Modes of Operation

How to encrypt large messages using block ciphers

Large messages

- In order for encryption to be cost-efficient, a key K should be used to encrypt data of total size much larger than K.
 - Typical key sizes are in the range of 80-512 bits while blocks are often 64-128 bits.
- Multiple blocks should be encrypted under the same key.
 - How to do this efficiently and securely?

Dividing a message into chunks

- Given a message m, and blocksize b, there should be at least $\lfloor m/b \rfloor$ blocks to encrypt. The last block may not be full. It will have to be completed with padding bits.
 - The padding needs to be uniquely detectable and reversible.
 - Example that does NOT work: Fill the rest of the block with 0's.
Padding: PKCS5

- Let \(n \) be the length of the data after the last full data block.
- \(0 \leq n \leq b-1 \), where \(b \) is blocksize in bits/bytes.
- Fill the rest of the block with repeated copies of \((b-n)_2 \), the binary representation of the number of padding bits/bytes.
- If \(n = 0 \), i.e., if the message is an exact multiple of the blocksize, attach a whole new block of \(b \)'s to the end of the message.

Padding data for DES

- DES has 64-bit/8-byte blocksize.
- If the message data is a bytestream, take for \(n \) the number of bytes of the length of data after last full data block. \(n = 0, 1, \ldots, 7, \) only.
- Use a full byte to encode \((8-n)_2 \):
 - If \(n = 3 \), \((8-n)_2 = (00000101)_2 \). The last block has first 3 bytes equal to the last three data bytes, followed by 5 repetitions of \((000000101)_2 \)
 - If \(n = 0 \), \((8-n)_2 = (00001000)_2 \), and the last block has 8 copies of this.

Removing the padding

- For DES-PKCS5, read last byte \(B \).
- If \(B \) does not represent an integer in \(\{1, 2, \ldots, 8\} \), report FAILURE.
- Discard the last \(B \) bytes of the last block.
- Questions for thinking:
 - Why for this padding is it necessary to add a whole padding block to messages that have length an exact multiple of the blocksize?
 - Is it possible to design a uniquely decodable padding that does not need to pad an exact-fitting message?
ECB

- The simplest way to encrypt data using a block cipher is to encrypt each data block separately: **Electronic Code Book (ECB) mode**.
- Not secure for large messages:
 - If plaintext blocks ever repeat, their corresponding ciphertext blocks are equal.
 - Facilitates given- and chosen-plaintext/ciphertext attacks.
 - Reasonable for small amounts of random data, such as an initialization vector (used by other data encryption modes), other keys, etc.

CBC

- **Cipher Block Chaining mode**
- Requires an IV (initialization vector)
 - c_0: IV; $c_{i+1} = E(p_{i+1} \oplus c_i)$
 - $p_{i+1} = D(c_{i+1}) \oplus c_i$
- c_i: encryption of the i-th plaintext block p_i
- $E()$, $D()$: basic (ECB) encryption, decryption

CBC properties

- Secure for large messages within limits.
- ECB is self-synchronizing:
 - If block c_i is lost during transmission, the following block will not decrypt correctly (c_i is needed to decrypt c_{i+1}). However, c_{i+1} will decrypt correctly (if c_i is received).
- Error propagation rate ($1 \rightarrow b+1$):
 - If j-th bit of c_i is received incorrectly, the whole of p_i decrypts incorrectly, as well as the j-th bit of p_{i+1}. Later blocks are not affected.
CFB

- Cipher Feed Back (CFB) mode. Notation: \(j \) selects \(s \) leftmost bits of data; \(\ll s \): shift left by \(s \), discarding \(s \) leftmost bits.
- \(c_i = (E(r_i) \gg j) \oplus p_i = (E(r_i) \gg j) \oplus c_i, r_{i+1} = (r_i \ll s) || c_i, r_0 = IV \)

CFB properties

- Secure for large messages within limits.
- CFB decryption re-uses ECB encryption for decryption: Shorter code.
- CFB error-propagation \((i \rightarrow i + R) \):
 - If \(j \)-th bit of block \(c_i \) (counting from right) is received incorrectly, the \(j \)-th bit of \(p_i \) is corrupted. A further \(s \cdot k \) bits will be corrupted, where \(k \) is the smallest number such that \(j + s \cdot k = R \), the register buffer size. In the worst case \(j = 0 \), and \(s \cdot k = R \). (Assuming \(R \) is a multiple of \(s \), a common case.)

More CFB properties

- The value \(s \) can be tuned to eliminate the need for padding:
 - For instance, \(s = 8 \) for a data bytestream.
 - Smaller amounts of data can be independently encrypted \((s=8 \text{ allows for encryption of single bytes})\):
 - Adequate method for streaming data (no need to buffer data until blocklength bits of data are available for transmission. However, that implies an added cost: one ECB encryption “per \(s \) bits” instead of “per block.”)
- CFB is self-synchronizing.
Output Feedback (OFB) mode.

- $c_i = (E(r_i) \oplus p_i)$
- $p_{i+1} = (E(r_i) \oplus c_i)$
- $r_{i+1} = (r_i \oplus s) || (E(r_i) \oplus c_i)$
- $c_0 = \text{IV}$

OFB properties

- Secure for large messages within limits
- OFB decryption re-uses ECB encryption for decryption: Shorter code.
- OFB error-propagation (1 → 1):
 - OFB does not feed the received ciphertext in its register so a wrong ciphertext bit only affects the same bit of the plaintext.
- OFB does NOT self-synchronize. Instead it requires synchronization: it is a **synchronous** mode.
 - The register at the receiver will be permanently ahead of the register at the sender if a ciphertext block is lost in transmission.

More OFB properties

- As in CFB, OFB can be used with streaming data, by tuning the value s. Also, if s is as large as the smallest data unit, it does not require padding.
Counter mode

- Encryption of i-th plaintext block:
 - $C_i = E(i) \oplus P_i$
- Decryption of i-th plaintext block:
 - $D_i = E(i) \oplus C_i$

Counter mode properties

- Error propagation ($1 \rightarrow 1$): Each corrupted bit of ciphertext results in the same bit corrupted after decryption
- Synchronous (requires synchronization)
- Enables pre-computation of keystream
- Fully parallelizable
- Random access mode
- Security as good as other modes (!)

Notes of caution

- An pair (key, IV) should never be used to encrypt more than one message
- Some modes (like counter) require only that IV be not re-usable. Other modes require that IV be unpredictable (CBC)
- Encryption does not provide integrity protection. This is particularly problematic with OFB/counter. Why?