
Trusted Group Key Management For Real-Time
Critical Infrastructure Protection

Jonathan Jenkins, Sean Easton, David Guidry, Mike Burmester, Xiuwen Liu
Xin Yuan, Joshua Lawrence, and, Sereyvathana Ty∗

Department of Computer Science, Florida State University, Tallahassee, Florida, 32306, U.S.A.
{jenkins, easton, dguidry, burmester, liux, lawrence, xyuan}@cs.fsu.edu

∗Sandia National Laboratories, New Mexico,Albuquerque, NM 87185, U.S.A.
sty@sandia.gov

Abstract—Most critical infrastructures can be modeled as
cyber-physical systems whose cyber components control physical
processes so as to optimize specific system objectives. Protecting
such systems from malicious threats (including insider threats)
is particularly challenging. One solution, based on Trusted Com-
puting technologies such as the Trusted Platform Module (TPM),
uses an infrastructure that ensures that only trusted programs
are executed. Such technologies readily support secure unicast
communication. However, many critical infrastructures employ
multicast. Addressing multicast requires attention to (a) compati-
bility and (b) real-time compliance. In particular, sealed multicast
storage for which access takes no longer than unicast. We present
a trusted computing architecture for multicast communication
based on an adaptation of the Kerberos authentication service
along with TPM trust engines. This architecture is efficient and
scalable (one session key per multicast channel). We show that, by
integrating our framework with an open source IEC 61850-90-5
profile emulator for power utility automation, synchrophasor
data feeds are protected in real-time (< 4ms, the IEC61850-90-5
threshold) against strong adversaries.

Index Terms—Group key management, trusted multicast, Ker-
beros, trusted platform modules, IEC 61850-90-5.

I. I NTRODUCTION

With recent improvements in model-based reliable software
development and the increased efficiency of computing de-
vices, critical infrastructures that utilize computer algorithms
to optimize various aspects of physical processes are emerging
from specialized domains to much broader areas with many
significant applications. These systems exploit the flexibility
(i.e., programmability) and the distinctive operational charac-
teristics (e.g., the number of computer instructions per unit
energy consumed) of cyber components, and are becoming a
key factor in improving sustainability of human activities.

Critical infrastructures must be designed to remain stable
even when some of their components fail because of accidental
or malicious actions. For critical infrastructures, protection
must extend to nation state actors and insiders. To secure
a critical infrastructure it is essential that its communication
channels are protected in real-time: correct messages delivered
at the wrong time could lead to erroneous system responses
and even failures. This renders most security paradigms for
cyber-only systems inapplicable. For example, confidentiality,
integrity and availability are the three primary goals of cyber
security systems with confidentiality being most important.

However, due to the robustness and resilience requirements
for cyber-physical-systems, availability and integrity are the
primary goals with confidentiality often only a secondary goal.

Group key management protocols for cyber systems have
been widely studied due to their important role in achieving
confidentiality, integrity, and access control; see [9], [4] for
recent surveys. There is little work on group key management
for cyber-physical systems. Chen et al. [2] proposed a wireless
key management scheme to secure the Internet of Things
but did not consider real-time requirements of cyber-physical
systems. Barker et al. [1] proposed a framework for designing
key management systems, but special requirements of cyber-
physical systems are not fully considered. A profile emulator
for IEC 61850-90-5-compliant systems [10] was recently made
available with an intended group key management protocol.
However, the group key management has not been imple-
mented. Similarly, there is little work on integrating Kerberos
and TPM architectures to enhance security with the exception
of [5], where Leicher et al. use a TPM to enhance Kerberos ex-
changes by building tickets with data linked to a single TPM,
and checking integrity information before granting tickets. Our
work differs from [5] in several aspects, most notably in that
Leicher et al. do not handle group keys.

In this paper, we propose a novel trusted real-time group
key management framework for critical infrastructures. We
leverage the widely deployed Kerberos authentication service
and the Trusted Platform Module (TPM) interface as building
blocks. In particular, we utilize the Key Distribution Center
(KDC) of Kerberos to authenticate the principals (users or
components) of a cyber-physical system, which allows us to
establish authentication channels between the KDC and any
principal. On this foundation, we extend the KDC with the
ability to create multicast channels for efficient group session
key distribution, supported by TPM storage of long-term keys.

To demonstrate that the proposed group key management
protocol is robust in real-time we analyze its performance and
sufficiency by using workstations that emulate IEC 61850-90-
5-compliant protocols for substation automation systems.

The rest of the paper is organized as follows. In Section II
we provide background for Kerberos and the TPM interface,
and a brief survey of related work. In Section III, we describe
the proposed real-time group key management framework. In

Section IV we illustrate the effectiveness of the framework
by employing it to secure an emulation of a IEC 61850-
90-5-compliant power automation system. We conclude in
Section V.

II. BACKGROUND

Our framework is built on the Trusted Computing (TC)
paradigm (in particular the TPM interface) that provides
built-in and non-migratable trust, and the Kerberos network
authentication service. In this Section we briefly summarize
the TC and Kerberos architectures, and discuss related work
on trusted key management for cyber-physical systems.

A. The Trusted Platform Module

The Trusted Computing Group (TCG) [11] describes an
architecture in whichtrusted engines, called roots of trust
(RoT), are used to establish trust in the expected behavior of
the system. The Trusted Platform Module (TPM) is an inter-
face that uses trusted engines for binding data to platform con-
figurations of hardware systems to enhance software security.

A TPM [13] is implemented as a hardware or software
cryptographic device with several critical capabilities: re-
mote attestation, secure storage, and integrity measurement.
It provides a range of cryptographic primitives including:
a random number generator; hashing functions; asymmetric
encryption/decryption; two unique asymmetric non-migratable
key pairs (set at the time of manufacture): an attestation
identity key pair for signing data originating at the TPM, and
an endorsement key pair for decrypting owner authorization
data and messages associated with the attestation key creation;
symmetric keys to bind small amounts of data (typically keys)
and to authenticate transport sessions. The TPM also has a
small amount of storage (mainly for keys). There are three
mandatory RoT in a TPM: a RoT for integrity measurements
(RTM), a RoT for storage (RTS) to protect keys and entrusted
data, and a RoT for reporting (RTR) to(a) expose shielded
integrity measurements and(b) attest to the authenticity of
stored values. Security is based on an integrity protected boot
process in which executable code and associated configuration
data is measuredbefore it is executed—a hash of the BIOS
code is stored in a Platform Configuration Register (PCR).

For remote attestation the TPM uses the attestation key to
assert the state of its current software environment to a third
party (by signing current PCR values). For sealed storage,
encryption/decryption/authentication keys are released from
protected storage, conditional on the current software state
(using current PCR values). In our group key management
framework we utilize the RTS capability of the TPM (key
sealing) to enhance the security of long-term keys.

B. Kerberos

Kerberos 5 [8] is a single-sign-on authentication service for
open (untrusted) networks based on the Needham-Schroeder
authentication protocol [7]. It defines a highly dynamic trust
graph with short lived authentication edges. With Kerberos,
any client principal (a workstation user or network Server)

can obtain credentials from a trusted Key Distribution Center
(KDC) for authenticated access to an application Server. The
KDC has two distinct functionalities: authentication and key
distribution. These are realized by an Authentication Server
(AS) and a Ticket Granting Server (TGS), which typically are
implemented as different protocol entry points on a Kerberos
Server [6].1

We use the RFC 4120 [8] specifications to describe the
Kerberos authentication service, and in particular the data
structures and message formats, which we extend in Section III
to capture multicast communication.

There are two formats for Kerberos exchange messages:

1) KRB KDC REQ < cname, sname, padata, ctime, no-
nce, kdcoptions, . . .>:2 a request format with the
client’s name in cname, the Server’s name in
sname, pre-authentication data inpadata, the client’s
time ctime, a nonce (to prevent replay attacks)
and the KDC optionskdcoptions < msgtype, enc-
authdata, from, till,, . . . > with msgtype either
KRB AS REQ or KRB TGS REQ, encauthdataused
only in KRB TGS REQ,from the desired start time,till
the requested expiration time,

2) KRB KDC REP < msgtype, padata, cname, encdata,
ticket , . . .>: a reply format wheremsgtype, padata,
and cnameare the same as in the request;encdata <
key , sname, lifetime, . . .> that contains an application
secret session key encrypted with the client’s secret key;
and ticket < sname, encpart > that contains the en-
crypted part encpart <key , cname, sname, time, life-
time, . . .> with a copy of the session key and the local
KDC time encrypted with the key of the end Server.

When a client requires authenticated access to an appli-
cation Server, it first gets authenticated by the AS. For this
purpose it sends a request KRBAS REQ to the AS (in the
KRB KDC REQ format) with its name, local time, requested
lifetime and a nonce in the clear (not encrypted). Upon
receiving the request, the AS verifies that the client has a
record in the Kerberos database. If there is a record (that
contains the client’s private key) and if the client’s timestamp
is close to the local time of the AS then the AS generates
a random key, theinitial session key, and sends to the client
principal either:

– a KRB AS REP reply message with the initial session
key in encdata, and a Ticket Granting Ticket (TGT)
in ticket that contains a copy of the initial session key
encrypted with the secret key of the TGS; or

– a KRB ERROR< cname, stime, edata> with a request
for pre-authentication by the client.

In the second case, the client must resend a request message
KRB AS REQ, but this time with an authenticator inpadata.
The authenticator is an encryption of the client’s timestamp

1These must be secured independently: a separation-of-duties security
policy to mitigate insider threats.

2We only list those fields that are used in our approach. The full list is
available from [8].

Fig. 1. Authentication Service Exchanges.

with the client’s key. We illustrate in Figure 1 the messages
exchanged by the client and the AS.

The first round of the Kerberos protocol establishes an
authentication channel between the client and the TGS.

To get authenticated access to a Server the client sends a
request message KRBTGS REQ to the TGS with a valid
TGT in encauthdata. Upon receiving a request the TGS
decrypts the TGT to check that it is valid (and not expired) and
get the initial session key. If the TGT is valid then the TGS
generates a new random key, called theservice session key, and
formulates a reply KRBTGS REP that contains the service
session key, the Server’s name and the lifetime of the ticket
in encdata, encrypted with the initial session key, together
with a service ticket that contains a copy of the secret session
key, the client’s and Server’s name, the ticket lifetime and a
KDC timestamp, encrypted with the secret key of the Server.
This second round of the Kerberos protocol establishes an
authentication channel between the client and the application
Server.

There are several security threats that Kerberos protects
against. Replay attacks and man-in-the-middle attacks are
addressed by using nonces, timestamps and authenticators. The
privacy of the initial session key and the service session key are
assured by using private channels (realized by encrypting with
the client’s private key and the AS session key, respectively).
However, Kerberos does not protect against denial of service
attacks on the KDC caused by flooding it with authenticated
requests. This will slow down the response time to legitimate
clients. Furthermore Kerberos does not address insider threats,
or bad implementations.

A TGT is typically valid for 8-24 hours, allowing the client
to get several service tickets from the TGS for authenticated
access to network services during this period—single-sign-on.

III. M ULTICAST GROUPAUTHENTICATION

Kerberos is a single-sign-on authentication service for
client-server applications. It is not designed for multicast appli-
cations where a client wants authenticated multicast access to
several principals, a common requirement with cyber-physical
systems. Furthermore it does not address denial of service
threats or insider attacks, which can incapacitate power grids

and more generally critical infrastructures. In this section we
show how to extend Kerberos to capture both requirements: ef-
ficient authenticated group multicast as well as security against
denial of service threats and insider attacks. Our extension is
described in terms of the RFC 4120 [RFC 4120] specification.
For security we use the TPM interface (Section II-A).

A. Protocol Description

The protocol consists of several sub-protocols that address
particular cases. In Section III-B we consider the case when
the group of principals is listed in the Kerberos database, and
in Section III-C when the group of principals is not listed.
In Section III-D we show how to secure a Kerberos multicast
group authentication protocol and in Section III-E we address
reliability and denial of service (DoS) issues.

Suppose a client requires authenticated multicast access to
a group GRP of principals and that the client has a valid TGT
(obtained as in Section II-B). We distinguish two cases:

1) GRP and its long term secret group key is listed in the
Kerberos database;

2) GRP and its long term secret group key is not listed.

B. GRP is listed in the Kerberos database

In this case the client gets a session group key for GRP by
sending a request message KRBTGS REQ to the TGS with
the name GRP insname, a valid TGT inencauthdata, and if
necessary an authenticator inpadata.

Upon receiving the request the TGS decrypts the TGT to
verify that it is valid and not expired, that the timestamp is
close to the local Kerberos time, that the group of principals
in GRP is listed in the Kerberos database (with a long term
group key), and get the initial session key. If the TGT is valid
then the TGS generates a random key, thegroup session key,
and formulates a reply message KRBTGS REP that contains
the group session key and the name of the group inencdata
(encrypted with the initial session key), and a service group
ticket that contains a copy of the group session key inticket
(encrypted with the long term group key of GRP). The TGS
then sends the reply KRBTGS REP to the client principal.

The client can now get authenticated multicast access
to the principals of GRP. For this purpose two Kerberos
client/application message authentication types are used:

1) KRB AP REQ < cname, sname, ctime, ticket, . . .>,
2) KRB AP REP< cname, sname, ctime, encpart, . . .> .

The client formulates a request GRPAP REQ with the name
GRP in snameand the group ticket obtained from TGS in
ticket (encrypted with the long term secret group key of GRP),
and multicasts the request to group GRP.

Upon receiving the request, each one of the principals in
GRP after checking the group name insnamedecrypts the
group ticket to get the session group key, and then formulates
a reply message KRBAP REP with GRP incnameand, its
name and a timestamp inencpart(encrypted with the session
group key).3 This serves as a confirmation. The GRP principal

3A TPM-compliant principal will not impersonate other principals, as we
shall see in Section III-D.

then sends the reply message KRBAP REP to the client
principal.

C. GRP is not listed in the Kerberos database

In the second case the TGS must establish a long term
group key and distribute this key to all principals of GRP.
This requires the TGS to establish an authentication channel
with each one of the principals in GRP and use this to
transport a long term group key. As in Section III-B we shall
use the two message authentication types KRBAP REQ and
KRB AP REP for this purpose. Only in this case the client
is the TGS.

To establish a long term group key the client principal
first formulates a request KRBTGS REQ that contains the
name GRP and a list of all the names of its principals in
sname, and sends the request to the TGS. Upon receiving the
request, the TGS first verifies that this is valid. If so, and if
the group GRP is not listed in the Kerberos database, then the
TGS selects a random long term group key and sends to each
one of the principals of GRP an application request message
KRB AP REQ with:

1) the name GRP and the names of its principals (as
supplied by the client) insname;

2) the long term group key inticket, encrypted with the
secret key of the principal.

Each principal in GRP, after checking KRBAP REQ for
correctness, and that its name is included in the list of
principals, decrypts theticket to get the long term group key,
and then formulates a reply KRBAP REP with the name
GRP in cnameand the principal’s name and a timestamp in
encpart(encrypted with the secret key it shares with the TGS).
This serves as a confirmation. The principal then sends the
reply to the TGS.

Multicast authentication is achieved as in Section III-B. The
TGS selects a random group session key and sends to the client
a reply message KRBTGS REP in which the name GRP and
the group session key are inencdataand the group session
key is in ticket, encrypted with the long term group key of
GRP. In this way the client shares with the principals of GRP
the session group key. We illustrate the message exchanges
between the client, the TGS and the principals of GRP in
Figure 2.

Policies regarding allowable groups of principals must be
adhered to. Since the number of possible groups can be very
large, one may wish to have a separate Server, the group
Ticket Granting Server manage group authentication services.
We shall further discuss this issue in Section III-E

D. Trusted Group Authentication

To secure the Kerberos multicast authentication protocol we
use a TPM architecture. We assume that the principals of the
Kerberos system and the KDC Servers are TPM-compliant.
This guarantees that the private keys of the principals in the
Kerberos database are in shielded locations and only become
available when needed by Kerberos. Furthermore, prior to
establishing an authentication link, remote attestation will

Client
A

GRP

KRB_TGS_REQ group

KRB_TGS_REP group

TGS

KRB_AP_REQ
i
 group

KRB_AP_REP
i
 group

...
...

Fig. 2. Multicast Group Authentication

ensure that there are trust paths that link the KDC to the client
and the principals (via shared secret keys). This will protect
the system from external integrity and confidentiality threats,
as well as insider threats that target the private long term keys
of principals.

The Trusted Network Connect (TNC) [12] is a TC platform
interoperability architecture for trusted access control that is
based on the TPM. It allows for network access control based
on reliable host integrity information (e.g., from the TPM).
For our Kerberos application this means that, an authentication
channel between a client and Server is established only if:

1) The identities of the client and Server are trusted. For
the first and second rounds of the Kerberos protocol, the
Server is a trusted entity (either AS or the TGS). If the
client is pre-authenticated, then its identity is confirmed
via a secret shared key.

2) The client is allowed access to the Server. Authorization
can be implemented either with Kerberos 5, or by using
an appropriate Access Control System with credentials.

3) The identity of the client and Server is authenticated.
This is achieved by encrypting data with a shared
secret key (either the secret key of the client, or a key
generated by the KDC). This requires a RoT engine to be
invoked on the TPM of both sides to release the required
encryption key. The TPM will only release keys if the
current configuration of the OS of both principals allows
for this.

The Kerberos 5 specifications [8] also allow for a public key
setting. For such settings public key authentication channels
are used to establishing a symmetric key authorization service
(in this case the KDC only knows the certified public keys of
the clients). One of the advantages of such an approach is that
Kerberos is not required to store long term secret information.

E. Reliable Group Authentication

As the number of Kerberos principals grows, scalability
becomes an issue. For a reliable service the KDC must be able
to handle a large number of requests in real-time. One way
to address this issue is to have a realm with multiple KDCs
and load balancers to distribute stressed traffic across the
KDCs. This approach tends to maximize network throughput

while minimizing response time. However, we now have a
synchronization problem: KDC databases must be synchro-
nized in real-time. For example, if a principal is blacklisted
on one KDC, then all the other KDCs should also blacklist
this particular principal for the same time period.

There are several ways to address synchronization. One
way is use a Lightweight Directory Access Protocol (LDAP)
[RFC4511]. This supports multiple masters in replication
mode, and allows data to be stored by a group of network
entities, and updated by any network entity. By combining the
Kerberos protocol with LDAP, we allow any KDC to update
its database, with the updated data being propagated to all
other KDC databases. Since LDAP supports Secure Socket
Layer (SSL), we can easily transfer the updated data through
a secure socket.

If we assume that a TNC architecture with multiple KDCs
is used for our Kerberos implementation then we can achieve
a satisfactory degree of reliability for most applications. How-
ever, for critical infrastructure protection, such as the electrical
grid, Quality of Service (QoS) may not provide adequate
security in real-time, particularly when the system has to
respond to critical events in milliseconds. For such cases we
need guaranteed availability in real-time: for the electrical grid
this is typically4 ms (rater = 250 packets/second).

Our approach to secure the Kerberos multicast framework
is based on the following requirements:

1) Reliability. The Kerberos network system has sufficient
redundancy so that the probability of system failure
caused by Nature is less than a small thresholdε.4

This requires that we:(i) specify the set of natural
fault eventsF , (ii) estimate the probabilityε that
such events occur, and(iii) replicate system services
sufficiently (and independently) to enable it to respond
with probability≥ 1 − ε to at leastr requests per unit
time.

2) Integrity and confidentiality.The Kerberos system is
TPM-compliant. This prevents integrity and confiden-
tiality attacks.

3) Availability. We assume that the supported rater is suf-
ficient to cope with high priority requests. This requires
a bound on the number of high priority requests, par-
ticularly on (i) the number of requests per KDC Server
and (ii) the number of clients per Server. To protect
against DoS attacks caused by flooding bogus requests,
an intranet is used and the high priority designation of
a request is authenticated (e.g., included in padata)—
in particular, only high priority requests get forwarded
when the traffic level is high.

The level of security provided by adopting these require-
ments is that afforded by the TPM interface (in particular how
well it is implemented), provided that faults caused by Nature
are restricted to the event spaceF .

4For critical infrastructure protection, typicallyε = 2−30.

(a) (b)

Fig. 3. (a) AES Encryption & Decryption time, (b) HMAC Generation &
Authentication time on the producer & subscriber.

IV. T RUSTEDSUBSTATION AUTOMATION

To validate our group key management protocol and estab-
lish real-time efficiency, we integrated it with an open source
IEC 61850-90-5 emulation program recently released by
SISCO [10] for trusted power system automation applications.

A. System Setup

Our experimental software is based on the open source
profiler for the IEC 61850-90-5 Technical Report released by
SISCO [10], which we enhanced using the techniques in Sec-
tion 3. The modifications to the source code include porting the
code to Linux, adding our group key management protocol, a
trusted platform module, cryptographic support for encryption
and authentication, and a time-keeping functionality for data
generation. In order to read time accurately we used a function
written in assembly to access the CPU tick counter directly
on one machine. For synchronization, packets that relate local
CPU ticks were exchanged by the machines and a best fit
obtained by using a least square algorithm.

A testbed consisting of seventeen local machines connected
by a Cisco Catalyst 3560G series PoE 48 switch was used.
All machines were running Ubuntu Linux 12.04 64 bit OS;
eight had an Intel Xeon 5120 1.86 GHz x2 CPU with 2GB
of memory and nine had an Intel Xeon E5506 2.13GHz x4
CPU and 6 GB of memory. A dedicated machine running the
krb5 API acted as our Kerberos 5 release 1.10 server, which
interfaced directly with the Kerberos API.

B. Building Blocks

Encryption/Decryption.The producer and subscribers perform
an AES encryption or decryption on the packet’s payload. As
shown in Figure 3(a), over the course of 500 (GOOSE) packet
transmissions the average time for encryption was0.02175 ms
with a standard deviation ofσ = 0.00457 ms. Decryption
took on average0.02413 ms with σ = 0.00420 ms.

HMAC Authentication.The producer and subscribers calculate
an HMAC using SHA2. As shown in Figure 3(b), the average
time required over 500 packets by the producer was
0.03063 ms with σ = 0.00178 ms. The subscriber’s average
time was0.03786 ms with σ = 0.00167 ms.

RNG. The average time to generate a random number was
0.0108715 ms with σ = 0.000399 ms.

TPM lock/unlock.The average time to lock a TPM key was
0.48788 ms with σ = 0.021401 ms, and to unlock a TPM key
0.36454 ms with σ = 0.051601 ms.

C. Initial Group Registration

We estimated the time required to perform the initial key
registration as described in Section III-C. Ifrng is the time
required to generate a random number,enc, dec the time to en-
crypt and decrypt the payload of a packet respectively,mac the
time to authenticate a packet,unlock the time to unlock a TPM
key, andn the number of principals in a group, then the time
required by TGS to distribute a long term group key is given by
f(n) = rng+enc·(n+1)+dec+unlock/lock, since the pro-
ducer must select a random number, encrypt it withn different
keys, and then each one of the subscribers in the group must
unlock their secret key, decrypt the received packet, and send
a confirmation. Both the producer and the subscribers must
then relock their secret keys, and the distributed long term
group key. Using our earlier average time estimates we get:
f(n) = 0.035 + 0.02175 (n + 1) + 0.365 (unlock/lock) ms.

D. Session Group Key Distribution

The time required to update a session key, as described in
Section III-B, is:rng + 2 · enc + dec + unlock ms, since the
producer must select a random number, encrypt it twice (for
the subscriber and the TGT), and the subscriber must unlock
a TPM secret key and then decrypt the packet. Again both the
producer and the subscribers must relock their secret keys, and
the distributed long term group key. Using our earlier estimates
the average time is:0.0785 + 0.365 (unlock) ms.

E. Transmission of GOOSE Packets

The producer must build the packet, encrypt the payload
(for confidentiality), calculate an HMAC (for authentication)
and finally transmit the packet. The producer must build the
packet, encrypt the payload (for confidentiality), calculate an
HMAC (for authentication) and finally transmit the packet.
Each subscriber that receives the packet must verify the
HMAC and decrypt the payload. The time required for this
is: enc + dec + 2 mac since the producer must encrypt the
payload, authenticate it, and the subscriber must verify it and
then decrypt it.

Using our earlier average time estimates we get that the
processing time for a GOOSE packet is:0.02175+0.02413+
0.03063 + 0.03786 = 0.11437 ms. This does not include the
time for network transmission, the IEC 61850-90-5 header
generation, the IP protocol formatting, and other general
processing requirements. We estimated this to be roughly an
additional0.00069 ms for the producer and0.54 ms for the
subscriber. The relatively high value for the subscriber is
due to queuing delays (which also impacts on the standard
deviationσ = 0.302 ms).

The total processing time is still no more than1 ms, which
is well within the4 ms time limit for GOOSE packets of the
IEC 61850-90-5 Technical Report.

V. CONCLUSION

We have proposed and developed a framework that enables
secure multicast communication via efficient and scalable
group key management. Leveraging the widely used Ker-
beros authentication service and TPM modules for secure
storage, our system provides distinctive security advantages.
We demonstrate the sufficiency of the proposed framework by
implementinga fully integrated and functioning system based
on a power utility automation profile emulator. Our emulation
results show that the system can meet the stringent real-time
requirements of the IEC 61850-90-5 Technical Report while
providing secure guarantees.

The importance of security for critical infrastructures and
cyber-physical systems is widely recognized and our frame-
work and implementation are a first step toward securing
cyber-physical systems. While the current experiments involve
a relatively small number of nodes (due to practical limita-
tions), the results can be readily generalized to much larger
systems. For example, there are an estimated 5,000 substations
in the Eastern Interconnection with over 40 intranets in the
United States. Assuming that each intranet is organized as a
network without any hierarchy, the inherent scalability and
efficiency of multicast means the performance of sending
to 125 nodes should be comparable to a few nodes. When
intranets are organized into a hierarchy, additional delays
will be limited to a few hops. Our results therefore provide
meaningful measurements for the entire grid, not just small
network settings.

Acknowledgement The paper is based upon work supported
by the National Science Foundation Grant No. 1027217.

REFERENCES

[1] E. Barker, D. Branstad, S. Chokhani, and M. Smid. A Framework
for Designing Cryptographic Key Management Systems.NIST DRAFT
Special Publication 800-130, 2010.

[2] Dong Chen, Guiran Chang, Dawei Sun, Jie Jia, and Xingwei Wang.
Lightweight key management scheme to enhance the security of internet
of things. Int. J. Wireless and Mobile Comp., 5(2):191–198, 2012.

[3] International Electrotechnical Commission. IEC/TR 61850-90-5,
Edition 1.0 2012-05, Technical Report, Power systems manage-
ment and associated information exchange Data and commu-
nications security. http://webstore.iec.ch/preview/infoiec61850-90-
5%7Bed1.0%7Den.pdf, May 2012.

[4] Bibo Jiang. A survey of group key management.Int. Conf. Computer
Science and Software Engineering, 994–1002, 2008.

[5] Andreas Leicher, Nicolai Kuntze, and Andreas U. Schmidt. Implemen-
tation of a trusted ticket system.IFIP Advances in Information and
Communication Technology, 297:152–163, 2009.

[6] D. Moberg and R. Drummond. RFC 4130, MIME-Based Secure Peer-
to-Peer Business Data Interchange Using HTTP, Applicability Statement
2, 2005.

[7] Roger Needham and Michael Schroeder. Using encryption for authen-
tication in large networks of computers.Communications of the ACM,
21(12):993–999, December 1978.

[8] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. RFC 4120, The
Kerberos Network Authentication Service (V5), 2005.

[9] Sandro Rafaeli and David Hutchison. A survey of key management
for secure group communication.ACM Comp. Surveys, 35(3):309–329,
2003.

[10] SISCO. Cisco and SISCO Collaborate on Open Source Synchropha-
sor Framework, Press Release.http://www.sisconet.com/downloads/90-
5 Cisco SISCO.pdf, 2011.

[11] Trusted Computing Group. http://www.trustedcomputinggroup.org/.
[12] Trusted Network Connect Architecture for Interoperability (TNC), Spec-

ification 1.3. Revision 6, April 2008.
[13] Trusted Platform Module (TPM) Structures, Level 2, Version 1.2.

Revision 116, Communication Networks and Systems for Power
Utility Automation. http://www.trustedcomputinggroup.org/resources
/tpm main specification, March 2011.

