
Fitting Linux Device Drivers into an Analyzable Scheduling
Framework

[Extended Abstract]

Theodore P. Baker, An-I Andy Wang, Mark J. Stanovich
∗

Florida State University Tallahassee, Florida 32306-4530
baker@cs.fsu.edu, awang@cs.fsu.edu, stanovic@cs.fsu.edu

ABSTRACT
API extensions and performance improvements to the Linux oper-
ating system now enable it to serve as a platform for a range of
embedded real-time applications, using fixed-priority preemptive
scheduling. Powerful techniques exist for analytical verification of
application timing constraints under this scheduling model. How-
ever, when the application is layered over an operating system the
operating system must be included in the analysis. In particular,
the computational workloads due to device drivers and other in-
ternal components of the operating system, and the ways they are
scheduled, need to match abstract workload models and schedul-
ing polices that are amenable to analysis. This paper assesses the
degree to which the effects of device drivers in Linux can now be
modeled adequately to admit fixed-priority preemptive schedula-
bility analysis, and what remains to be done to reach that goal.

Categories and Subject Descriptors
D.4.7 [Software]: Operating Systems—organization and design;
C.3.d [Computer Systems Organization]: Special-Purpose and
Application-Based Systems—real-time and embedded systems

General Terms
design, verification

Keywords
real-time, Linux, fixed-priority scheduling, preemptive, schedula-
bility, device driver

1. INTRODUCTION
A huge amount of theoretical research has been done on real-time
scheduling [26]. This theoretical foundation enables one to design
a system that can be guaranteed to meet its timing constraints, pro-
vided the implementation adheres closely enough to the abstract
∗This material is based upon work supported in part by the National
Science Foundation under Grant No. 0509131, and a DURIP grant
from the Army Research Office.

models of the theory. More specifically, applying the theory re-
quires that the system workload corresponds to models that have
been studied, and that the system schedules the workload accord-
ing to one of the algorithms whose performance on such workloads
has been analyzed. Where a real-time system is implemented on
top of an operating system, these requirements apply to all the OS
components as well as the user-level code.

In Linux and several other POSIX/Unix-compliant [31] operating
systems, progress has been made in providing real-time constructs
so that user-level programmers can write applications that adhere
to the theory of fixed-priority preemptive scheduling. Examples in-
clude preemptive priority-based real-time scheduling of user threads,
high-precision software timers, and turning off virtual memory man-
agement for certain memory regions. Progress also has been made
toward making the OS itself adhere more closely to analyzable
models, including major reductions in non-preemptible sections
within the kernel. Benchmark numbers on existing real-time Linux
distributions, such as Montavista [22] and Timesys [32], suggest
they now provide adequate capabilities to design and implement a
wide range of hard and firm deadline real-time systems at the ap-
plication level.

However, until recently, the role of device drivers in schedulability
has not received much attention. Every operating system includes
device drivers, which are responsible for low-level interactions with
I/O devices. For embedded real-time systems, device drivers can
be especially critical, in two ways. They can play a direct role
in meeting throughput requirements and end-to-end deadlines that
involve I/O, by the way in which they schedule I/O operations. De-
vice drivers can also play a role in meeting timing constraints for
computations that do not depend on I/O, through interference; that
is, by blocking or preempting more time-critical computations. So,
without well-behaved device drivers, the ability of a system to meet
timing constraints may be limited to cases where input and out-
put activities do not have deadlines or throughput constraints, and
where there are no “storms” of I/O activity. While these are known
facts, and while some techniques have been developed for manag-
ing I/O performance and device driver interference, integration of
that work with Linux is far from mature, and more work remains to
be done.

This paper reviews the remaining work to apply fixed-priority pre-
emptive scheduling theory to Linux applications, including the ef-
fects of device drivers. It argues that some engineering problems
remain to ensure that the interference effects of device drivers fit
analyzable models, and to manage device driver scheduling to meet
timing constraints, but that the scheduling theory seems adequate.
Much larger problems remain with the analysis of I/O scheduling,

including device-specific real-time scheduling policies, and end-to-
end schedulability analysis involving multiple resources.

2. FIXED-PRIORITY PREEMPTIVE
SCHEDULING THEORY

This section reviews some general scheduling theory concepts and
terms, and the basic workload models used in fixed-priority pre-
emptive scheduling theory.

The goal of real-time scheduling is to ensure that, if an action is
required to execute within a specified time interval it does so. The
theory is expressed in terms of jobs, execution times, release times,
and deadlines. In those terms, the goal is to ensure that each job
receives its required execution time within its scheduling window,
which is the interval between its release time and its deadline.

A job whose own execution time fits within its scheduling window
will complete execution within the window unless it is prevented by
interference from the execution of other jobs. Verifying that a job
will be scheduled within its window requires a way to bound the
interference, i.e, to bound the set of potentially competing jobs and
the amount of time that the scheduler will allow them to execute
within the window.

A task is an abstraction for a stream of jobs, which are ordinarily
required to be executed serially with jobs of the same task. Restric-
tions on the execution times and release times of jobs within each
task serve to bound the interference the task can contribute within
the scheduling window of another task.

The most analyzed task model is the periodic task, in which a task
τi is characterized by three parameters: the worst-case execution
time, ei, of its jobs; the period, pi, between release times; the rela-
tive deadline, di, which is the length of each job’s scheduling win-
dow. A relaxation of this model is the sporadic task, in which the
period is interpreted as just a lower bound on the interval between
release times. Much is known about the analysis of sets of periodic
and sporadic tasks under various scheduling policies.

Fixed-priority preemptive scheduling is very well understood. This
theory, including what is sometimes referred to as Generalized Rate
Monotonic Analysis (e.g., [15, 1]) and Response Time Analysis
(e.g., [3]) makes it possible to verify that a set of hard-deadline
tasks will always meet their deadlines, that soft-deadline tasks will
satisfy their average response time constraint, and that the execu-
tion time of a task may vary within a certain range without causing
a missed a deadline.

The foundation of this analysis is a simple interference bound, ob-
served by Liu and Layland [19], who showed that a collection of
sporadic or periodic tasks causes the maximum amount of inter-
ference for a job of lower priority when the job is released together
with jobs of all the higher priority tasks and each task releases a job
periodically thereafter. It follows that that the interference due to a
task τi in any interval of length ∆ is bounded above by ei d∆/pie.

Though initially limited to sets of independent preemptible peri-
odic or sporadic tasks with fixed priorities, FP schedulability anal-
ysis has been extended to allow for blocking effects, due to locks
protecting shared resources and brief intervals of increased priority
or non-preemptibility due to other causes. In this broader context,
there are two ways one task can interfere with another, namely pre-
emption interference, based on having higher priority, and blocking
interference, based on holding a non-preemptible resource that the

other task must acquire before it can continue execution.

Fixed-priority preemptive scheduling analysis also has been ex-
tended to arbitrary (aperiodic) tasks by assuming that arriving jobs
are queued and executed according to an aperiodic server schedul-
ing policy. Several aperiodic server scheduling policies have been
devised and studied, including the polling server [27], the Priority
Exchange and Deferrable Server [29, 17], and the Sporadic Server
[28]. Without considering the details of specific aperiodic server
scheduling algorithms, one can see how they permit schedulabil-
ity analysis by recognizing that they all enforce the following two
principles:

1. Bandwidth limitation: There is an upper bound on the amount
of execution time a task may consume (at a given priority) in
a given length of time, analogous to the property of a periodic
task that it never demands more than ei time in each interval
of length pi. This permits computation of an upper bound on
the amount of preemption interference the aperiodic task can
cause for other tasks in an interval of any given length. For
the Polling Server and the Sporadic Server with budget ei the
periodic task interference bound applies.

2. Priority bandwidth guarantee: There is a lower bound on the
amount of execution time that a thread can rely on being al-
lowed to contend for at a given priority in a given length
of time, also analogous to a periodic task. This can gener-
ally be translated into a guaranteed average response time to
real-time events, and sometimes used to validate hard timing
constraints.

3. FIXED-PRIORITY PREEMPTIVE
SCHEDULABILITY IN LINUX

This section reviews Linux facilities that support the design and
implementation of real-time applications to fit the theory of fixed-
priority scheduling, and discusses how well the implementation
matches the theory.

Based on the extensive body of knowledge about fixed-priority pre-
emptive scheduling, POSIX/Unix [31] operating systems standards
adopted support for scheduling threads at fixed priority (SCHED_-
FIFO and SCHED_RR) and via a variation on the Sporadic Server
policy (SCHED_SPORADIC). Several off-the-shelf operating sys-
tems provide support for these policies. Linux currently provides
support for the SCHED_FIFO and SCHED_RR policies. So far,
support for the SCHED_SPORADIC policy has only been reported
in experiments [18], but it will probably eventually appear in Linux
distributions.

Application of fixed-priority preemptive scheduling theory in the
context of an OS that has no job or task abstractions requires trans-
lation between models. The POSIX/Unix API is expressed in terms
of threads. A thread is a subprogram that may continue execution
indefinitely, alternating between states of contention for execution
and self-suspension. To apply the job and task model to a system
composed of threads, one needs to treat each point at which a thread
suspends itself (e.g., to wait for a timed event or completion of an
input or output operation) as the end of a job, and each point at
which a thread wakes up from a suspension as the beginning of a
new job.

Since the thread model does not constrain the intervals between job
releases or the worst-case execution times between suspensions,

systems programmed with threads present problems for schedula-
bility analysis unless some constraints are imposed on thread con-
trol flows and/or scheduling policies. Adequate constraints are en-
forced by the operating system in the case of the SCHED_SPOR-
ADIC policy, but guaranteeing that the threads scheduled by the
SCHED_RR and SCHED_FIFO policies adhere to an analyzable
release time and worst-case execution time model depends on pro-
grammer discipline.

Threads that perform input and output operations require additional
consideration. If a thread makes blocking I/O requests, the inter-
vals between job release times will depend on both the raw response
time of the I/O device and how the system schedules it. For reasons
explained in Section 8, the analysis of I/O scheduling, especially in
combination with CPU scheduling, is much more difficult than the
analysis of CPU scheduling, and is generally beyond the scope of
fixed-priority preemptive scheduling theory. A way to work around
this limitation is to move I/O out of time-critical threads, so that the
CPU and I/O scheduling problems can be modeled and analyzed
independently. In Linux, implicit I/O operations due to page fault
activity can be avoided in time-critical threads by using mlock() and
mlockall() to lock virtual memory pages accessed by those threads
into physical memory. Explicit I/O operations can be moved out by
buffering I/O data and either using asynchronous I/O requests, like
aio_read(), or delegating the I/O to a separately scheduled server
thread. Points at which a time-critical thread requires an I/O op-
eration to be completed are deadlines for the I/O scheduler, to be
analyzed separately. For example, consider a periodic thread that
requires input and produces output, both to the same disk storage
device. The input might be requested in advance, with the next
task release time as deadline for the input operation, and the output
might be buffered, with a deadline for the output operation sev-
eral times longer than the task period. The scheduling problem is
reduced to scheduling three independent periodic tasks, one using
just the CPU, one doing disk reads, and one doing disk writes.

It is essential to bound blocking. Any work that is scheduled out-
side of the fixed-priority preemptive model is a potential source of
blocking interference. For analysis to be successful, intervals of
time over which a thread may prevent higher priority threads from
preempting must have bounded duration. In particular, it is essen-
tial to avoid situations where a high-priority thread can wait for a
mutex held by a low-priority thread, while a middle-priority thread
executes. Linux provides a way to accomplish this, using mutexes
with priority inheritance (PTHREAD_PRIO_INHERIT).

So far, it appears that the theory of fixed-priority preemptive schedul-
ing can be applied to real-time systems that make use of the POSIX/-
Unix thread scheduling policies under an operating system like
Linux, provided the user designs the application to fit the mod-
els on which the theory is based. The set of real-time (highest)
priority threads must be known. Each of them must either use
SCHED_SPORADIC to limit its maximum high-priority computa-
tional demand or use SCHED_FIFO or SCHED_RR and be verified
to fit a well-behaved workload model such as the periodic or spo-
radic task. In addition, attention must be paid to other details, such
as bounding the length of critical sections, and determining bounds
on worst-case execution times. All this may be difficult, but it is
possible in principle since all of the code is under the user’s con-
trol.

However, one must also take into account the code of the operating
system, which is not directly visible or controllable by a user but
may interfere with the schedulability. The OS must fit the models

and constraints of the fixed-priority preemptive scheduling theory.
Moreover, it is not enough that the OS admit analysis if the anal-
ysis does not eventually lead to an application that meets its tim-
ing requirements. The OS must admit analysis that is not overly
pessimistic, and it must permit an application designer to actively
manage priorities and workloads, within the OS as well as at the
application level, to meet the timing requirements.

Of course Linux was not originally designed with these goals in
mind, and it has since grown so large and complicated that the
notion of attempting major architectural changes is daunting. For
that reason, some individuals have given up on the idea of using a
general-purpose OS like Linux directly as a platform for hard real-
time applications, and developed a variety of layered schemes that
provide greater control over timing (for example, RTLinux [4, 33],
Linux/RK [23], RTAI [6], Hijack [24]). However, at the same time,
others have worked to improve the real-time support of the Linux
kernel itself (for example, [11, 12].

Probably the biggest improvement has been in bounding blocking
effects due to critical sections within the OS. Ingo Molnar [21] in-
troduced a set of high-preemptibility kernel patches, which greatly
reduced the average blocking time due to kernel activities. Deriving
an exact analytical upper bound for worst case blocking still does
not seem practical, but an empirical bound can be obtained by mea-
suring the release-time jitter of a periodic thread with the top real-
time priority, over a long time and a variety of system loads. Such
experiments for recent Linux releases with real-time patches show
that blocking interference appears to be bounded [30]. However,
in the absence of enforcement, through static or run-time checks, it
is possible that a badly written system component could disable
preemption for a longer time than observed in the experiments.
Worse, unbounded blocking could occur through locking mecha-
nisms, such as Linux kernel semaphores, that neither disable nor
implement priority inheritance. Nevertheless, if the probability of
blocking exceeding a given empirical bound (and so causing vio-
lation of an application timing constraint) can be shown to be low
enough, that may be sufficient for many real-time applications.

Given that blocking interference due the OS is bounded, more or
less, the remaining challenge is to bound preemption interference.
After elimination of the easy cases, by scheduling the system dae-
mons below the real-time priority level, it seems the remaining
potential sources of interference by operating system components
with the scheduling of application threads are in the system’s de-
vice drivers.

4. DEVICE DRIVER INTERFERENCE
Device drivers include code that is scheduled in response to hard-
ware interrupts. For example, consider a user task that makes a
blocking call to the operating system to request input from a disk
drive via a DMA interface. Typically, the driver would execute in
three phases, more or less as follows:

1. The client calls the system, and the system calls the device
driver. The device driver initiates an input operation on the
device, and blocks the client thread until the input operation
completes. The device driver code is scheduled as part of the
client thread.

2. The device signals completion of the input operation, via an
interrupt. An interrupt handler installed by the device driver
performs various operations required by the device and in-
put method, such as acknowledging the interrupt and perhaps

copying data from a kernel buffer to a buffer in the client
thread’s address space, then unblocks the client thread. The
scheduling of the device driver code here is interrupt-driven.

3. Eventually, execution resumes in the client thread at the point
in the device driver code where the client thread blocked.
Control flows from the device driver to the kernel and from
the kernel back to the user code. While the interrupt from
the device plays a role in determining the release time of this
phase, the device driver code is scheduled as part of the client
thread.

Since the scheduling of interrupt-driven device driver code is out-
side the direct control of the application, the ability to analyze its
effect on the ability of an application to meet timing constraints
depends on the design decisions made in the device drivers and op-
erating system kernel.

In popular processor architectures, the hardware schedules inter-
rupt handlers at a priority higher than that of any thread scheduled
by the OS1. Safe programming practice may also require that an in-
terrupt handler executes non-preemptibly, with interrupts disabled.

In addition, many operating systems schedule interrupt-triggered
device-driver code via a two-level mechanism. The Level 1 work,
which is executed in interrupt context, is very short; in essence, it
just records the fact that the interrupt has occurred, and enqueues
the event on a list for later processing. The rest of the work is done
at Level 2, in software event handlers.

In Linux, the Level 2 handlers are called softirq handlers, though
they also go by other names, such “bottom halves” and “tasklets”,
and “timers”. The softirq handlers are executed non-preemptively
with respect to the thread scheduler and other softirqs on the same
CPU, but with hardware interrupts enabled, in the order they ap-
pear in a list. The details of when these handlers are scheduled
have changed as the Linux kernel has evolved. As of kernel 2.6.20
the responsibility is divided between two schedulers and priorities.
Softirq handlers are executed by do_softirq(), which is called typi-
cally on the return path from a hardware interrupt handler. If there
are still softirqs pending after a certain number of passes through
the softirq list (meaning interrupts are coming in fast enough to
keep preempting the softirq scheduler), do_softirq() returns. Re-
sponsibility for continuing execution of softirq handlers is left to
be performed at background priority in a scheduled thread (called
ksoftirqd), or the next time do_softirq() is called in response to an
interrupt.

Both hardware interrupts and softirq’s are intended to provide fast
driver response to a particular external event, but can cause prob-
lems for schedulability analysis (see Section 6). They can also
reduce overall system schedulability. Giving all interrupt-driven
work higher priority than all work done by threads introduces a
form of priority inversion, where an action that the theory says
should logically have higher priority, in order meet its deadline,
may be preempted by an action that logically should have lower
priority. Executing handlers without preemption introduces another

1There are systems where interrupts can be assigned hardware pri-
ority levels and the CPU interrupt level can be varied, so that hard-
ware interrupt levels can be interleaved with software priority lev-
els. For example, this is possible with the Motorola 68xxx family
of processors. It is not clear why this good idea has not been more
widely adopted. Perhaps it is one of the many cases of patents on
fairly obvious little ideas that impede real technological progress.

form of priority inversion, where a job that should have higher pri-
ority is not able to preempt a job that should have lower priority.
Scheduling handlers non-preemptively also introduces a more sub-
tle potential problem, giving up a property of preemptive schedul-
ing that Ha and Liu [10, 9] call predictability. This kind of pre-
dictability is a necessary basis for schedulability analysis based on
just worst-case execution times.

Effective scheduling and analysis requires that the use of mecha-
nisms that are exceptions to the overall system scheduling model,
such as hardware interrupts and Linux softirqs, be bounded in du-
ration and frequency so that the overall interference they cause
can be modeled. The OS can provide mechanisms for drivers to
move work into preemptively scheduled threads (see Section 6), but
without creative new architectural provisions for responsibility for
bounding interrupt handler execution, it must rely on the designer
of each device driver to make use of them.

Some interrupt-driven device driver execution presents special prob-
lems, due to I/O operations that are device-driven. For example,
compare the input operations of an Ethernet interface device with
disk input operations. An interrupt due to input of a message by
a network device can occur spontaneously, due to the nature of an
open system, where requests are generated from external sources.
In contrast, an interrupt due to completion of a disk operation nor-
mally corresponds to a prior request from the kernel or a user thread,
reflecting the characteristics of a closed system (overlooking the
case in which a network request results in disk activity); so, the fre-
quency of disk requests may be managed by the application, even
if the precise timing of the completion interrupts cannot be pre-
dicted. Other kinds of input sources that may have device-driven
interrupt-scheduled workloads include asynchronous serial ports,
and streaming audio and video devices.

Since some portion of the device-driven workload is executed at
high priority, it must be bounded before other work can be guaran-
teed any level of service. For some devices, such as a video device
with periodic input behavior, this is not difficult. For other devices,
such as an Ethernet interface, one seems to be forced to choose
between bounds based on raw hardware capacity, which are unre-
alistically high, and bounds based on expected worst-case behavior
of the communication partners, which cannot be determined by lo-
cal analysis and may be unreliable. However, the kernel can help
by providing aperiodic server scheduling mechanisms that can limit
the CPU time spent on some of the interrupt-driven work of a de-
vice, as described below in Section 6. Well-designed device drivers
may go further, by applying interrupt management techniques, as
described in Section 7.

5. DEVICE DRIVER DEMANDS
Device drivers may have timing constraints, such as to stay syn-
chronized with a device or to avoid losing data. For example, con-
sider a video frame grabber (digitizer) device attached to a cam-
era, which inputs video data continuously at a rate of 30 interlaced
frames per second. The kinds of timing constraints such a driver
might have would depend on the capabilities of the device.

If the frame-grabber requires programmed I/O – i.e., it is not ca-
pable of acting as a direct-memory-access (DMA) bus master –
the driver must use the CPU to read the device’s on-board frame
buffer. That will require very close synchronization. The device
driver must read raster lines of pixels from the device fast enough
to prevent loss of data when the device wraps around and over-
writes one frame with the next. A driver designed to capture a full

stream of video data from such a device may be viewed as a peri-
odic task with 1/30-second period. It would have a tight release-
time jitter requirement, and a deadline of perhaps half the period,
to avoid risk of losing data. If the device generates an interrupt at a
known point in each frame, execution of the driver can be driven by
that interrupt, but it may need to use another interrupt (via a kernel
timer abstraction) to schedule itself at a specified offset from the
interrupt. If the device does not generate a frame synchronization
interrupt, the driver would need to time its own execution, and the
period would probably need to be regulated by the driver to stay
in phase with the video source, using a phased-locked-loop control
model.

If the frame-grabber is capable of DMA operation, the timing con-
straints on the driver can be relaxed by providing the device with
multiple buffers. The driver may be able to program the device
so as to choose which events cause an interrupt to be generated,
such as when a new frame has been copied to memory, or when
the number of free buffers falls below a threshold. The driver may
then be modeled as two virtual tasks: a DMA task (implemented
in hardware), and a video driver task (implemented in software) to
manage the buffers and synchronization with the consumer of the
video data. The DMA task would be periodic and would slow down
the CPU by stealing memory cycles from other tasks. If the frame
completion interrupt is used, the video driver task can be viewed
as a periodic task. Its deadline and jitter requirements would be
much looser than the case with programmed I/O, since the addi-
tional buffers allow the deadline to be longer than the period. If the
threshold interrupt is used, it may be viewed as a sporadic task with
a response-time constraint equal to the amount if time it takes the
device to consume the number of buffers that is set as the threshold.

Device drivers can have a variety of internal timing constraints.
Some cannot be expressed in terms of deadlines, because they are
point-to-point within a computation that does not permit giving up
control of the CPU. For example, in interactions between the CPU
and device there may be a minimum delay for the device to process
information from the CPU before it is able to accept the next com-
mand. If the delay is shorter than the precision of the kernel timer
mechanism, achieving adequate throughput may require that the
driver busy-wait. There are also point-to-point constraints that dic-
tate non-preemptible execution, such as a maximum delay between
actions in a sequence of interactions, beyond which the device goes
into an error state that requires it to be re-initialized and the entire
sequence to be restarted.

In general, device driver internal timing constraints must be val-
idated along with other system timing constraints, and limit the
measures that might otherwise be taken to reduce the interference
that a device driver causes for other real-time tasks. However, some
internal timing constraints that are treated as hard in the design of
a driver might better be considered as soft in the context of a par-
ticular application. The usual device driver writer’s perspective is
to treat the needs of the device as top priority. In some cases that
is wrong. For example, a device driver writer might decide to dis-
able preemption rather than risk having to reset a device and lose
time or data. In the context of an application where the overall
function of the device is not time-critical, and some data loss is ac-
ceptable, this non-preemptible section might cause a more critical
timing constraint to be missed. It is a challenge to design device
drivers in a way that provides configuration mechanisms for an ap-
plication designer to participate in resolving such trade-offs.

The scheduling of device driver execution often imposes a link be-

tween the quality of I/O service provided by the driver and the
amount of interference the device driver causes for other tasks. It
may be blocking interference, such as where disabling preemption
within a driver prevents a recoverable device malfunction and loss
of data. It may also be preemption interference, at the level of
interrupt management and thread scheduling. That is, allowing a
device to generate more interrupts or giving higher priority to a
device driver thread may allow the device driver to respond to re-
quests for attention from a device, and that may result in less idle
time for the device, a shorter response time for the next I/O request
to be processed, a higher overall throughput rate, and a reduction
in lost data. The right balance in such trade-offs will depend on
the application context, so mechanisms are needed for applications
designers to configure the scheduling of device-driver execution.

6. DEFERRING WORK TO A THREAD
The less processing is done at hardware interrupt priority the shorter
the potential duration of CPU priority inversion, and the better ac-
tual system scheduling fits the theoretical ideal. The Linux softirq
mechanism might appear to help in this regard, by deferring some
of the interrupt-triggered work, but it actually hurts. In contrast to
the use of either pure interrupts (generally non-preemptible, top pri-
ority) or regularly scheduled (preemptible, lower priority) threads,
this kind of complicated mixed scheduling mechanism is very dif-
ficult to model and analyze. If one ignores the role of the ksoftirqd
server, softirqs might be modeled as a per-CPU thread that is sched-
uled at a fixed priority, lower than the hardware interrupt priority
and higher than any other thread. A problem is that the work-
load of this thread, which is generated by many different kernel
components for a great variety of purposes, does not conform to
any analyzable model. The demotion of softirq service to be per-
formed at background priority by ksoftirqd during heavy bursts of
activity helps to bound this load for non-real-time purposes, but it
is not done in a way that can be precisely modeled like the well-
understood real-time aperiodic server scheduling algorithms.

Clearly, better schedulability can be achieved by moving the work
of softirq handlers to one or more regularly scheduled threads. If
a device is only used by non-real-time components of the system,
the response time of the driver to interrupts will probably not be
critical. (This assumption is the basis of the RTLinux [4] prac-
tice of deferring all of the Linux interrupt handlers to background
processing.) In such cases, it is sufficient to schedule the device
server in the background, at low enough priority not to preempt
any of the threads that have timing constraints. An exception may
be where the device is a bottleneck, but not necessarily, since the
techniques described below for reducing interrupts and batching
device-driven work by the driver may also result in higher through-
put. Of course, if the I/O has throughput or deadline requirements,
background scheduling is not sufficient.

It might appear that the interrupt-driven work of device drivers
could be moved directly to their client threads, to be scheduled
at a priority consistent with the continuation processing after the
I/O operation. That does not work very well, for several reasons.
One is the technical difficulty of unblocking the client task from
inside an interrupt handler without unsafe race conditions. Another
reason is that there may be several threads of different priorities
sharing access to the same device, so in that case there may be I/O
priority inversion, as higher-priority threads with pending I/O re-
quests wait for their requests to be served until the interrupt-driven
work of a prior request is executed by a lower priority client. Re-
ducing CPU priority inversion due to interrupt-driven work with-

Thread context

 Interrupt context

Thread context

softirq

 Interrupt context

softirq

driver ISR

generic ISR

driver ISR

generic ISR

Standard Linux TimeSys Linux

Figure 1: Linux softirq handling schemes.

out creating such I/O priority inversion can be accomplished by
moving work from the interrupt handler to a regularly scheduled
server thread of appropriate priority, below interrupt level, but high
enough to provide the desired level of I/O service.

Real-time variants of the Linux kernel, including those of Timesys
and Montavista, have been modified to execute device-driver inter-
rupt handlers and softirq handlers only from server threads. This
is illustrated in Figure 1. For example, in the Timesys kernel,
one thread is dedicated to processing interrupts for message-receipt
events on the network device, and another to processing message-
send events. The priority of each server thread can be set to a level
that fits the priority the service it provides. If the priority is lower
than that of any real-time thread, preemption interference effects
due to softirq’s can be ignored in schedulability analysis.

The difference in driver interference effects between running the
device-driver server threads at low versus high priority are illus-
trated in Figure 2. These super-imposed histograms show the re-
sponse time distribution for a periodic thread, with period of 100
milliseconds and an execution time of 10 milliseconds, running
at high real-time priority. I/O load was provided by sending ping
packets to the system, at random intervals between 10 and 2000 mi-
croseconds, and compiling a Linux kernel at normal user priority.
The response times that form a spike between 10 and 10.5 mil-
liseconds are from experiments in which the device driver server
threads ran at lower priority than the periodic task. The response
times that form a hump between 11.5 and 12 milliseconds are from
experiments in which the device driver server threads ran at higher
priority.

The idea of using a single interrupt server thread serving multi-
ple interrupts by using a prioritized work queue appears in a 1990
patent by Youngblood [34]. The idea of assigning a thread of ap-
propriate priority to each interrupt appears in a patent by Kleiman
in 1996 [14]. The idea of allowing the priority of interrupt server
threads to float, at the maximum priority of the set of threads that
have devices open that use the corresponding interrupt, appears on
the LynxOS 1995 patent, by Bunnell [5]. Regardless of which of
these solutions is used, one can model the interrupt-triggered exe-
cution of a driver by two tasks, one that has short jobs at interrupt
priority, and another that has longer jobs at a lower priority.

Zhang and West [35] proposed a variation of the LynxOS approach.
The essential difference is that instead of scheduling the softirq
server at the maximum priority of the threads that have an open

Figure 2: Response time distributions of a task with 100 msec. period
and 10 msec. execution time, with and without device driver interfer-
ence.

file description served by the device, they use the maximum pri-
ority of the client threads that currently seem to be awaiting ser-
vice by the device. The processing time for a particular softirq
can then be charged against the client thread that it serves. This
approach makes sense for device driver execution that can logi-
cally be charged to a client thread, but not all I/O has that property.
Moreover, it suffers a potential priority inversion problem that is
similar to the case if the bottom half were executed directly by the
client thread. Consider a system with three real time processes, at
three different priorities. Suppose the low priority process initiates
a request for a stream of data over the network device, and that
between packets received by the low priority process, the middle-
priority process (which does not use the network device) wakes
up and begins executing. The network-device server thread would
have too low priority to preempt the middle-priority process, and so
a backlog of received packets would build up in the DMA buffers.
Next, suppose the high priority process wakes up and during its ex-
ecution, attempts to read from the network device. This will finally
raise the device server’s priority to that of the high priority process.
However, since the network device driver handles packets in FIFO
order, the bottom half is forced to work through the backlog of the
low-priority process’s input before it gets to the packet destined for
the high priority process. This additional delay could be enough
to cause the high priority process to miss its deadline. That would
not happen if the low-priority packets were cleared out earlier, as if
the device bottom half had been able to preempt the middle-priority
task. The LynxOS technique of doing priority inheritance through
open() operations does not have this problem.

These ideas address the problems of finding the right priority for the
interrupt-driven work of the device driver, but they do not address
the problem of how to bound the interference due device-driven
I/O.

Facchinetti et al. [7] recently proposed a way of doing this, but
without addressing the priority problem. The system executes all
Level 2 interrupt service as one logical thread, at the highest sys-
tem priority. The thread implements an ad hoc aperiodic server
scheduling policy, based on budgeting service time at the granu-
larity of individual handler executions. This imposes a bound on
the interference the server can cause lower priority threads in any
scheduling window. Otherwise, the Level 2 handlers are executed
like normal Linux softirq handlers, without preemption by threads

or other Level 2 handlers, in interrupt context, ahead of the applica-
tion thread scheduler. Since all devices share the same budget and
share the same priority, the system does not distinguish different
priority levels of I/O, and handles all I/O in FIFO order. This can
have undesirable consequences. For example, suppose the network
interface is flooded with incoming packets, causing the Level 2 in-
terrupt server thread to exhaust its budget. If a high priority task
then requests disk I/O, completion of the disk I/O will be delayed
until the Level 2 interrupt sever budget is replenished, and the high
priority task may not meet its deadline.

Lewandowski et al. [18], proposed a similar approach, but based
on using multiple server threads at different priorities, scheduled
by an aperiodic server policy at the thread level. They suggest the
Sporadic Server policy, since that is already supported for user-
level threads by the POSIX/Unix real-time API. This has the virtue
of both limiting the interrupt-driven interference that softirqs can
cause, regardless of the rate at which the device attempts to push
input at the system, while allowing different devices to be served at
different priorities, and with different CPU bandwidths. It does not
require any modification to existing device drivers.

Lewandowski et al. also suggest a way of empirically estimating an
upper bound on device driver interference, which can be used di-
rectly in schedulability analysis, or used to calibrate the scheduling
parameters of a sporadic server.

7. MANAGING INTERRUPTS
Just deferring Level 2 interrupt handling may not be enough. With
device-driven input devices, such as a high-speed network inter-
face card, there are situations where the Level 1 hardware interrupt
handling alone could cause real-time tasks to miss deadlines. A de-
fense against such an interrupt storm is to disable interrupts. This
technique is the basis of the new Linux API for network devices
(NAPI) [20], which is implemented by at least one driver. Once an
interrupt is received from the device the interrupt is left disabled,
at the device level. The Level 2 processing loop, which moves data
from the DMA buffers to other buffers and passes them up the pro-
tocol stack, runs with the interrupt disabled. It is only re-enabled
when the server thread executing the Level 2 loop polls, discovers
it has no more work, and so suspends itself.

This mechanism was originally introduced to reduce so-called re-
ceive live-lock, where a system is so busy handling packet inter-
rupts that it has no time left to process the data, but it has proven to
have other benefits. By preventing unnecessary interrupts, it avoids
the context-switch overhead for some packets, reducing the net ex-
ecution time per packet, and so can sustain higher data rates. In
addition, when the Level 2 packet processing is done by a thread at
low priority level, if packets arrive faster than the server thread can
handle them the DMA buffers will fill up and the device will drop
packets until the thread has caught up.

The net effect is that interrupts are throttled. A job with higher
priority than the Level 2 receive-processing thread can never be
preempted by more than one interrupt from the network device.
Since the Level 1 interrupt handler is very short, the worst-case
interference for high priority tasks is not only bounded, but very
small.

The hybrid polling/interrupt technique used in NAPI can be gener-
alized to manage the rate of interrupts from other types of devices.
However, barring device malfunctions that cause a stuck interrupt,
it should only be needed for devices that are similar to network

devices in the sense of spontaneously initiating interrupts. Many
other classes of devices will only interrupt to indicate completion
of an operation requested earlier by a client, so the rate of interrupts
can be managed by a client, by managing the rate of requests.

As time goes on, hardware devices that are capable of generating
interrupts at a high rate may provide throttling capabilities directly.
That already appears to be the case with the Intel 8254x and 8257x
gigabit Ethernet controllers [13], which provide several choices
of operating modes in which hardware interrupts may be throttled
back to fit a sporadic task model.

Although interrupt throttling ameliorates the problem of interrupt
storms, and budgeting time for processing of Level 2 interrupt han-
dling bounds direct interference from the device driver for top pri-
ority threads, these methods only indirectly address (via dropped
messages) the broader problem of managing the amount of work
being accepted into the system. That is, even at acceptable levels
of hardware interrupt and softirq activity, some form of early ad-
mission control may be needed to throttle the workload of applica-
tion tasks and to prevent possible resource exhaustion (e.g., buffer
space) that might lead to subsequent scheduling interference. Of
course, such admission control requires CPU time also, and must
be taken into account in the analysis of interference.

8. I/O SCHEDULING EFFECTS
The discussion so far leaves out I/O scheduling, that is, determi-
nation of the order and times at which I/O requests are served by
each device. Some devices in real-time embedded systems – such
as primitive sensors and actuators – do not require I/O scheduling
and can perform operations immediately in response to a command
from a thread, with no scheduling and very predictable response
time. However, there are other I/O devices – such as mass stor-
age devices, network devices, and radars – need scheduling. These
are typically devices that need to be shared between threads, have
highly variable response times, and may logically perform opera-
tions in more than one order. The quality of such I/O scheduling
can affect the ability of an application to meet both response time
and throughput requirements.

Device drivers may be involved in doing I/O scheduling. They are
also affected by I/O scheduling, since the timing and order of I/O
operations partially determines the workload of the device driver.
Consider a blocking read operating to a disk. The time at which the
disk actually performs the operation depends on what other oper-
ations are queued for the disk, the order in which they are served,
and how long it takes to process each of them.

Schedulablility analysis for I/O is difficult because responsibility
for I/O scheduling is distributed among different implementation
layers. Device driver software may make some I/O scheduling de-
cisions, but the service order and response times seen at the level of
an application task may also be influenced by the device itself and
by higher-level system software. For example, while a disk device
driver may determine the order in which it passes on the I/O re-
quests it receives, the order in which it receives those requests may
be determined by higher-level operating system components, and
the order in which the requests it sends out are actually served may
be affected by the disk drive itself, by an intermediary controller,
a multi-device driver and possibly a logical volume manager in the
case of RAID systems, and by filesystem layout. The actual com-
pletion time of an I/O request is further complicated by the addi-
tional implicit requests for file system metadata associated with the
requested I/O. Critical but infrequent error recovery mechanisms

at various levels can also be triggered to perform journal recovery,
parity reconstruction, and bad sector forwarding. Full response-
time analysis for disk I/O requests will require consideration of the
net effect of all these levels. Similarly complex multi-layer inter-
actions are potentially involved in determining service order for
other important classes of devices, such as data communication in-
terfaces and radars.

While it may be possible to concentrate the I/O scheduling imple-
mentation at one level, there may be a penalty in reduced control
over scheduling, or increased overhead and reduced throughput.
These are potentially complex trade-offs that need to be resolved
for each type of device, and for each application.

Another aspect of I/O scheduling that makes it difficult to analyze
is non-preemptivity. Operations on most I/O devices cannot be in-
terrupted, once started. For example, a network interface device
would not typically provide the option of interrupting transmission
of one message in order start another, nor would that make sense,
given the high overhead that such preemption would incur. Simi-
larly, given the long time it takes to get a disk head into position to
access a given sector, it would not makes sense to preempt a disk
drive in the midst of an I/O operation. As mentioned above, one
consequence of non-preemptivity is that the scheduling effects of
execution time variation in cannot be bounded by just considering
the shortest and longest cases [10, 9].

The difficulty of even single-device analysis is exacerbated by the
fact that I/O times can be context-sensitive. For example, in the
case of a disk drive the time to access a given block depends on
the position of the disk head relative to the block location and the
content of the driver’s local cache. That, in turn, depends on what
operation was scheduled before.

Another important issue that impacts schedulability analysis in-
volving I/O response times is timing constraints that span multiple
jobs, involving several different processors and precedence con-
straints. For instance, a network video server might read video
frames from a frame grabber or a local disk, perform some compu-
tation on the video data (say trans-coding or frame skipping), and
transport the requested data across the network. In this example,
there is a precedence ordering among jobs on the different devices,
and each job depends upon the successful and timely completion of
a previous task in the sequence. In addition, to achieve a reasonable
perceptual quality, the entire sequence of tasks needs to be repeated
regularly.

I/O scheduling also can involve multiple conflicting quality–of-ser-
vice criteria. For example, priority-based scheduling of disk I/O
can reduce response time for a few high-priority requests, but at
the cost of increased total processing time (for head movement and
rotational latency), which means reduced throughput. Algorithms
that provide good average throughput provide very hard-to-predict
response times. So, if a system has tasks with both response time
and throughput requirements, perhaps in the same task, it is not
clear what to do.

For the reasons given above and others, when I/O scheduling is
considered together with scheduling of the CPU and possibly other
devices, the analysis problem becomes extremely difficult. The the-
ory, so far, has very little useful to say about these problems. Some
research has been done on limited aspects of the end-to-end I/O
scheduling problem (e.g., [2, 16, 25, 8, 36]), from the perspec-
tive of either resource allocation to support QoS or co-ordinated

scheduling of specific set of resources. However, a comprehensive
theory of multi-resource allocation and schedulability analysis does
not yet seem to exist.

9. CONCLUSION
The state of practice in Linux seems close to providing adequate
support for constructing a variety of real-time systems to meet tim-
ing constraints by design, and verifying them, based on preemptive
scheduling theory. However, there remains some work to be done
at the level of device drivers.

One of the advantages of a mature, widely used, general-purpose
operating system like Linux is that it already has a large collection
of device drivers. There are good reasons for trying to reuse some
of these drivers in a real-time application. Techniques exist that
permit modeling the role of some existing device drivers in system
schedulability, including ways of bounding the interference real-
time application tasks may experience due to the Level 2 interrupt
processing, with only minor changes to the way softirq handing
is scheduled by the kernel. With further change, in the design of
device drivers, the interference due to Level 1 interrupt processing
may also be bounded.

These solutions do require tailoring of how Level 2 interrupt han-
dling is scheduled and how Level 1 interrupts are throttled, to fit
the needs of an application. That currently can only be done by
modification of the kernel and/or device driver code. It is possi-
ble in an open-source system, but is still an obstacle to widespread
use. For the adoption of such techniques with proprietary operating
systems, it is a more significant roadblock.

This situation could be improved by expanding the device driver
and user programming interfaces, to provide more visibility and
control over device driver scheduling and interrupt handling at the
application level.

It may also be advantageous to provide enforcement mechanisms
to improve the real-time quality of device drivers, which are de-
veloped independently by a large number of individuals, who are
not all fully aware of what effects their device driver might have on
the schedulability of other system components, or the relative im-
portance of driver-internal timing constraints as compared to other
requirements in a particular real-time application.

Problems that are more serious exist with regard to achieving and
verifying end-to-end timing requirements that span I/O operations,
which need to be solved better in theory before one can talk seri-
ously about how to support the theory better in an operating system.
A reasonable way to make progress is to look at restricted cases,
such as computations involving just the CPU and one I/O resource,
either modeling existing Linux I/O scheduling policies for the de-
vice or modifying the device scheduling policy to make real-time
performance more analyzable.

REFERENCES
[1] Advanced Informatics. SCAN-schedulability analysis tool.

http://www.spacetools.com/tools4/space/
272.htm.

[2] D. P. Anderson. Meta-scheduling for distributed continuous
media. Technical Report CSD-90-599, ECE Department,
University of California at Berkeley, Dec. 1990.

[3] N. C. Audsley, A. Burns, M. Richardson, and A. J. Wellings.
Hard real-time scheduling: the deadline monotonic

approach. In Proc. 8th IEEE Workshop on Real-Time
Operating Systems and Software, pages 127–132, Atlanta,
GA, USA, 1991.

[4] M. Barabanov. A Linux-based real-time operating system.
Master’s thesis, New Mexico Instituted of Techology,
Albuquerque, NM, June 1997.

[5] M. Bunnell. Operating system architecture using multiple
priority light weight kernel task based interrupt handling, u.
s. patent 5,469,572. http://www.upsto.gov, 1995.

[6] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes,
S. Hughes, and K. Yaghmour. DIAPM-RTAI position paper,
nov 2000. In RTSS 2000 Real-Time Operating Systems
Workshop. IEEE Computer Society, 2000.

[7] T. Facchinetti, G. Buttazzo, M. Marinoni, and G. Guidi.
Non-preemptive interrupt scheduling for safe reuse of legacy
drivers in real-time systems. In Proc. 17th IEEE Euromicro
Conference on Real-Time Systems, Palma de Mallorca, July
2005.

[8] K. Gopalan and T. Chiueh. Multi-resource allocation and
scheduling for periodic soft real-time applications. In Proc.
Multimedia Computing and Networking, San Jose, CA,
USA, Jan. 2002.

[9] R. Ha. Validating timing constraints in multiprocessor and
distributed systems. PhD thesis, University of Illinois, Dept.
of Computer Science, Urbana-Champaign, IL, 1995.

[10] R. Ha and J. W. S. Liu. Validating timing constraints in
multiprocessor and distributed real-time systems. In Proc.
14th IEEE International Conf. Distributed Computing
Systems, pages 162–171, Poznan, Poland, June 1994. IEEE
Computer Society.

[11] A. C. Heursch, D. Grambow, A. Hosrtkotte, and H. Rzehak.
Steps towards a fully preemptable Linux kernel. In Proc.
27th IFAC/IFIP/IEEE Workshop on Real-Time
Programming, Lagow, Poland, May 2003.

[12] A. C. Heursch, D. Grambow, D. Roedel, and H. Rzehak.
Time-critical tasks in Linux 2.6: Concepts to increase the
preemptability of the Linux kernel. In Linux Automation
Konferenz, Germany, Mar. 2004. University of Hanover.

[13] Intel Corporation. Interrupt moderation using intel gigabit
ethernet controllers (AP-450). Application Note, Intel
Corporation, Apr. 2007.

[14] S. Kleiman. Apparatus and method for interrupt handling in
a multi-threaded operating system kernel. U. S. Patent
5,515,538, 1996.

[15] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour. A Practioner’s Handbook for Real Time Analysis:
Guide to Rate Monotonic Analysis for Real Time Systems.
Kluwer, Boston-Dordrecht-London, 1993.

[16] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and
J. Hansen. A scalable solution to the multi-resource QoS
problem. In Proc. IEEE Real-Time Systems Symposium,
Phoenix, AZ, USA, Dec. 1999.

[17] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced
aperiodic responsiveness in a hard real-time environment. In
Proc. 8th IEEE Real-Time Systems Symposium, pages
261–270, 1987.

[18] M. Lewandowski, M. Stanovich, T. Baker, K. Gopalan, and
A. Wang. Modeling device driver effects in real-time
schedulability analysis: Study of a network driver. In Proc.
13th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 57–68, Bellevue, WA, Apr.
2007.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal
of the ACM, 20(1):46–61, Jan. 1973.

[20] J. Mogul and K. Ramakrishnan. Eliminating receive livelock
in an interrupt-driven kernel. ACM Transactions on
Computer Systems, 15(3):217–252, 1997.

[21] I. Molnar. Preemptive kernel patches.
http://people.redhat.com/mingo/.

[22] Montavista, Inc. Montavista Linux.
http://www.mvista.com.

[23] S. Oikawa and R. Rajkumar. Linux/RK: A portable resource
kernel in linux. In Real-Time Systems Symposium
Work-in-Progress, Dec. 1998.

[24] G. Palmer and R. West. Hijack: Taking control of cots
systems for real-time user-level services. In Proc. 13th IEEE
Real-Time and Embedded Technology and Applications
Symposium, pages 133–146, Bellevue, Washington, Apr.
2007. IEEE Computer Society Press.

[25] S. Saewong and R. Rajkumar. Cooperative scheduling of
multiple resources. In Proc. IEEE Real-Time Systems
Symposium, Phoenix, AZ, USA, Dec. 1999.

[26] L. Sha, T. Abdelzaher, K. E. Årzén, A. Cervin, T. P. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K.
Mok. Real time scheduling theory: A historical perspective.
Real-Time Systems, 28(2–3):101–155, Nov. 2004.

[27] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some
practical problems in prioritizing preemptive scheduling. In
Proc. 7th IEEE Real-Time Sytems Symposium, 1986.

[28] B. Sprunt, L. Sha, and L. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Real-Time Systems,
1(1):27–60, 1989.

[29] J. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in
real-time environments. IEEE Trans. Computers,
44(1):73–91, Jan. 1995.

[30] G. H. Thaker. Real-time OS periodic tests.
http://www.atl.external.lmco.com/
projects/QoS/RTOS_html/periodic.html.

[31] The Open Group. The single Unix specification, version 3.
http://www.unix.org/version3/.

[32] TimeSys, Inc. Embedded Linux development products.
http://www.timesys.com.

[33] V. Yodaiken. The RTLinux manifesto. In Proc. 5th Linux
Expo, Raleigh, NC, 1999.

[34] L. Youngblood. Interrupt driven prioritized queue. U. S.
Patent 4,980,820, 1990.

[35] Y. Zhang and R. West. Process-aware interrupt scheduling
and accounting. In Proc. 27th Real Time Systems
Symposium, Rio de Janeiro, Brazil, Dec. 2006.

[36] Y. Zhou and H. Sethu. On achieving fairness in the joint
allocation of processing and bandwidth resources: Principles
and algorithms. Technical Report DU-CS-03-02, Drexel
University, 2003.

