer, however, and its
awkwardness in storing and handling extensive tables of numbers com-
pared to its arithmetic speed, a method of generating random numbers as
needed was seen as necessary. With the technique generally in use a se-
quence of “random’ numbers is generated by the arithmetic process of
performing successive multiplications and discarding many of the digits,
usually the high or the high and low order digits. A scheme' in extensive
use can be described by the formula

) y: = 5"y 1(mod 2°)
(7)

Yo =1

¢+ Another technique, based on Fibonacci sequences, is described by Taussky and
Todd [26].
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where ¢ is a nonnegative integer, and s is the number of binary digits
useful or desirable in the number produced. This method produces positive
odd integers s binary digits in length in the range 2° > y = 0. Sequences
of such numbers are pseudo-random with uniform distribution in the range
if s is large.

As reported in a paper by Moshman [24], by classical number theory
one may deduee that the period for the sequence of numbers thus produced
is 2°7%. In most cases s is on the order of 40, making possible large sets of
pseudo-random numbers. Calling the least significant digit n = 1, the
nth digit has a period 2"7%; the more significant digits are more nearly
random.

The method of producing sequences of numbers which correspond to
normal or Gaussian distributions consists in averaging subsequences of the
numbers y; obtained from (7). In so doing a standard theorem on the
distribution of means is involved: If y has a distribution of mean m and
standard deviation ¢ for which the moment generating function exists
then the random variable y formed by taking the average value § of n
samples of y according to

® v = —m ¥

approaches a standard distribution as n is large. Fortunately » need not be
large to satisfy most requirements. Kendall and Babington-Smith [19]
have treated many of these questions with considerable thoroughness.

In practice with large scale binary computing machines like the IBM
704 or the Remington-Rand 1103A, s is taken to be as large as possible,
namely 35, so that maximum periodicity is obtained. In most cases ¢ is
chosen so that 5’ is as large as possible while still less than 2°. It is con-
venient, though not necessary, to take y, equal to 5" itself. For obtaining
deviates from the normal distribution according to (8), n is usually taken
to be about 10 but it can be chosen smaller. Very often a subroutine for
the computer is prepared which, when used, produces a number from a
distribution corresponding to the standard distribution (zero mean and
unit standard deviation). Multiplying the numbers thus obtained by an
arbitrary ¢ produces deviates from the normal distribution of standard
deviation o. All writers on the subject conclude that the numbers obtained
from this technique satisfactorily pass all tests of randomness. Moshman
[24] reports on extensive tests performed on a slight variation of the method
of (7) suitable for a decimal computer where the numbers were chosen
modulo 10° and 7***" was used instead of 5.

It is sometimes convenient to choose the parameter ¢ in (7) so that
52" is considerably less than 2°. F. Meek [21] reports on a subroutine for
producing normally distributed deviates prepared for the 1103 computer
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with ¢ = 2 and n = 6. In this case 5° was desirable since that number in
binary form contains few binary ones and the multiplication is conse-
quently faster on the 1103. The chi-squared test for these numbers z;,
showed them to conform satisfactorily to a Gaussian distribution. The
numbers x; can be chosen at the rate of 217 per second.

Once one has noted the simple process of generating numbers from a
uniform distribution according to (7), many other schemes are possible.
Von Neumann [25] suggested a method for generating numbers satisfying
a nonuniform, arbitrary probability distribution f(z)dx on (0, 1). In this
method one normalizes f(z) by choosing an a such that max.cco.1y[af(zx)] = 1.
Numbers z; and y; are generated from a uniform distribution on (0, 1) and
x; is accepted or rejected as a deviate depending on whether y; < af(z;) or
yi > af(x,). The accepted z,’s have the required distribution. Other tricks
are, of course, possible.

Linear systems and matrix inversion. Elliptic partial differential equa-
tions, when solved numerically, are, of course, nothing more than a special-
ized system of linear algebraic equations. For this reason the discussions
lead directly to the solution of linear systems by Monte Carlo techniques.
Forsythe and Leibler [18] have reported on a method by Von Neumann
and Ulam for solving linear systems and inverting matrices. Included in
this paper is an expression for the variance of the random variable, the
expected value of which is the solution. Wasow [22] has carried this a step
further and has shown that the problem can be formulated in terms of a
“mass” of the moving point as was done in the section on random walk
boundary conditions.

An interesting question concerns the relationship between the proof of
the preceding section and the proof of Forsythe and Leibler [18] of the
general formulation. In discussing this, consider B the matrix whose in-
verse is desired and let A = I — B where [ is the unit matrix. The con-
dition advanced by Forsythe and Leibler for the validity (convergence) of
the procedure is that

max | M(4) | < 1
where A;; = | Aj;| and \.(A4) denotes the rth eigenvalue of A. In the

above section the off-diagonal elements of A are [4 — g(p)]~* and there are
four such elements in each row. Thus by Gerschgorin’s theorem® the eigen-

5 Gerschgorin’s theorem states that, for a matrix of order n with elements 4,; ,
the eigenvalues lie in the union of the n circles of radius

r=2 Ay — | Al
=1

and with centers at A;; .
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values of A are certainly less than one in magnitude as long as g(p) < 0,
the condition advanced for the validity of the procedure.

It is clear that the condition of Forsythe and Leibler concerning the
size of the eigenvalues is less stringent that the condition of the preceding
section, that g(p) < 0. However, since Gerschgorin’s theorem is usually,
in practice, applied in these matters, the conditions are practically equiva-
lent.

Remarks. Probably the most fruitful application of the method has not
been mentioned above, however. In the above discussions the emphasis was
placed on the solution of a categorical mathematical problem, already
formulated. Very frequently one formulates the Monte Carlo process from
the physical process without first translating the process into a type of
mathematical expression. The difference in approach is not trivial, how-
ever, since it happens frequently that the mathematical formulation of the
complete problem is not feasible, or if the formulation is feasible, the
solution by standard techniques is not possible because of problem non-
linearities. ’

As a case in point, consider the problem of a guided missile trajectory
or, more specifically, the impact point of the missile. The impact point is
a random variable because of random variables in the guidance primarily
due to radar propagation anomalies but also due to electrical circuit
“noise.” In this case sampling is done directly; simulation of the trajectory
is performed on the basis of the character of the distribution of the random
variables.

There are, however, advantages in using the Monte Carlo scheme for
certain standard mathematical problems. For example, in the solution of
elliptic partial differential equations ‘local solutions” or solutions at a
given point are possible. This makes possible the solution in certain re-
stricted areas, or at certain points, without the necessity of solving the
equations for all unknowns simultaneously as with the usual classical
methods of solving linear equations. Therefore, computer storage require-
ments are considerably lightened and computer time may be saved.

Certain advancements in the techniques and theory of the method are
called for. In particular, analytical work is necessary to obtain estimates
of the accuracies obtained for a sample of a given size, and thereby obtain
estimates for the time required for computation. Certain techniques such
as “importance sampling,” that technique by which sampling is carried out
to a greater extent in “areas’ which affect the answer the most, need to be
exploited further. Finally, experimental evidence in the form of machine-
solved problems is needed to give weight to the feasibility of the method
in certain cases.
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