PRNGs
Pseudo-random number generation

Randomness and Cryptography
• Randomness and pseudo-randomness are useful in cryptography:
 – To generate random and pseudo-random keys and initialization vectors for use with block ciphers;
 – To generate pseudo-random key streams for use with stream ciphers;
 – For challenge/response strong authentication protocols;
 – With several randomized cryptographic algorithms, such as the generation of public keys in the RSA algorithm.

Randomness vs. unpredictability
• True randomness is, of course, unpredictable. Within a computer, true randomness requires extra input:
 – Physical measurements of stochastic phenomena that normally occur in the standard hardware;
 – Use of specialized hardware, or;
 – Exploiting randomness of user interaction, etc.
• Pseudo-randomness, or the generation of random-looking deterministic sequences, may not necessarily be unpredictable.
Linear Congruential Generator

- A LCG is defined by an integer triple \((A, B, M)\), with the pseudo-random sequence \(S_n\) given by the recurrence relation:
 \[
 S_{n+1} = A S_n + B \mod M
 \]
- Pros: Fast, short description makes it sometimes only alternative in embedded systems
- Cons: Easily crypto-analyzed (completely insecure), fails a statistical test for randomness (spectral test):
 - Should NEVER be used in secure applications.
 - Should not be used for simulation experiments requiring high randomness quality (e.g. Monte-Carlo methods).

Shift Feedback Registers

- Mersenne Twister:
 - word length \(w\), and \(0 < r < w\).
 - Given word \(W\):
 - \(W^u\) = upper \(w-r\) bits of \(W\),
 - \(W^l\) = lower \(r\) bits.
 - positive integers \(n, m\), \((m < n)\), and binary matrix \(A\).
 - \(x_k^n \oplus x_k^m \oplus \left(x_k^u \parallel x_{k+1}^l\right) A\)
- Fast, generates good-quality sequences, but not cryptographically secure.
- It is an improved generator of a class of feedback shift registers.
- Linear Shift Feedback Registers (LSFR) are simpler representatives of this class that are quite insecure, though often used in cryptographic algorithms (example, the GSM standard), which are then subsequently broken.

Cryptographically Strong PRNGs

- Cyclic encryption uses a cyclically incremented counter.
- This algorithm can be used to generate other encryption keys from a Master Key.
ANSI X9.17 PRNG

- Here, 3-DES EDE with two keys are used (same master keys for 3 encryption boxes).
 - DT_i = 64-bit representation of current date/time,
 - V_i = internal register, initialized with a seed.
 - R_i = generated pseudo-random value.

Blum-Blum-Shub Generator

- Two large primes p, q, with $p = q = 3 \mod 4$
 - Large means $\lceil \log_2 |p| \rceil \geq 512$.
- Let $n = p \cdot q$.
- BBS(Seed s, Big n) {
 - $i \leftarrow 0$; $X_0 \leftarrow s^2 \mod n$;
 - while (Generating) {
 - $X_{i+1} \leftarrow (X_i)^2 \mod n$; $i \leftarrow i+1$;
 - output $B_{i+1} \leftarrow X_{i+1} \mod 2$
 // lower bit of X_{i+1}
 }
}

Key use

- To prevent large amounts of data being encrypted with a single key, it is good practice to use a key hierarchy.
- A master key is used to derive/protect random or pseudo-random session keys.
- Each communication/data encryption session is encrypted under a different session key.
Key distribution

- Symmetric master keys must be delivered by some secure method.
 - Hardware-embedded keys
 - Administratively entered by human
 - Use of a trusted intermediary

- Session-key distribution mechanisms:
 - Generate same keys on both ends via pseudo-random sequences (from master keys)
 - Use a key distribution center (KDC)
 - Encrypt new key under old key (for key replacement)
 - Using public key cryptography/ key exchange protocols

Introduction to Public-Key Cryptography

Private message says: "Hello, Mike. 10/4"

Mike

Bob

Tom

B4CC32F9A02596D640CE3378774E

Hello, Mike. 10/4