Confidential Channels

Using encryption for network security
What is encryption?

- Encryption is used to achieve confidentiality
- Alice and Bob, wish to communicate secretly.
- Curious Carl wants to listen into their private chat.

As root, try: tcpdump -A -s0
Ciphers

• Ciphers operate to “garble” their input to make it unintelligible. The output of a cipher (ciphertext) does not bear any clear relation to the input (clear-text or plaintext).
 – The earliest recorded example of the use of a cipher is by Julius Caesar to his generals: He would shift each letter to the third letter following it in the alphabet.
 • Example: Attack now → Dwwdfn qrz
Assumptions about cipher design

• The adversary knows the cipher algorithm.
• To achieve secrecy, ciphers use keys.
• A key is an auxiliary input to the algorithm that must be kept private.
 – Only the key value is private. It is assumed that the enemy knows how keys are generated.
Example: Vigenere cipher

\[K = \text{VECTOR} = (21, 4, 2, 19, 14, 17) \]

W	E	W	I	L	L	M	E	E	T	A	T	M	I	D	N	I	G	H	T
22	4	22	8	11	11	12	4	4	19	0	19	12	8	3	13	8	6	7	19
21	4	2	19	14	17	21	4	2	19	14	17	21	4	2	19	14	17	21	4
17	8	24	1	25	2	7	8	6	12	14	10	7	12	5	6	22	23	2	23
R	I	Y	B	Z	C	H	I	G	M	O	K	H	M	F	G	W	X	C	X
Breaking the Vigenere Cipher

• The probability distribution of characters
Looking at the example again

\[K = \text{VECTOR} = (21, 4, 2, 19, 14, 17) \]
Index of coincidence

\[c_i = \# \text{ of occurrences of the } i\text{-th character} \]

\[c = \sum_i c_i \quad p_i = \frac{c_i}{c}, \]

\[p_i = \text{frequency of the } i\text{-th character} \]

\[IC = \sum_{i=0\ldots25} p_i^2 \]

\[IC \text{ for random text } \approx 0.038 \]

\[IC \text{ for typical English } \approx 0.065 \]
Choosing a cipher

- Ciphers are vulnerable to many known analysis techniques, and one must count on new attacks being discovered.

- General advice:
 - Avoid proprietary commercial ciphers whose design has not been publicly scrutinized. Do not develop your own if good alternatives exist: Adopt standards.
General encryption schemes
Symmetric vs. Asymmetric

• If the encryption and decryption keys are equal*, the scheme is said to be **symmetric**

• If the encryption and decryption keys differ, and moreover the decryption key cannot be computed from knowledge of the algorithm and encryption key, the scheme is **asymmetric**
Security of ciphers

From the Vigenere cipher to the Vernam one-time pad
Attacks on Encryption Schemes

• Types:
 – Passive:
 • Ciphertext only
 • Known-plaintext
 – Active:
 • Chosen plaintext (CPA)
 • Adaptive CPA
 • Chosen-ciphertext (CCA1)
 • Adaptive CCA (CCA2)

• Outcomes:
 – Total Break (key recovery)
 – Recovery of plaintext
 – Distinguishability between two alternative encrypted texts

• Most stringent security: IND-CCA2
Perfect cipher

- If the Vigenere cipher has key at least as long as the plaintext, is chosen at random, and used only once:
 - The scheme is called the **Vernam One-Time Pad**
 - It is provably unbreakable, even if the adversary has infinite computational power

- Reasoning: Given some ciphertext, any message of the same size would encrypt to the observed ciphertext under some key.
Perfect secrecy

- Shannon proved that the only cipher that is secure against an all-powerful adversary
 - Has key length equal to, or larger than the message
 - The key is random
 - Used only once
 - As inefficient as the Vernam one-time pad
Modern ciphers

• Operates on binary plaintext
• Uses binary keys of **fixed length**
• Different types of ciphers:
 – Public key/asymmetric ciphers
 – **Symmetric ciphers**
 • Stream ciphers (RC4, A5/x, Helix, SEAL)
 • Block ciphers (Triple-DES, Blowfish, AES)
Modern ciphers (continues)

• Two basic operations
 – Substitution: Substitutes a code symbol (for instance bit octets) for another.
 • Example: shifts (Vegenere cipher), xor
 – Permutation: Transposes or re-orders the symbols present in the code

• Both steps are needed for security