The RSA Cryptosystem

Factoring large integers
Factorization

- Given an integer $N > 1$, it has a unique factorization into primes:
 \[N = p_1^{r_1} \cdot p_2^{r_2} \cdot \ldots \cdot p_k^{r_k}; \]
- Elementary-school algorithm for factoring:
 - List primes and try each in order
- Inefficient: If N is k bits long, primes $\leq \sqrt{N}$, or less than $k/2$ bits long should be tried.
 - There are $\approx 2^{k/2}/k$ such primes. Exponential workload
RSA Integers

- Let $k = 1024, 1536, 2048$, for instance.
- Generate two primes p, q, of bitlength $k/2$.
- Put $N = p \cdot q$.
- Under most conditions, it is hard to factor N.
 - The primes p, q must not be of a weak form.
- All known algorithms to factor such numbers have super-polynomial running times.
- Publish N; keep p, q secret.
Size of the RSA ring

- Let Z_N^* be the set of integers a such that:
 - a is in $[1, N-1]$;
 - a relatively prime to N:
 - a and N have no common divisors;
- Then Z_N^* contains $(p-1)(q-1)$ elements.
 - For each integer L:
 - let $\phi(L)$ be the size of the subset of $[1, L-1]$ made of numbers relatively prime to L.
 - We have seen that if $N = pq$, a product of primes:
 - $\phi(N) = (p - 1)(q - 1)$
Exponentiation modulo N

- If a is relatively prime to $\phi(N)$, then:
 - Let b be such that $ab + k \phi(L) = 1$.
 - Such b exists by the Euclidean algorithm for GCD.
- It follows that for every M in \mathbb{Z}_N^*:
 - $C = M^a \mod N$
 - $D = C^b \mod N$
 - Then $D = M \mod N$ (!!!)
Inverting exponents

- If p, q are known:
 - First compute $\phi(N)$
 - Then use GCD algorithm to find, for each exponent a, its inverse.

- If p and q are not known:
 - Given an exponent, one cannot find its inverse without first having to factor N.

- Public Key: (N, e)

- Private Key: (p, q, d), where $d = e^{-1}$
To encrypt using RSA

- Retrieve the public key \((N, e)\)
- First, encode a block \(B\) of bitlength smaller than \(k = |N|\), as an element \(M\) of \(\mathbb{Z}_N^*\):
 - \(M = \text{Encode}(N, B)\) // This is not an encryption // everybody knows how to decode
 - Then compute \(C = M^e \mod N\).
- Send \(C\) to recipient, who then uses private \(d\):
 - Recovers \(M = C^d \mod N\).
 - Decodes \(B = \text{Decode}(N, M)\).
To sign using RSA

- Compute message digest H of message M.
- Encode H as an element K of \mathbb{Z}_N^*
 - $K = \text{Encode}(N, H)$
- Use private key (p, q, d):
 - $S = K^d \mod N$.
- To verify signature S on Message M
 - Recompute: $H = \text{digest}(M)$
 - $K = \text{Encode}(N, H)$
 - Use public key (N, e) to check: $(K = S^e \mod N)$?