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Abstract—Reducing energy consumption has become one of the major challenges in designing future computing systems. This paper

proposes a novel idea of using program counters to predict I/O activities in the operating system. It presents a complete design of

Program-Counter Access Predictor (PCAP) that dynamically learns the access patterns of applications and predicts when an I/O device

can be shut down to save energy. PCAP uses path-based correlation to observe a particular sequence of program counters leading to

each idle period and predicts future occurrences of that idle period. PCAP differs from previously proposed shutdown predictors in its

ability to: 1) correlate I/O operations to particular behavior of the applications and users, 2) carry prediction information across multiple

executions of the applications, and 3) attain higher energy savings while incurring lower mispredictions. We perform an extensive

evaluation study of PCAP using a detailed trace-driven simulation and an actual Linux implementation. Our results show that PCAP

achieves lower average mispredictions and higher energy savings than the simple timeout scheme and the state-of-the-art Learning

Tree scheme.

Index Terms—Energy-aware systems, hardware/software interfaces, storage management.
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1 INTRODUCTION

REDUCING energy consumption has become one of the
most important challenges in designing future comput-

ing systems. While Moore’s Law provides a steady
reduction in power consumption per operation, increasing
demand for higher performance, versatile functionalities,
and better user interfaces has been raising power consump-
tion faster than the reduction from semiconductor technol-
ogy. Today, many computers are mobile, using batteries
with limited capacity. Meanwhile, users expect wireless
network connections, high-quality video and audio, large
storage space, and so on. Efficient power management [35]
will remain a major challenge in computer system design
for the foreseeable future.

In this paper, we focus on reducing the energy
consumption of hard disks, but the idea can be applied to
other I/O devices such as wireless network interfaces.
Many I/O devices are not always needed. For example, a
hard disk drive is idle when all needed data reside in
memory. When an I/O device is idle, it can be turned off
(also called shut down) to reduce energy consumption in
the system. When the device is needed later, it is turned on.
This is called dynamic power management. Unfortunately,
there are overheads to shutting down and turning on an
I/O device. For example, a hard disk needs to spin up its
platters. Because of the substantial overhead, a device
should be shut down only if it will be idle for a period of
time long enough to compensate for the overhead. If there

were no overhead, power management would have been a
trivial problem; a device could be shut down whenever it
was idle. The critical issue in power management is to
accurately predict the length of future idle periods and
determine whether to shut down a device.

We propose a new mechanism, Program-Counter Access
Predictor (PCAP), for dynamic power management. The idea
is motivated by recent innovations in branch prediction for
high-performance processors. Sequences of I/O operations
are invoked by a certain group of instructions within an
application. Therefore, the predictor can observe what
current I/O operation is being performed and predict the
outcome based on previous experiences with that particular
I/O operation. The context of each I/O operation is
recorded using the sequence of program counters (PCs)
that precede the particular I/O. If the same sequence of
PCs is repeated in the same context and was previously
followed by a long idle period, then our method predicts
a long idle period and shuts down the disk.

Compared with previously proposed shutdown predic-
tors, PCAP has two major advantages. First, it uses program
counters to correlate the I/O operations of each program.
No information aggregation is adopted; hence, the informa-
tion is exact. Second, it allows continuous improvement
through multiple invocations of the same program. This is
possible because the program counters that create a
particular I/O operation remain the same in different
executions. These two advantages are unavailable in any
of the existing methods. Because of the precise information,
our method is able to attain better energy savings with very
few mispredictions.

We have performed an extensive evaluation study of
PCAP using a detailed trace-driven simulation and an
actual Linux implementation. Our results show that PCAP
achieves lower average mispredictions and higher energy
savings than the simple timeout scheme and the state-of-
the-art Learning Tree scheme.
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The rest of the paper is organized as follows: Section 2
reviews current energy saving techniques and program
counter-based prediction techniques in architecture design.
Sections 3, 4, and 5 present the basic design, various
optimizations, and the global predictor of PCAP. In
Section 6, we present the experimental setup and a
comparison of PCAP with previous prediction schemes
via trace-driven simulations. In Section 7, an implementa-
tion of PCAP in Linux is evaluated. Finally, Section 8 draws
concluding remarks.

2 BACKGROUND

2.1 A Taxonomy of Current Predictors for Power
Management

Many computers use power management to reduce energy
consumption. Since the early 1990s, manufacturers have
been recommending spinning down hard disks after some
period of idleness [13], [20]. The simple timeout mechanism
has gained wide popularity and is currently implemented
in many operating systems. Fig. 1 shows an idle period
divided into two intervals. When a device becomes idle, a
timer starts. In the first interval, the device remains on. This
interval ends when the timer expires. The device is shut
down and “sleeps” during the second interval until a new
request arrives. If a request arrives during the first interval,
the device does not enter the second interval. This approach
does not save energy during the first interval, but saves
energy during the second interval.

Disks require more energy to accelerate the platters
during a spin-up than during the idle state. To gain energy
savings, the time in the idle state has to be long enough to
offset the extra energy needed during the shutdown and
spin-up sequence. This time is commonly referred to as the
breakeven time and is usually on the order of a few seconds.
The device-off time in Fig. 1 has to be larger than the
breakeven time to produce any energy savings. A mis-
predicted shutdown results in more energy being con-
sumed than saved. Karlin et al. [25] suggested using a
component’s parameters to determine the timeout value.
Their approach produced 2-competitive energy savings if
the only available information was the sequence of requests
from all processes. In practice, to prevent shutdowns that
affects the user perceived responsiveness of the machine,
the timeout period is usually set to tens of minutes. While
the user is working, the long timeout intervals keep the disk
in the active state, consuming energy but providing better
performance. Portable computers, on the other hand, are
usually either continuously used or turned off when not in
use. Therefore, long timeout intervals do not produce
significant energy savings in portable computers.

To address the energy savings in portable computers and
further exploit opportunities for energy savings in desktop
computers, dynamic predictors have been proposed based
on the premise that a history of events is likely to repeat in

the future due to the repetitive behavior of the applications
[48]. In [49], Srivastava et al. observed that a long idle
period often follows a short busy period and suggested that
the length of an idle period could be predicted by the length
of the previous busy period. Learning Tree [11] is the first
attempt to adapt branch prediction techniques for energy
management. Fig. 2 shows an example of some repetitive
behavior of idle periods. Learning Tree discretizes the idle
periods and uses the patterns or history of idle periods to
make prediction. In Fig. 2, Learning Tree first learns that the
occurrence of two idle periods shorter than the breakeven
time is followed by a long idle period. If the two short idle
periods occur again, they trigger the prediction of a long
idle time. To reduce mispredictions, Learning Tree uses
sliding window filters that filter mispredictions closely
followed by an I/O operation. The sliding window filter can
be applied to all dynamics predictors to prevent them from
issuing a shutdown for I/O operations occurring closely
together. Hwang and Wu [21] observed that the length of an
idle period could be predicted using a weighted average of
the predicted and the actual lengths of the previous idle
period. Some other researchers suggested dynamically
adjusting the timeout interval [14], [17]. These methods
use feedback to enlarge or to reduce the timeout based on
whether the previous prediction is correct. If it is correct,
the timeout is reduced; otherwise, it is enlarged.

Stochastic modeling [3], [10], [42], [47] has also been used
to model the trace behavior and predict the idle period
based on the model parameters. In these approaches, I/O
requests are considered as a stochastic process. Benini et al.
[3] used stationary discrete-time Markov processes to model
the arrival of I/O operations. Using this model, they
obtained the optimal probability to shut down a device
for achieving optimal energy saving. Chung et al. [10]
extended the method and considered nonstationary
accesses. Their method precomputes the optimal solutions
for several I/O probabilities. At runtime, the power
manager estimates the current probability and interpolates
from the precomputed solutions. Qiu and Pedram [42] used
continuous-time Markov models and event-triggering so
the power manager would not have to periodically
reevaluate whether to shut down a device. Simunic et al.
[47] suggested adding timeout to continuous-time Markov
models so that a device would eventually be shut down if
the device was idle continuously.

A detailed study and evaluation of various predictors
was presented in [29] with the following conclusions:
1) Timeout predictors offer good accuracy but waiting for
timeout to expire consumes energy; 2) dynamic prediction
shuts down the device immediately but had, so far, much
lower accuracies than the simple timeout prediction;
3) stochastic methods usually require offline preprocessing
and are more difficult to implement and problems may
arise if the workload changes [10]. Application controlled
power management [15], [19], [30], [51] has much better
potential for reducing energy consumption. However, the
technique places the burden of inserting power manage-
ment directives on the programmers and requires the
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Fig. 1. Anatomy of an idle period.

Fig. 2. Repetitive behavior of I/O accesses.



existing applications be modified before they can benefit
from the energy management. Runtime adaptability of
dynamic predictors provides an excellent platform for the
design of advanced shutdown predictors. In this paper, we
adopt sophisticated branch prediction techniques for
energy management.

In many applications, devices do not remain idle long
enough to shut down. Subsequently, research has been
conducted to extend idle periods and facilitate shut down.
Bertozzi et al. [4] study a shutdown method with data
buffering for a network interface card. In their work, all
network packets are inserted into a buffer while the
network card remains in a low-power state. When the
buffer reaches capacity, the network card is awakened, and
all data in the buffer is transmitted. When the buffer is
emptied, the network card returns to a low-power state.
Their simulation results show the minimum buffer size as a
function of the network bandwidth and indicate that buffers
should be as large as possible. By using large buffers, the
awakening overhead energy is amortized across a longer
interval, increasing power savings. Ramachandran and
Jacome [43] employ dedicated caches with application
partitioning to produce idle periods between memory
operations. Streaming data is prefetched into a dedicated
cache; frequently used constants and variables are stored in
a scratchpad memory to limit the number of external
memory references.

Some applications do not lend themselves to shutdown
policies because the amount of idleness is very low and
cannot be extended due to timing constraints. Power-aware
scheduling arranges the execution time of tasks to keep
processors at low-power states (i.e., lower frequencies)
while meeting all timing constraints. Ishihara and Yasuura
[23] use integer programming for scaling discrete voltage
levels. Their method adjusts the processors’ performance
levels to accomplish all tasks before their deadlines with the
minimum energy. Luo and Jha [31] minimize processor
frequencies by constructing task graphs and finding paths
that minimize the ratio of slack time to worst-case execution
time. Some methods use data buffers to create and prolong
idle periods. For example, Im et al. [22] use buffers to
exploit the slack time when multimedia applications do not
use the worst-case execution time. When the processor has
slack time, the processor fills the buffers so that the
processor’s frequency and voltage can be scaled down
later. Weisel et al. [50] schedule processes to create idle
periods for IO components. Pouwelse et al. [40] and Schmitz
et al. [45] present scheduling techniques so that the
processors’ frequencies can be scaled down without
missing deadlines.

Some methods have been developed to manage the energy
of whole machines. For example, Neugebauer and McAuley
[36] treat energy as a resource like CPU time or memory
allocation. They account for the energy consumed by each
process as a metric to offer the desired quality-of-service.
Chase et al. [8] propose an economic model where processes
bid for energy to accomplish their tasks. Zeng et al. [53]
propose an energy budget for each process; the scheduler
selects a process according to its remaining budget.

2.2 Program Counter-Based Prediction in Hardware

History-based prediction techniques exploit the principle
that most programs exhibit certain degrees of repetitive
behavior. For example, subroutines within the application
are called multiple times and loops are written to process
large amounts of data. The challenge in making an accurate

prediction is to link the past behavior (event) to its future
reoccurrence. In particular, predictors need the program
context of past events so that future events that are about to
occur in the same context can be identified. The more
accurate the context information that the predictor has
about the past and future events is, the more accurate the
prediction it can make about future program behavior is.

A key observation made in computer architecture is that
a particular sequence of instructions usually performs a
very unique task and seldom changes behavior and that
program instructions provide a highly effective means of
recording the context of program behavior. Since the
instructions are uniquely described by their program
counters (PCs), which specify the locations of instructions
in memory, PCs offer a convenient way of recording the
program context.

One of the earliest predictors to take advantage of
information provided by PCs is branch prediction [48]. In
fact, branch prediction techniques have been so successful
in eliminating latencies associated with branch resolution
that they are implemented in every modern processor. The
PC of a branch instruction uniquely identifies the branch in
the program and is associated with a particular behavior,
for example, to take or not to take the branch. Branch
prediction techniques correlate the past behavior of a
branch instruction and predict its future behavior upon
encountering the same instruction. To further improve the
accuracy of branch predictors, the execution path which
consists of the addresses of basic blocks taken before a
branch instruction was used as additional context for the
branching behavior [48], [34], [52]. These techniques are
called path-based predictions.

The success of using the program counter in branch
prediction was observed and PC information has been widely
used in other predictor design in computer architecture.
Numerous PC-based predictors have been proposed to
optimize energy [2], [41], cache management [26], [27], and
memory prefetching [46], [5], [16], [39], [1], [24]. Program
counters have been used to accurately predict the instruc-
tion behavior in the processor’s pipeline, which allows the
hardware to apply power reduction techniques at the right
time to minimize the impact on performance [41], [2]. In
Last Touch Predictor [27], [26], PCs are used to predict
which data will not be used by the processor again and free
up the cache for storing or prefetching more relevant data.
In PC-based prefetch predictors [46], [5], [16], [39], [1], [24],
a set of memory addresses or patterns is linked to a
particular PC and the next set of data is prefetched when
that PC is encountered again.

PC-based techniques have also been used to improve
processor performance by predicting instruction behavior
in the processor pipeline [44], [9] for better utilization of
resources with fewer conflicts, as well as to predict data
movement in multiprocessors [32], [26] to reduce commu-
nication latencies in multiprocessor systems.

Despite their tremendous success in architecture design,
PC-based techniques have not been explored in operating
systems design. In this paper, we consider a path-based
prediction [34] for energy management in the operating
system. Previously, the path-based prediction was demon-
strated to work well in predicting a “last touch” to the cache
block [26], in which the path contains program counters of
cache accesses performed before the invalidation of a cache
block. If the same path is encountered again, the cache block is
invalidated immediately. We can immediately draw simila-
rities between path-based prediction for memory references
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and I/O events leading to a last I/O before an idle period. This
close relation suggests that path-based prediction will work
equally well in predicting the I/O behavior in the operating
system.

2.3 Energy Conservation in Data Servers

The focus of this paper is on energy conservation of a single
disk in a laptop or desktop environment. There is a large
body of work on energy conservation in data servers which
involve multiple disks [7], [12], [18], [38], [54], [55]. One
approach is to exploit the fact that server workloads exhibit
wide variations in intensity over time to conserve energy.
Along these lines, Carrera et al. [7] and Gurumurthi et al.
[18] considered multispeed disks. These papers showed that
significant energy savings can be accrued by adjusting the
disk rotational speeds according to the load imposed on the
disks. Carrera et al. also show that a combination of laptop
and SCSI disks can be even more beneficial in terms of
energy, but only for overprovisioned servers.

The other approach is to increase disk idle times so
that disks can be sent to low-power modes and be kept
there for longer periods of time. Zhu et al. [54]
considered storage cache replacement techniques that
selectively keep blocks from certain disks in the main
memory cache to increase their idle times. Recently, Zhu
et al. [55] studied a novel energy-aware storage cache
replacement policy in which dynamically adjusted mem-
ory partitions are used for caching data from different
disks. These works do not involve data movement, which
could provide further energy savings.

In contrast, Colarelli and Grunwald [12] proposed the
Massive Array of Idle Disks (MAID), in which data are
copied to “cache disks” to increase idle times at the regular
(noncache) disks. More recently, Pinheiro and Bianchini [38]
demonstrated that relying on file popularity and migration,
as in their Popular Data Concentration (PDC) technique,
produces more robust energy savings than in the MAID
approach. Their idea was to migrate the popular data to a
subset of the disks so that other disks would become idle for
longer periods.

3 PCAP

We propose Program Counter-based Access Predictor
(PCAP), a new dynamic prediction method that can
accurately predict idle periods. The key idea behind PCAP
is that there is a strong correlation between a sequence of
I/O operations invoked by a particular sequence of
instructions within an application and the immediately
following idle period. To take advantage of the repetitive
functions performed by applications, PCAP extracts the
program context by recording each sequence of PCs that
have triggered I/O operations before a long idle period and
predicts future idle periods based on previous experiences.
Thus, PCAP differs from existing methods that lack the
detailed program context of I/O operations.

3.1 Path-Based Prediction

A naive implementation of PCAP, motivated by a hardware
one-bit branch predictor, would only record a single PC that
causes an I/O followed by an idle period. If this PC is
encountered again, it triggers a prediction that this is an I/O
before an idle period. While this simple implementation is
fairly accurate in predicting the idle periods, it is unable to
accurately distinguish between the periods that are longer
or shorter than the breakeven time. For example, an

application reads multiple files in a loop and only the last
read is followed by an idle time that is longer than the
breakeven time. Using a single PC would result in the
misprediction of an idle period after each file was read at
the beginning of each loop iteration. Moreover, at the end of
a loop iteration, the single PC predictor would not predict
an idle time. The same scenario occurs when a user
consecutively opens multiple files upon starting an editor.

To address these problems, PCAP records a path: a
sequence of I/O triggering PCs that starts after a hard disk
idle period and leads to the next idle period. As a result,
PCAP can distinguish different paths of execution and
identify a particular path that the application currently
follows. The path of execution leading to the current disk
access will allow PCAP to identify the context of the
I/O operation, resulting in a more accurate prediction.
Previously, path-based prediction was used to increase the
accuracy of branch prediction [34] and was later success-
fully used in predicting cache block eviction [26].

Fig. 3 shows an example of I/O operations made by an
application. The leftmost column lists the program counters
that initiate I/O operations. The middle column shows the
time when an I/O operation occurs. The right column
shows the prediction steps undertaken by PCAP. The
application generates three sequences of I/O operations.
Within each sequence, the accesses are 0.1 seconds apart,
keeping the disk spinning. During the first sequence, the PC
of each I/O operation is retrieved and stored as a part of a
path which consists of fPC1;PC2;PC1g. At that point,
PCAP encounters a long 20 second interval which presents
the opportunity to save energy. This is the first time that
PCAP encounters such a sequence of PCs, therefore the
sequence does not trigger a prediction. However, the path is
stored in the prediction table for future predictions. The
second occurrence of fPC1;PC2;PC1g triggers the predic-
tion of an idle period and the disk is shut down. The
example also shows the third sequence of fPC1;PC2;PC1g
that is immediately followed by PC2. In this case, the
misprediction will occur if there is no additional informa-
tion present.
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3.2 Basic Design

So far, we have discussed predicting idle periods based on a
path of I/O triggering PCs executed by an application. The
path can be arbitrarily long and, therefore, the storage and
comparison can be difficult to implement efficiently. In our
implementation, we encode the path by arithmetically
adding the PCs in the path, as previously suggested in [26]
in the context of predicting cache accesses. Such an encoded
path results in a 4-byte variable, called a path signature in the
rest of the paper. For example, a path fPC1;PC2;PC1g from
Fig. 3 is encoded as PC1 þ PC2 þ PC1. The encoding
minimizes the storage requirements of PCAP and provides
a quick comparison between the current path signature and
the path signature in the prediction table. Such encoding
introduces the possibility of two different paths resulting in
the same path signature. For example, path fPC1;PC2;PC1g
is different from path fPC1;PC1;PC2g, but they will result
in the same path signature. In our experiments, this
signature aliasing did not occur. Therefore, we do not
explore alternative encodings.

Fig. 4 illustrates runtime encoding of the path and
prediction table lookup. Each process maintains its own
4-byte current signature variable in the kernel process status
structure. After a period of idle time greater than the
breakeven time, the current signature variable in the current
process is reset to the PC of the first I/O operation. For each
subsequent I/O operation, the PC that triggers the I/O is
added to the current signature variable. After each update
of the current signature variable, PCAP uses the signature
to look up the prediction in the prediction table. If a
signature match is found between the current signature and
a path signature in the prediction table, PCAP predicts a
long idle period and shuts down the disk. If a signature
match is not found, the prediction of “no idle” is implied
and the disk remains turned on. If PCAP encounters an idle
period longer than the breakeven time and the current
signature does not match any of the prediction table entries,
PCAP records that path signature in the prediction table.
After PCAP learns the new path signature, it will use the
new path signature for future predictions.

3.3 Obtaining Signature PCs of I/O Operations

In calculating a path signature leading to an idle period,
instead of obtaining a single PC of the function call from the
application that invokes each I/O operation, PCAP actually
obtains a signature PC which is the sum of the sequence of
PCs encountered in going through multiple levels of
wrappers before reaching the actual I/O system call.
Wrapper functions are commonly used to simplify pro-
gramming by abstracting the details of accessing a
particular file structure. For example, the call graph in

Fig. 5 shows that Functions 2, 3, and 4 will use the same PC
from the wrapper function for I/O operations. Therefore,
the PC that invokes the I/O within the wrapper cannot
differentiate the behavior of different caller functions. To
obtain a unique characterization of the access PC for general
applications, PCAP traverses multiple function stacks in the
application. The PCs obtained during the stack frame
traversal are summed together to obtain a unique identifier
as the signature PC of the I/O operation. In the studied
applications, traversal of only two additional frames in the
application space provided sufficient information to PCAP.
The signature PCs of the I/O operations that lead to an idle
period are then encoded to calculate the path signature for
that idle period.

4 PCAP OPTIMIZATIONS

The basic design of PCAP is able to retrieve and use
program context; as a result, it can achieve more energy
savings while incurring few mispredictions. In this section,
we discuss adaptation of branch prediction mechanisms as
well as basic timeout mechanisms to further reduce the
mispredictions and improve the energy savings in PCAP.

4.1 Reducing Mispredictions

The path-based prediction method in PCAP uses the context
of execution in making more accurate predictions, but it can
still cause mispredictions. PCAP, as any other predictor
derived from path-based prediction, inherits the possibility
of subpath aliasing. Subpath aliasing occurs when one path of
PCs is a prefix sequence within a longer path of PCs. The last
sequence of accesses in Fig. 3 shows the occurrence of
subpath aliasing; the path fPC1;PC2;PC1g is a subpath of
fPC1;PC2;PC1;PC2g. In this case, the misprediction occurs
when the prefix path of the longer path is encountered. One
example of such a scenario is when the user opens a file,
performs “save as” to a different file, opens another file, and
edits it for some period of time. The same sequence is
followed later, but, instead of editing the second file, the
user also performs “save as.” Another example appears
with an Internet browser where some pages require loading
additional libraries (additional I/Os) to decode the multi-
media context and some do not. In the following, we
discuss two optimization techniques that reduce the
mispredictions due to subpath aliasing

4.1.1 Sliding Wait-Window

To reduce the mispredictions due to subpath aliasing,
PCAP uses a sliding wait-window filter before shutting down
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the disk. In Fig. 3, the occurrence of the third sequence
fPC1;PC2;PC1g will result in a shutdown prediction. After
the prediction is made, the predictor waits for a sliding
wait-window to pass before shutting down the disk. If,
during this interval, PC2 arrives, the prediction is ignored
and the path collection is continued without any interrup-
tion. On the other hand, if there is no access during the
wait-window, the disk is shut down.

4.1.2 Idle Period History and File Descriptors

The sliding wait-window may not be able to eliminate all
mispredictions caused by subpath aliasing. To further
reduce mispredictions due to subpath aliasing, we provide
PCAP with additional information about the context which
will help PCAP in distinguishing different paths. We
propose two sources of additional information: history of
idle periods and the file descriptor of an I/O operation.
These sources are orthogonal and can be implemented
together to further improve the accuracy of PCAP.

History-based prediction is drawn from the wealth of
optimizations proposed for branch predictors [48]. We
incorporate the history of idle periods in PCAP as follows:
Any idle period longer than the wait-window and shorter
than the breakeven time is recorded as 0 in the idle bit-vector.
Any period that is longer than the breakeven time is recorded
as 1. Intervals shorter than the wait-window are not included
since they are filtered at the runtime. The current path of PCs
and the history bit-vectors are maintained concurrently for
each running process and used together in training and
predicting. The shutdown is issued only if the current
path and the current idle bit-vector match a particular
entry in the prediction table.

Fig. 6 shows an example of prediction in PCAP using the
history of idle periods. As in Fig. 3, the leftmost column lists
the program counters that initiate I/O operations, the
middle column shows the time when an I/O operation
occurs, and the right column shows the prediction steps
undertaken by PCAP. We assume at the beginning of the
sequence of I/O operations, PCAP has been trained and the
prediction table is shown in the lower part of Fig. 6. The
3-bit per path history is initialized to [000]. Once the path
fPC1;PC2;PC1g is matched in the prediction table, the
corresponding history is looked up and the prediction

obtained. In this case, the history of [000] in the prediction
table predicts a long idle period [1] and the disk is shut
down. Once the long idle period is finished, the current
history is updated to [001]. With this history, the second
occurrence of the path fPC1;PC2;PC1g is predicted to be
followed by a short idle period [0]. This implies that the
path fPC1;PC2;PC1g is the subpath of some longer path,
i.e., a case of subpath aliasing, and the disk is not shut
down. At the end of the idle period, the history is updated
to [010]. In this simple example, idle period history
information helps PCAP in identifying subpath aliasing
and making the correct predictions.

Inclusion of file descriptors into the prediction table
entries is motivated by studies in [26], where the authors
use the address of the cache block to aid the predictor in
differentiating cache blocks that exhibit subpath aliasing. A
straightforward adoption would use the location of ac-
cessed files on the disk. However, inclusion of file locations
makes the prediction table size dependent on the
I/O footprint of the application and the table size can grow
substantially [26]. Moreover, an application can potentially
open different files in different executions, requiring the
predictor to retrain every time a new file is open. File
descriptors alone, on the other hand, show less variability
and provide related context because file descriptors are
often assigned based on some user behavior.

4.2 Reusing Prediction Tables

Path-based prediction requires extensive training to popu-
late the prediction table. To reduce the delay in training, we
propose reusing the prediction tables across multiple
executions of the same application. PCAP uses training
based on process ID; it associates the prediction table with a
particular application. Once the application exits, the
trained prediction table is saved in the application
initialization file, which most applications already have.
When the application starts again, the prediction table is
loaded by reading the initialization file.

The uniqueness of PCs allows the prediction table to be
carried across application executions. However,
PC addresses may change due to recompilation or dyna-
mically loadable modules. In this case, PCAP will retrain
based on the new code or the order of loaded modules.

4.3 Backup Predictor

There are two situations in which the energy consumption
of the disk cannot be saved by the PCAP technique
described so far. First, during training for a new path
signature, PCAP does not make a shutdown prediction and
the disk will remain spinning for the entire idle period.
Second, when PCAP predicts the disk will be busy
following an I/O when, in fact, the disk will be idle for a
period longer than the breakeven time, the disk again will
remain spinning. To reduce the impact of training and
misprediction on energy savings, when PCAP is unable to
match a signature or predicts not shutdown, the backup
timeout predictor shuts down the disk after the timer
expires. In both cases, the timeout predictor overrides the
no-idle prediction from PCAP and shuts down the disk.

4.4 Alternative Low Overhead Design

A major overhead of PCAP comes from obtaining the PCs
of the call instructions that trigger I/O operations. In the
default design, PCAP obtains the PC during each
I/O operation in order to produce a complete signature of
the execution path, although it only performs the table
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lookup upon the disk access after the buffer cache miss. An
alternative PCAP design which reduces the overhead of
obtaining PCs is to collect the PCs of the I/Os only upon
buffer cache misses. This approach also localizes changes to
the kernel since a single function call will perform
PC retrieval, signature calculation, prediction table update,
and the prediction lookup for the current I/O. In addition,
this implementation reduces the overhead of signature
calculation since a significant number of I/O requests are
performed in the buffer cache [6], [33] for which the PC is
not retrieved.

In this design, the PCAP overhead only occurs during
file cache misses and is overshadowed by the miss
processing overhead and disk access latencies. However,
since fewer PCs are collected, this design also leads to much
sparser paths of PCs. Sparser PC paths will result in a
higher likelihood of subpath aliasing and, therefore, the use
of file descriptor or history information may become
necessary. This additional information will complement
the reduced context to maintain a comparable prediction
accuracy as before. We evaluate the trade-offs in this low
overhead design in Section 6.5.3.

4.5 Summary

We summarize the various design optimizations and their
impact on the prediction accuracy and energy savings in
Table 1. In the following, we elaborate on these design
optimizations:

. Sliding-wait window is similar to the timeout
backup predictor in that it does not present any
implementation overhead. However, due to the
delay in shutting down the disk, a small amount of
energy consumption will be present even with a
perfect prediction. In real workloads, perfect predic-
tion is not possible and sliding-wait window offers a
significant reduction in mispredictions and, conse-
quently, a reduction in energy due to reduced
unnecessary shutdowns and spin-ups. Overall, slid-
ing-wait window improves the prediction accuracy
and energy savings.

. Idle period history is effective in reducing the
subpath aliasing. The history records the path and

can differentiate between the current path being a
subpart of a longer path or the longer path itself. The
history, however, increases the storage overhead for
each path since each path can have multiple
outcomes based on the history. Furthermore, the
training period is increased as PCAP is trained for
each combination of a path and each of its associated
histories even if the outcomes of different histories
are the same. This optimization is justified in cases
where limited information can result in sparse paths
and significant subpath aliasing, as discussed in
Section 4.4.

. File descriptors are similar to the idle history above
in terms of the storage overhead. However, each
path has a finite number of histories, while each
PC path can access an unbounded number of files,
making storage requirements unbounded. This can
impact the memory footprint of the predictor in the
implementation. Using a fixed size table to limit the
number of entries trained, which is necessary in a
real implementation, may limit PCAP’s ability to
make predictions. Furthermore, any accesses to new
files will require retraining, resulting in reduced
opportunities for making predictions.

. Table reuse is necessary for advanced predictors
such as PCAP and LT. The prediction table is saved
when an application exits. The cost of saving the
prediction table and loading it for future executions
is low as long as the table size is small.

. Timeout backup is effective since it provides an
opportunity to save energy during the training
period of the main predictor. There is little overhead
associated with the implementation and the longer
timeout period associated with the backup predictor
does not impact the accuracy of the main predictor.
Therefore, this optimization should be used in
advanced predictors that require training to predict
idle periods such as PCAP and LT.

From the above discussion, we conclude that timeout

backup, sliding-wait window, and table reuse should be

included in the base PCAP design. The other two
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optimizations, using idle period history and file descrip-
tors, involve design trade-offs which need to be carefully
examined. We evaluate these two optimizations in our
trace-based simulations in Section 6.

5 GLOBAL PREDICTION

So far, we have discussed PCAP implementation and
optimization on a per-application basis. In real systems,
many processes are running concurrently and some of them
may be from a single application. A system-wide prediction
is needed that will take into account multiple processes
running concurrently. Fig. 7 presents the Global Shutdown
Predictor that generates shutdown predictions by consider-
ing the input from all processes. Each process has its own
private PCAP which generates local predictions as shown in
Fig. 4. The Global Shutdown Predictor predicts shutdown
only when the PCAP for every process in the system
predicts shutdown.

PCAP for each process generates prediction only after an
I/O operation. Once a prediction to shut down the disk is
generated, it remains unchanged until the process performs
an I/O operation that wakes up the disk. The design of the
predictors guarantees that the shutdown prediction will be
made for each idle period either by the primary predictor
right before the idle period starts or by the backup timeout
predictor after the timer expires. If PCAP is in training, the
backup timeout predictor will make the prediction for that
process. For example, assume that PCAPs from all processes
in Fig. 7 predict shutdown and the disk is turned off. At some
later time, Process 2 performs some I/O operation that
wakes up the disk and its PCAP predicts the shutdown
right after the access. Since other processes do not change
their state, all predictions remain the same and the disk is
shut down after Process 2’s PCAP makes the prediction.
We can observe that PCAP from the currently running
process will make the last prediction and no synchroniza-
tion is necessary between the waiting processes.

6 EXPERIMENTAL RESULTS

In this section and the next, we evaluate the performance of
PCAP. This section presents a simulation study and the next
section presents an implementation study.

6.1 Experimental Setup

To evaluate the performance of PCAP and compare it to
previously proposed predictors, we used a trace simu-
lator. A detailed trace of the applications was obtained by
modifying the strace Linux utility. The modified
strace reads a traced process’s memory and allows us
to obtain the following information about the I/O
operation: PC, access type, time, file descriptor, and file
location on disk. In addition, we also included the time of
forks and exits of the processes within the parent

application. Each application was traced separately, creat-
ing an independent trace for each application.

Table 2 shows six applications used by a user during a
seven-day trace collection period. Mozilla is a Web browser
and the user spends time reading the page content and
following the links. The I/O behavior depends on the
content of the page and the interests of the user. Xemacs and
nedit are editors used by the user who spends most of the
time thinking and typing. Xemacs is primarily used to create
larger files and edit multiple files, while nedit is primarily
used to quickly open correct/modify source code during
compilation or bug fixes. Nedit does not show repetitive
behavior since, once a file is modified, it is saved and nedit
is closed. Nedit is the only application with a single process.
Writer is a word processor from the Open Office suite [37]
and the user mostly composes the text and also does some
quick fixes after proofreading. Impress is also an Open
Office application and is used to prepare presentation
slides. Mplayer is a media player and the user usually
watches a media clip and then exits the player.

Table 2 also lists how many times each application was
executed and the total number of idle periods that were
long enough to save energy by performing a shutdown. The
local number of idle periods is the sum of idle periods that
each process from the application encountered. The global
number shows the idle periods observed by an application
as a whole, i.e., the number of periods when all processes
observed idle I/Os. Therefore, the global number is much
smaller than the sum of local numbers except nedit.

The trace simulator simulates the multiprocess environ-
ment. It simulates different idle period predictors and
collects execution statistics for each process, as well as for
the entire application.

To take into account the effects of disk caching in an
operating system, we implemented a file cache simulator.
The simulator models the implementation of the file cache
in Linux and the collected traces of I/O operations are
filtered through our file cache and only cache misses are
treated as actual disk accesses. The file cache size is
128 MBytes. The LRU policy is used for cache replacement
and the extended timer of 10 minutes is used between cache
flushes of dirty blocks. Since the studied applications did
not generate a large amount of blocks, the impact of dirty
data flushes was limited. The elongation of default timer
and optimizations of dirty data flushes are currently being
evaluated in the Linux community [28]. These optimiza-
tions will further benefit the power management.

Energy consumption and savings are calculated based on
the amount of time the applications spend in a particular
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state and the corresponding power consumption are listed
in Table 3. These parameters correspond to a 20 GB Hitachi
Travelstar IC25N020ATCS05 disk drive [29].

We start by evaluating the ability of various predictors to
predict shutdowns in Sections 6.2 and 6.3. In Section 6.4, we
evaluate energy savings of various predictors. In Section 6.5,
we compare the effectiveness of different optimizations of
PCAP for reducing mispredictions and training time.

6.2 Local Prediction Accuracy

In this section, we compare the accuracy and the ability of
various predictors to predict hard disk shutdowns. In Fig. 8,
we compare the timeout predictor (TP), the Learning Tree
(LT) predictor, and PCAP. TP uses a 14-second timer and
after the timer expires it shuts down the disk. The 14-second
interval is chosen because it results in the lowest mis-
predictions and the best energy savings in our applications.
Lower timer values would increase the number of mis-
predictions significantly and much longer timeout would
reduce the energy savings considerably. The 14-second
interval is also used for the backup timeout predictors in
PCAP and LT. LT is able to manage multiple power states,
but, in our study, LT manages only two states: on and off.
The backup timeout predictor and the sliding wait-window
mechanism are included in both LT and PCAP, allowing a
direct comparison. We used one-second wait-window since
it filters mispredictions in most common cases.

Fig. 8 presents the fractions of shutdowns normalized to
the number of idle periods that are long enough for a
shutdown to benefit energy management. The fraction of
“Hit” represents the fraction of idle periods with correctly
predicted shutdowns. The “Not Predicted” fraction repre-
sents missed opportunities to shut the disk down. The
fraction of “Miss” corresponds to the additional shutdowns
that were introduced due to misprediction. These additional

shutdowns occurred during the idle periods that were
shorter than the breakeven time and, therefore, are not
part of the idle periods shown in Table 2. However, we
normalized the number of mispredictions to the number of
idle periods for direct comparison in the figures in this
section. It is preferred that we have a 100 percent black bar
without any white or gray bars to indicate 100 percent
accurate predictions. TP has the lowest coverage, 51 percent
on average, and, as a result, it has the lowest number of
mispredictions, 4 percent on average. Here, the coverage is
defined as correctly predicted shutdowns as a percentage of
all such opportunities. Mozilla, writer, and impress have
multiple processes with short idle intervals. Mozilla is the
most difficult to predict since it has many short intervals
that result from the user following the links on the Web
pages. The remaining applications usually have longer idle
periods and TP performs better.

The wait-window makes the number of mispredictions
in LT rather low for the dynamic predictor, which averages
12 percent across the applications. LT is able to correctly
predict 88 percent of local shutdowns. To maximize energy
savings and minimize mispredictions, we used a history
length of eight in LT. Using a longer history does not
improve accuracy. Using a shorter history results in more
hits, but misprediction also increases.

PCAP achieves the highest average coverage by correctly
predicting 89 percent of the local shutdown intervals. PCAP
has slightly lower coverage in nedit and mplayer than LT, as
it requires one more idle period to learn in nedit and two
more in mplayer. This is because PCAP requires more
training than the predictors that do not observe the
application context. PCAP also improves the prediction
accuracy, compared to LT, with only 6 percent mispredicted
shutdowns. Compared to TP, PCAP has 38 percent higher
coverage and only 2 percent more mispredictions. The
mispredictions in PCAP can be significantly reduced by
providing more context, as shown in Section 6.5.

6.3 Global Prediction Accuracy

The final shutdown prediction is made by the global
predictor; it makes predictions based on the collection of
local predictions. In the remaining sections, we will only
present global prediction results.

Fig. 9 shows the final prediction results made by the
Global Shutdown Predictor. Results were normalized to the
number of global idle periods since only during those
periods should the predictors attempt to shut down the
disk. All applications except nedit involve multiple pro-
cesses. As a result, only nedit has the same results as in
Fig. 8. Fig. 9 follows the trends of Fig. 8 except for the
following differences: First, TP achieves a much higher
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percentage of hits than in Fig. 8. This can be explained by
the lower number of global idle periods that the predictions
are normalized against, as shown in Table 2. Second, LT
and PCAP achieve a lower percentage of hits than in Fig. 8.
This is caused by mixed TP (backup) and LT or PCAP as
local predictors. TP requires a much larger timeout period
(14 seconds) before predicting a shutdown, while LT and
PCAP can make predictions immediately. Therefore, if any
local predictor is using TP, the global prediction has to wait
for 14 seconds before predicting a shutdown. In other
words, the global predictor is coerced by the backup
TP predictor into delaying making predictions. Third, all
three predictors achieve a higher percentage of mispredic-
tions. This is because the global predictor predicts shut-
down only when all local predictors predict shutdown.
Thus, if one local predictor mispredicts shutdown while
other local predictors correctly predict shutdown, the global
predictor mispredicts.

Global TP is able to shut down the disk in 73 percent of idle
periods, on average, while incurring only 11 percent of
mispredicted shutdowns. Global LT is more aggressive, with
an average of 87 percent correct shutdowns, but also incurs an
average of 22 percent mispredicted shutdowns. Global PCAP
again predicts more accurately than global LT, correctly
shutting down the disk during 88 percent of the idle periods,
on average, while incurring only 12 percent of mispredicted
shutdowns. The relative performance of the predictors across
the applications remain unchanged from Fig. 8.

6.4 Energy Savings

In this section, we present a breakdown of the disk
I/O operations and the ability of TP, LT, and PCAP to
reduce energy consumption. Fig. 10 shows the energy
consumption profile of each application. The energy
consumed by each application was divided into three
components: “busy I/O,” “idle < breakeven,” and “idle >
breakeven.” In addition, we include the “Power Cycle”
fraction in the predictor results, which is the energy
consumed during the shutdown and spin-up cycle for both
correctly and incorrectly predicted shutdowns. The “idle >
breakeven” energy component is the energy consumed
during the periods that are long enough to shut down the
disk and save the energy.

We observe that the base system spends most of its
execution in the idle I/O state. On average, 84 percent of
energy is consumed during the idle I/O state and 82 percent
of energy is from the intervals longer than the breakeven
time. The exception is mplayer, which requires a continuous
stream of video and, therefore, has limited idle time.
Mplayer loads the movie into its own memory buffer and
maintains the buffer full until the movie ends. At this time,

the I/O activity stops and the movie finishes playing from
the buffer. The idle energy in Fig. 10 corresponds to the
amount of time it took to empty the 8MB buffer at the end of
the movie. The idle time in the other applications depends
on the user interactions. Mozilla loads libraries and saves
temporary information every time a user opens a new Web
page. Therefore, the idle time is dependent on the surfing
habits of the user and the page content. The two editors,
xemacs and nedit, show similar behavior since users spend
more time typing and thinking than opening new files.
Writer and impress are basically editors, but word proces-
sing and presentation preparation require additional
libraries, such as dictionaries or graphic filters, which
require more I/O time.

The ideal predictor in Fig. 10 saves all energy that comes
from the idle periods that are longer than breakeven time. The
energy required to turn the disk off and on is present since
even the ideal predictor consumes energy during the correct
shutdown and spin-up of the disk. As a result, the ideal
predictor eliminates, on average, 78 percent of disk energy
consumption during the execution of the applications.

TP performs well, saving, on average, 70 percent of
energy in the applications, which is 8 percent away from
that by the ideal predictor. Based on the analysis of [25], we
can obtain two-competitive energy management, i.e., under
which the total energy is at most twice that under a perfect
energy manager, by setting the timeout value to the
breakeven time. In this case, TP with a timeout of
5.11 seconds eliminates, on average, 71 percent of energy;
however, the global mispredictions increase to 12 percent
(from 11 percent) as a result of the shorter timeout.

LT is more aggressive in making predictions and saves,
on average, 73 percent of energy. PCAP predictor saves, on
average, 74 percent of energy, which is only 4 percent from
the maximum savings possible with much lower mispre-
dictions than LT. Misprediction rates play a very significant
role in selecting the right predictor. Unnecessary shut-
downs not only consume energy but can also irritate the
user who has to wait for the disk to spin up.

Timeout helps LT and PCAP as a backup during training
intervals. A longer timeout has an adverse effect on the
energy savings in TP since TP has to wait for the timer to
expire for every interval. Moreover, the energy saving-
misprediction trade-off varies among applications for TP,
making it even more difficult to select a value that will
benefit a wide range of applications. However, LT and
PCAP energy savings are only slightly affected by the
timeout value since most predictions are handled by their
primary predictors.

6.5 Optimizations

In this section, we first evaluate the benefits of additional
context provided by idle period history and file descriptor.
We then evaluate the importance of prediction table reuse.

6.5.1 Idle Period History and File Descriptors

The prediction accuracy is improved by providing the
predictor with additional information about the context of
execution. Fig. 11 compares the base version of PCAP from
Fig. 9 to the base version with the addition of idle period
history (PCAPh), file descriptor (PCAPf), and a combina-
tion of history and file descriptor (PCAPfh). Fig. 11
presents the results for the global predictors. Each
misprediction and hit portion of the bar was split into
two sections to show the contribution from the primary
and backup predictors. Since there were multiple processes
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running and making predictions concurrently, we decided
to attribute the final global prediction to the predictor type
(primary or backup) making the last decision before the
shutdown. For example, if all processes predicted shut-
down and one process is waiting for the timer to expire, this
shutdown is attributed to the backup timeout predictor.

PCAP is the best performer in Fig. 9, achieving a high
coverage of 88 percent at a relatively low cost of only
12 percent mispredicted shutdowns. By augmenting
PC paths with the history of idle periods, we further
pinpoint the location of the I/O instructions within the
execution flow of the application. We have used a history
length of six periods, which maximizes energy savings and
minimizes the number of mispredictions. Longer history
does not reduce mispredictions any further. Addition of
history increases the training duration in PCAP, requiring
the backup predictor to make more predictions. On average,
the hit rate decreases to 86 percent, but the additional
context provided by history reduces the mispredictions
from an average of 12 percent to an average of 6 percent. As
a result, PCAPh achieves higher coverage and fewer
mispredictions than both TP and LT, as shown in Fig. 11.
The impact of using history on energy savings is limited
and results in well under 1 percent average change. As a
result, PCAPh is still able to save 74 percent of energy at a
cost of only 6 percent mispredicted shutdowns.

Mozilla is the most difficult to predict; however, PCAPh
manages to reduce the misprediction rate to 13 percent as
compared to 30 percent in PCAP. Thus, the additional
complexity that history introduces is well justified in case of
mozilla. The resulting total of 49 mispredicted shutdowns in
49 executions of mozilla should be mostly unnoticeable and
should not irritate the user. Other applications have lower
misprediction rates than mozilla and already perform well
with PCAP, but are seeing 1 to 6 percent additional reduction
in mispredictions.

The addition of file descriptors to the path of PCs
(PCAPf) also improves PCAP’s accuracy of prediction. But,
since a file descriptor may be reused by multiple files, the
accuracy is not as good as in PCAPh, though still better than
in PCAP. PCAPf achieves an average coverage of 87 percent
with an average of 9 percent mispredicted shutdowns. The
combined use of history and file descriptors is shown as
PCAPfh in Fig. 11. The resulting average coverage is
86 percent with an average of 5 percent mispredicted
shutdown. The energy saving in PCAPf and PCAPfh is also
the same as in PCAP. On average, the mispredictions and
energy savings did not change noticeably after adding file
descriptors to the PCAPh. Only mozilla shows higher
reductions in misses; thus adding file descriptor to PCAPh
may be justified only for some workloads.

6.5.2 Reuse and Storage Requirement of Prediction

Tables

More advanced predictors demand extended training
which may not be provided during a single execution of
the application. Fig. 12 compares PCAP and LT from Fig. 9
against PCAPa and LTa, which discard prediction tables
after an application exits. Since PCAPa and LTa discard
predictor information, they have to relearn predictions
every time the application is executed. Training consumes a
significant number of idle periods during which the backup
predictor is responsible for making shutdown predictions to
save energy.

The primary predictor (PCAP) with prediction table
reuse is responsible for 71 percent of correct predictions,
while the backup predictor provides an additional 16 per-
cent of correct predictions, on average. Many studied
applications do not have enough repetitive behavior to
train the predictor and use its full potential during one
execution. As a result, by discarding the trained prediction
table, the primary predictor in PCAPa is responsible for
only 15 percent of correct predictions, while the backup
predictor provides 61 percent of correct predictions, on
average. Similar behavior is observed in LT, where the
primary predictor predicts 67 percent of hits and the
backup predictor predicts 20 percent, on average. In LTa,
on the other hand, the primary predictor only predicts
28 percent and the backup predictor 52 percent of hits, on
average. We can also observe that mispredictions generally
decrease in PCAPa since the primary predictors are making
fewer predictions. The exceptions are writer and impress,
where the backup predictor makes a significant amount of
wrong predictions.

Fig. 13 and Fig. 14 show the prediction accuracy of LT
and PCAP over consecutive executions of the applications.
For clarity, only the results for three applications are shown.
As can be seen, the prediction accuracy of PCAP gradually
improves as more information is captured and stored in the
prediction table. In contrast, the prediction accuracy of LT
does not show significant improvement over multiple
invocations. Interestingly, although the prediction accuracy
of PCAP improves quickly, it does not converge to
100 percent. This is because the user behavior changes over
time and there is a limit to the accuracy of any predictions
based on the user’s past behavior.

The higher energy savings is closely related to the
prediction coverage of the primary predictor. Without
prediction table reuse (PCAPa and LTa), most of the
predictions are made by the backup timeout predictor;
therefore, the overall energy savings are comparable to the
simple TP. Thus, to achieve better energy savings than TP, it
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is important to perform application-based predictions.
Implementation of sophisticated predictors without predic-
tion table reuse does not provide significant gains to justify
the complexity of the predictors.

Implementation of prediction table reuse saves the
prediction table upon the application exit and reloads it
when the new instance of the application starts executing.
Table 4 shows the amount of information that is saved for
each application. Each entry is encoded into a 4-byte word;
therefore, even in the case of mozilla, which requires storing
139 entries in PCAPfh, the table consumes only 556 bytes.
Other applications and predictors require even less storage
and, therefore, the storage is not a problem in our
experiments.

6.5.3 Low-Overhead Implementation

Fig. 15 shows the impact of low overhead design described
in Section 4.4, which obtains the PCs only upon buffer cache
misses. The experiment configuration is identical to the one
in Fig. 11 except all predictors obtain PCs for the path
during buffer cache misses. In this scenario, the PC is
obtained much less frequently, resulting in a sparser path.
A sparse path provides less information about the context
and PCAP’s mispredictions in mozilla and impress increased
from 30 percent and 12 percent to 42 percent and 28 percent,
respectively. Other applications are less affected, implying
that the reduced information about the context of execution
still provides enough information for correct prediction.

The average number of mispredictions across the applica-
tions under PCAP increased from 12 percent to 16 percent.
The number of correct shutdowns did not change and, as a
result, the energy savings were mostly unaffected. How-
ever, higher mispredictions are not desirable and we apply
techniques studied in Fig. 11 to reduce the number of
mispredictions.

PCAPh shows similar impact as in Fig. 11, reducing the
mispredictions in mozilla and impress to 21 percent and
7 percent, respectively. On average, PCAPh reduced the
mispredictions to 8 percent across the applications, which is
2 percent higher than PCAPh in Fig. 11, which records the
entire path. The average fraction of correctly predicted idle
periods decreases to 86 percent, but no noticeable impact on
energy savings is observed. PCAPf, which uses file
descriptor, correctly predicts, on average, 87 percent idle
periods with an average of 9 percent mispredictions. The
combination of file descriptors and history in PCAPfh
resulted in virtually identical behavior to PCAPfh in Fig. 11,
which records all PCs. We thus conclude that adding file
descriptors in addition to idle periods is unnecessary.

A reduction in the number of PC retrievals reduces the
overhead in PCAP. The average hit ratio in the studied
applications is 65 percent and, thus, this optimization will
reduce the overhead of PC lookups by 65 percent.
Furthermore, low mispredictions are still successfully
achieved for most applications by including the idle period
history in addition to the PC path. However, for mozilla,
PCAPh with sparse paths increases mispredictions to
21 percent from 13 percent in PCAPh with full paths. Since
a high number of mispredictions can affect the user
experience, we use PCAPh with full paths in our Linux
implementation study in the next section.
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Fig. 14. Prediction table reuse over time for PCAP.
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6.6 Simulation Summary

We summarize the various simulation results and highlight
the benefits of the predictors and optimizations. We have
observed that PCAP is much more accurate than LT while
providing higher coverage and energy savings. Both
predictors use sophisticated prediction techniques that
require extensive training. Therefore, both predictors
benefit from table reuse and the backup timeout predictor.
We have observed that the small increase in storage
required for history information in PCAP can significantly
benefit some applications by reducing the number of
mispredictions. Inclusion of file descriptors has a similar
effect; however, significant storage requirements combined
with limited improvement in prediction accuracy do not
justify the implementation in real systems. Finally, we have
shown that limiting the retrieval of PCs only during the
buffer cache misses provides an alternative design, how-
ever, at a significant cost in accuracy for some applications.

From the above discussion, we conclude that the best
performing implementation of PCAP in a real system
should contain timeout backup, sliding-wait window, and
table reuse, idle period history, and complete PC paths. File
descriptors require high memory overhead therefore put
pressure on resource allocation in the system, potentially
limiting the available memory for buffer caching resulting
in higher cache misses.

7 IMPLEMENTATION IN LINUX

In this section, we evaluate the performance of TP, LT, and
PCAP running under Linux on a laptop computer. The
timeout interval used in TP is set to 14 seconds. Both LT and
PCAP use the sliding wait-window, table reuse, and backup
timeout predictor optimizations, with the same 14-second
interval for the timeout predictor as in TP. PCAP also
includes the idle period history optimization to further
reduce mispredictions. We first describe the implementa-
tion details of the predictors. We then present the energy
savings and the energy-delay product which show PCAP as
the best performer.

7.1 Implementation Details

PCAP has been implemented in Linux kernel version 2.4.20-
30.9. The implementation presents three challenges: determi-
nation of the application program counter, integration of
PCAP mechanisms into the unified buffer cache, and
implementation of a global power manager to monitor
predictions from all processes and schedule disk shutdowns.

7.1.1 Obtaining PCs of I/O Operations

There are multiple ways to obtain the PCs: library
modification, system call interception, and kernel modifica-
tion. In the first method, the modified library call can read
the PC directly from the calling program’s stack, therefore
requiring the least amount of overhead. In the second
method, interception of system calls happens at the user-
kernel boundary, at which time the I/O library call may
have invoked multiple levels of wrapper functions before
finally invoking the system call. A time-consuming traver-
sal of multiple library function stack frames may be
necessary to retrieve the application’s stack frame that
invoked the library call. Finally, kernel modification is
similar to system call interception, also requiring multiple
stack frame traversals.

Library modification offers good performance, but
requires extensive modifications to both the library code

and kernel interfaces. To simplify the implementation, the
kernel-only modification to obtain the PCs was selected. To
determine the relevant PCs from within the kernel, we
modified theread andwrite system calls. Upon each access
to these calls, PCAP traverses the call stack to determine the
relevant PCs. In our current implementation, this step is time-
consuming for the following two reasons: First, multiple
levels of stacks have to be traversed to determine the
“signature PC.” Second, each traversal involves repeatedly
accessing user space from the kernel space. These user space
accesses are expensive as they involve detailed checks to
ensure proper access permissions, translation of user space
addresses to kernel space, and, finally, copying data from
user to kernel memory. In a production-quality imple-
mentation, the cost of PC determination can be reduced
by reducing the number of times PCAP accesses the user
space from the kernel space during stack traversals.

7.1.2 Interactions with the Buffer Cache

The buffer cache increases system performance by caching
recently used files in memory. As a result, some of the
I/O requests are served by the buffer cache without
invoking actual disk I/Os. To accurately capture the path
of I/O requests in the applications, PCAP monitors all
I/O requests before they are filtered by the buffer cache. For
every I/O operation, the signature PC is retrieved and the
path so far is recorded in the process table. If the I/O request
is a hit in the buffer cache, it is serviced by the cache
without any further involvement of PCAP. When a cache
miss and, consequently, an actual I/O occurs, PCAP
performs a lookup in the prediction table. If the path is
found in the process table, the prediction is made and
communicated to the global predictor. The prediction table
is updated with the new path only if the current miss is the
first one after a long idle period.

The implementation of the unified buffer cache in the
Linux kernel involves two separate cache structures—a
page cache and a buffer cache. All file I/O operations to
block devices go through the page cache which consists of
pages, each storing several blocks of a file. Explicit block
I/O operations also go through the buffer cache, which
consists of buffers, each storing a single disk block. Thus,
the blocks cached in the buffer cache are shared by the page
cache and the sharing is implemented by the two caches
actually storing references to the cached blocks. The two
caches maintain separate meta-data, such as recency of
accesses, but, because of the sharing of cached blocks, the
management of the two caches is intertwined. For example,
an access to a page entry in the page cache due to explicit
I/O operations requires the corresponding block recency
information to be updated in the block cache. Conversely, if
a block entry in the buffer cache is accessed directly, e.g., by
the flushing daemon, its access information also needs to be
updated in the page cache. Modifying the cache manage-
ment to support PCAP requires detailed examination of the
cache management code to determine the appropriate
location where PCAP can be integrated. Since all accesses to
regular files (i.e., files that are not memory-mapped) are
through two kernel functions, generic_file_read and
generic_file_write, we modified these functions to call
our predictor. However, at this point in the kernel, the data
may be in the cache. Therefore, we also call our predictor if
there is a cache miss. In summary, the predictor is informed of
all I/O requests and of all cache misses, but only makes a
prediction on a cache miss. A new state variable is also
introduced in the process table to indicate the current
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prediction of a process. This prediction is then relayed on to
the global predictor, as described in the next section.

The buffer cache also contains dirty data that needs to be
flushed to the disk periodically. In the Linux operating
system, this flushing is performed by a specialized daemon,
BdFlush. By default, BdFlush flushes the data at a
periodic interval of 30 seconds. The periodic flushing poses
a challenge to saving energy as the disk will be spun-up by
the BdFlush daemon even if the predictor has accurately
predicted an idle period based on the application behavior.
To reduce the interference between the disk accesses by
BdFlush and shutdowns issued by PCAP, we increase the
flushing interval to 10 minutes, based on a recent proposal
in the Linux community [28] that suggests that extending
the flushing interval to a few minutes can provide much
higher energy savings with little impact on data integrity.
For the applications we studied, 60 percent of the idle
periods that are longer than the breakeven time are shorter
than 3 minutes and 85 percent are shorter than 6 minutes.
Thus, flushing of dirty data happens less frequently than
most of the shutdowns. When the 10-minute flushing
interval happens during a disk shutdown, BdFlush spins
up the disk, performs the flush, and then immediately shuts
down the disk as the global predictor still predicts the
shutdown state.

7.1.3 Global Power Manager

The global predictor, Global Power Manager (GPM), is
implemented as a kernel thread, pcap, which listens to
predictions from individual processes. The communication
between the processes is via two signals: idle and busy.
An idle signal means that the process locally predicted
shutdown and a busy signal means not shutdown. On
receiving a signal from a process, GPM determines when to
shut down the disk. The global shutdown determination is
achieved as follows:

The main task of the GPM is to determine if all the
processes are predicting shutdown. For each process that
requires not shutting down, the GPM maintains a data
structure which records the PID of the process and a time (Te)
before which the GPM expects the process to be not idle. Te is
calculated by adding the prespecified timeout (14 seconds) to
the time when a busy signal is received. The data structure is
kept sorted in order of decreasing Te values. On receiving a
busy signal, the GPM either creates a new entry for the
process that sends the signal or updates the associated Te
value in the existing entry. The GPM will then sleep till the
time is equal to the maximum value of Te, i.e., Temax , unless a
new signal arrives. If the GPM is able to complete its sleep
uninterrupted, GPM removes all the entries as all of them
have expired Te values and the backup timeout predictor
shuts down the disk as discussed in Section 4.3.

On receiving an idle signal from a process P, the GPM
performs the following sequence: First, it determines if P
has an associated Te entry. If an entry exists, it is removed.
Next, the GPM determines the current Temax until a shut-
down cannot be issued as other processes are expected to be
busy. Note that if P was the process associated with the
previous Temax and, hence, just had its entry removed, the
new Temax will be the next largest value. The GPM then
compares the value of Temax with the current time. If the
current time is after Temax , it implies no process is expected
to be busy and a shutdown is issued. If the Temax is in the
future, GPM simply sleeps till then. The whole process
repeats when new signals are received.

As processes may exit without making a shutdown
prediction, their associated data structure entries will
persist and can cause a problem. To avoid this, on each
busy prediction, the GPM examines the data structure and
removes those whose Te is less than the current time. In this
way, extraneous entries will be pruned instead of consum-
ing kernel resources.

Note that timeout filtering is also employed, i.e., even
when a global shutdown is scheduled, GPM waits for the
1-second sliding wait-window before actually shutting the
disk down. The shutdown of the disk is achieved via
mechanisms similar to those of the ioctl interface for
changing the disk state. No special step is needed to wake
up the disk as that would happen automatically when the
application accesses the disk. Moreover, before a shutdown
is issued, the associated dirty blocks of the disk are flushed
to reduce the likelihood of a later disk spin-up by the
Bdflush daemon.

7.2 Results

7.2.1 Experimental Setup

The experiments were conducted using a setup of two Dell
Inspiron Laptops with 1.5Ghz Intel Celeron Processor and
256MB of Memory, as shown in Fig. 16. The hard disk was
connected via a PCMCIA measurement card to one of the
laptops running Linux as described in Section 7.1. This drive
is dedicated to the applications, i.e., the OS resides on the
internal disk of the laptop. The data acquisition card (DAQ)
was connected to the other laptop running Windows XP and
the DAQ drivers. To measure the power consumed, a
0.1 ohms resistor was placed in series with the hard disk
power supply and the voltage drop across this resistor was
fed to DAQ. On the Windows machine, a LabView setup
was programmed to sample the current measurements at
100Hz from DAQ and store it in a file.

A main issue in conducting the experiments was to
subject the various energy saving techniques to the same
benchmark executions so that the energy consumptions are
comparable. To address this issue, we collected disk access
traces of all the benchmarks similar to the trace of
Section 6.1. Then, we designed a trace driver that takes as
input a benchmark trace and replays the disk accesses
exactly as they were issued by the benchmark. Hence, the
trace driver emulates the benchmark executions in terms of
disk accesses in real time.
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Fig. 16. The experimental setup used for measuring power. A data

acquisition card is connected to the laptop on the left running Windows

XP and the DAQ drivers and a 2.5-inch hard drive is connected to the

laptop on the right running Linux.



To calculate the energy, the data from DAQ was
postprocessed. Since the voltage across the hard disk
supply was found to be a constant of 5 Volts, the actual
measured quantity, i.e., the current, was multiplied by 5 to
obtain the instantaneous power. Finally, the energy con-
sumption was determined using the Trapezium rule to
estimate the area under the power curve, over the duration
of the benchmark run.

7.2.2 Energy Savings

Fig. 17 shows the measured power for mozilla over a
selected period of 300 seconds under four different
scenarios: when no energy saving scheme was used
(always-on) and when the timeout, Learning Tree, and
PCAP schemes were employed. When no energy saving
scheme was used, the disk remained switched on even
when no accesses were made over long periods, e.g., before

595 seconds, 660 to 730 seconds, 750 to 790 seconds, and
after 820 seconds.

For the simple timeout scheme, the disk is shut down for
intervals longer than the timeout period, as can be seen in
the timeout graph of Fig. 17. The figure separates the
regions of busy, idle, and standby. During 550 and
592 seconds, the disk is in the low-power standby state.
During 592 and 602 seconds, it is switching to the busy
state. The disk serves requests during 592 and 628 seconds
and is idle between 628 and 637 seconds. Because this idle
period is shorter than the timeout, the disk does not enter
the standby state. The disk becomes busy again during 637
and 669 seconds. It is idle between 669 and 680 seconds.
This idle period is longer than the timeout value, so the disk
enters the standby state at 680 seconds and remains in the
standby state until 732 seconds.

Compared to the simple timeout scheme, the Learning
Tree scheme was able to shut down the disk quickly by
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predicting idle periods. It also performed better by switch-
ing the disk off at 630 seconds, which was not detected by
the timeout scheme, and improved the energy savings by
shutting the disk down earlier, at 755 seconds instead of
14 seconds later at 769 seconds. However, at 735 seconds,
Learning Tree mispredicted and shut down the disk, which
was spun-up again by an access 7 seconds later. The PCAP
graph shows that it performed largely similarly to the
Learning Tree. However, it made fewer mispredictions.
Notice that the disk was not shut down at time equal to
735 seconds as was the case for Learning Tree.

Table 5 shows the energy consumed during the execu-
tion of each application. All shutdown mechanisms save
significant energy as compared to the base system in which
the disk is never spun down. TP saves, on average,
47 percent of energy, LT is more agressive and increases
the average energy savings to 51 percent. Fewer mispredic-
tions in PCAP as compared to LT increase the average
energy savings to 52 percent. The trends from the
simulation result (Fig. 10) are present in Table 5. However,
the energy saving numbers in the implementation also
include the energy consumption due to kernel activities not
related to the application.

For all benchmarks, the prediction techniques resulted in
less than 3 percent increase in execution time. Some of the
delays are present at the end of the application when the
data is written to the disk and may not be noticeable by the
user. Nevertheless, we include all delays in calculating the
energy-delay product. The energy-delay product is the
product of the execution time and disk energy consumption
during the execution of the traces. Fig. 18 shows the energy-
delay products of LT and PCAP normalized to that of TP.
The figure shows that the overall impact of energy saving is
beneficial for both techniques. Specifically, LT and PCAP
have, on average, 8 percent and 10 percent, respectively,
lower energy-delay product than that of TP.

Previously, Fig. 9 showed that both LT and PCAP have
more shutdowns than TP. Every shutdown, either correctly
predicted or mispredicted, requires a disk spin-up and,
therefore, introduces a delay in program execution. Mis-
predicted shutdowns result in a double penalty on the
energy-delay product since each mispredicted shutdown
increases both the delay and the energy consumption.
Fig. 18 shows that PCAP gives the best energy savings and
lowest energy-delay product due to its ability to quickly
and accurately predict the majority of the idle periods.

7.2.3 The Overhead of Obtaining PCs

To measure the overhead of obtaining PCs, we used a micro
benchmark that repeatedly reads the same block of a file,
which results in hits in the buffer cache. The time to service
a hit in the buffer cache in the standard kernel is
3.3 microseconds. PCAP has to obtain the PC of the
I/O operation, which took, on average, 3.2 microseconds.
The total 6.5 microsecond overhead with the current simple
implementation of PCAP is promising. These applications
are not I/O intensive and, thus, the retrieval of PCs has
limited impact on the overall execution time. Compared to
LT, the extra overhead of obtaining PCs in PCAP is offset by
its lower mispredictions, as shown in Section 6.3, which
result in fewer mispredicted shutdowns and, thus, lower
the delay on the execution time, As a result, the overall
impact on the execution time for the two mechanisms are
comparable, while PCAP achieves higher energy savings
and consequently lower energy-delay product.

8 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed the Program Counter Access
Predictor, which dynamically learns the access patterns of
the applications and predicts when the I/O device can be
shut down in order to save energy. By using path-based
correlation to observe access patterns, PCAP predicts future
occurrences of long idle periods with high accuracy. We
presented a detailed simulation study which showed that
PCAP reduces the average mispredictions to 6 percent,
which is lower than that of the timeout predictor (11 per-
cent) and much lower than the mispredictions of Learning
Tree (22 percent). We also showed the need for prediction
table reuse to offset the delay of training (thus making
predictions) in predictors more sophisticated than the
timeout predictor. Our simulation results showed that table
reuse reduces the training time and increases the prediction
coverage of the primary predictors from, on average,
15 percent to 71 percent in PCAP and 28 percent to
67 percent in LT. Implemenation results showed that, while
TP and LT save, on average, 47 percent and 51 percent of
disk energy, respectively, PCAP is able to save, on average,
52 percent of disk energy. The reduction of energy-delay
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TABLE 5
The Energy (in Joules) Consumed during the Execution of Various Benchmarks with No Power Saving Scheme, and with the Fixed

Timeout, Learning Tree, and PCAP Shutdown Predictions

Fig. 18. Energy-delay product of LT and PCAP for the studied

applications, normalized to that of TP.



product corresponds closely to the energy savings: LT and
PCAP achieve 8 percent and 10 percent lower energy-delay
product, respectively, than TP.

PCAP can be further extended to handle multiple low
power states of hard disks or other I/O devices. For
example, the sliding wait-window can be optimized to put
the disk into a lower power state immediately and only shut
down after the wait-window elapses.

PCAP opens a new direction for the development of
predictor-based techniques suitable for many other aspects
of the operating system, such as file buffer management and
I/O prefetching. PC-based techniques do not require any
modification to an application and, yet, have the potential to
obtain a program context similar to that provided by an
annotated application. Thus, we expect PC-based predic-
tions to perform as well as prediction schemes that rely on
application hints.

ACKNOWLEDGMENTS

The authors thank Le Cai for helping them set up the data
acquisition card for energy measurement and the anonymous
reviewers for their helpful comments. This work was
supported in part by US National Science Foundation
CAREER awards CCF-0238379 and CNS-0347466.

REFERENCES

[1] J.-L. Baer and T.-F. Chen, “An Effective On-Chip Preloading
Scheme to Reduce Data Access Penalty,” Proc. 1991 ACM/IEEE
Conf. Supercomputing, Nov. 1991.

[2] N. Bellas, I. Hajj, and C. Polychronopoulos, “Using Dynamic
Cache Management Techniques to Reduce Energy in a High-
Performance Processor,” Proc. Int’l Symp. Low Power Electronics and
Design, Aug. 1999.

[3] L. Benini, A. Bogliolo, G.A. Paleologo, and G.D. Micheli, “Policy
Optimization for Dynamic Power Management,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 18,
no. 6, pp. 813-833, June 1999.

[4] D. Bertozzi, L. Benini, and B. Ricco, “Power Aware Network
Interface Management for Streaming Multimedia,” Proc. Wireless
Comm. and Networking Conf., pp. 926-930, 2002.

[5] B. Black, B. Mueller, S. Postal, R. Rakvic, N. Utamaphethai, and
J.P. Shen, “Load Execution Latency Reduction,” Proc. 12th Int’l
Conf. Supercomputing, July 1998.

[6] R.W. Carr and J.L. Hennessy, “WSCLOCK: A Simple and Effective
Algorithm for Virtual Memory Management,” Proc. Eighth Symp.
Operating Systems Principles, Dec. 1981.

[7] E.V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk
Energy in Network Servers,” Proc. Int’l Conf. Supercomputing, June
2003.

[8] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and R.P.
Doyle, “Managing Energy and Server Resources in Hosting
Centers,” Proc. ACM Symp. Operating Systems Principles, Oct. 2001.

[9] G.Z. Chrysos and J.S. Emer, “Memory Dependence Prediction
Using Store Sets,” Proc. 25th Ann. Int’l Symp. Computer Architecture,
June 1998.

[10] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G.D. Micheli,
“Dynamic Power Management for Nonstationary Service Re-
quests,” IEEE Trans. Computers, vol. 51, no. 11, pp. 1345-1361, Nov.
2002.

[11] E.-Y. Chung, L. Benini, and G.D. Micheli, “Dynamic Power
Management Using Adaptive Learning Tree,” Proc. Int’l Conf.
Computer-Aided Design, Nov. 1999.

[12] D. Colarelli and D. Grunwald, “Massive Arrays of Idle Disks for
Storage Archives,” Proc. 15th High Performance Networking and
Computing Conf., Nov. 2002.

[13] Dell Computer Corp., Dell System 320SLi User’s Guide, June 1992.
[14] F. Douglis, P. Krishnan, and B. Bershad, “Adaptive Disk Spin-

Down Policies for Mobile Computers,” Proc. Second USENIX
Symp. Mobile and Location-Independent Computing, Apr. 1995.

[15] C.S. Ellis, “The Case for Higher-Level Power Management,” Proc.
Workshop Hot Topics in Operating Systems, Mar. 1999.

[16] K.I. Farkas, P. Chow, N.P. Jouppi, and Z. Vranesic, “Memory-
System Design Considerations for Dynamically-Scheduled Pro-
cessors,” Proc. 24th Ann. Int’l Symp. Computer Architecture, June
1997.

[17] R.A. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes,
“Idleness Is Not Sloth,” Proc. USENIX Winter Conf., Jan. 1995.

[18] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.
Franke, “DRPM: Dynamic Speed Control for Power Management
in Server Class Disks,” Proc. Int’l Symp. Computer Architecture, June
2003.

[19] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini,
“Application Transformations for Energy and Performance-
Aware Device Management,” Proc. 11th Int’l Conf. Parallel
Architectures and Compilation Techniques, Sept. 2002.

[20] Hewlett-Packard, “Kittyhawk Power Management Modes,” inter-
nal document, Apr. 1993.

[21] C.-H. Hwang and A.C. Wu, “A Predictive System Shutdown
Method for Energy Saving of Event Driven Computation,” ACM
Trans. Design Automation of Electronic Systems, vol. 5, no. 2, pp. 226-
241, Apr. 2000.

[22] C. Im, H. Kim, and S. Ha, “Dynamic Voltage Scheduling
Technique for Low-Power Multimedia Applications Using Buf-
fers,” Proc. Int’l Symp. Low Power Electronics and Design, pp. 34-39,
2001.

[23] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” Proc. Int’l Symp. Low
Power Electronics and Design, pp. 197-202, 1998.

[24] Y. Jégou and O. Temam, “Speculative Prefetching,” Proc. Int’l
Conf. Supercomputing, July 1993.

[25] A.R. Karlin, M.S. Manasse, L.A. McGeoch, and S. Owicki,
“Competitive Randomized Algorithms for Non-Uniform Pro-
blems,” Proc. First ACM-SIAM Symp. Discrete Algorithms, Jan. 1990.

[26] A.-C. Lai and B. Falsafi, “Selective, Accurate, and Timely Self-
Invalidation Using Last-Touch Prediction,” Proc. 27th Ann. Int’l
Symp. Computer Architecture, June 2000.

[27] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-Block Prediction and
Dead-Block Correlating Prefetchers,” Proc. 28th Ann. Int’l Symp.
Computer Architecture, June 2001.

[28] J. Andrews, “Linux: Laptop Mode,, Prolonging Battery Life”
http://kerneltrap.org/node/653, 2004.

[29] Y.-H. Lu, E.-Y. Chung, T. Simunic, L. Benini, and G.D. Micheli,
“Quantitative Comparison of Power Management Algorithms,”
Proc. Design Automation and Test in Europe, Mar. 2000.

[30] Y.-H. Lu, G.D. Micheli, and L. Benini, “Requester-Aware Power
Reduction,” Proc. Int’l Symp. System Synthesis, Sept. 2000.

[31] J. Luo and N. Jha, “Static and Dynamic Variable Voltage
Scheduling Algorithms for Real-Time Heterogeneous Distributed
Embedded Systems,” Proc. Asia and South Pacific Conf. VLSI
Design, pp. 719-726, 2002.

[32] M.M.K. Martin, P.J. Harper, D.J. Sorin, M.D. Hill, and D.A. Wood,
“Using Destination-Set Prediction to Improve the Latency/
Bandwidth Tradeoff in Shared-Memory Multiprocessors,” Proc.
30th Ann. Int’l Symp. Computer Architecture, June 2003.

[33] N. Megiddo and D.S. Modha, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” Proc. Second USENIX Conf. File
and Storage Technologies, Mar. 2003.

[34] R. Nair, “Dynamic Path-Based Branch Correlation,” Proc. 28th
Ann. Int’l Symp. Microarchitecture, Nov. 1995.

[35] R. Neugebauer and D. McAuley, “Energy Is Just Another
Resource: Energy Accounting and Energy Pricing in the Nemesis
OS,” Proc. Eighth Workshop Hot Topics in Operating Systems, May
2001.

[36] R. Neugebauer and D. McAuley, “Energy Is Just Another
Resource: Energy Accounting and Energy Pricing in the Nemesis
OS,” Proc. Workshop Hot Topics in Operating Systems, pp. 59-64,
2001.

[37] Open Office, http://www.openoffice.org/, 2004.

[38] E. Pinheiro and R. Bianchini, “Energy Conservation Techniques
for Disk Array-Based Servers,” Proc. 18th Int’l Conf. Supercomput-
ing, June 2004.

[39] S.S. Pinter and A. Yoaz, “Tango: A Hardware-Based Data
Prefetching Technique for Superscalar Processors,” Proc. 29th
Ann. ACM/IEEE Int’l Symp. Microarchitecture, Dec. 1996.

GNIADY ET AL.: PROGRAM COUNTER-BASED PREDICTION TECHNIQUES FOR DYNAMIC POWER MANAGEMENT 657



[40] J. Pouwelse, K. Langendoen, and H. Sips, “Energy Priority
Scheduling for Variable Voltage Processors,” Proc. Int’l Symp.
Low Power Electronics and Design, pp. 28-33, 2001.

[41] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K. Roy,
“Reducing Set-Associative Cache Energy via Way-Prediction and
Selective Direct-Mapping,” Proc. 34th Ann. ACM/IEEE Int’l Symp.
Microarchitecture, Dec. 2001.

[42] Q. Qiu and M. Pedram, “Dynamic Power Management Based on
Continuous-Time Markov Decision Processes,” Proc. Design
Automation Conf., June 1999.

[43] A. Ramachandran and M.F. Jacome, “Xtream-Fit: An Energy-
Delay Efficient Data Memory Subsystem for Embedded Media
Processing,” Proc. Design Automation Conf., pp. 137-142, 2003.

[44] G. Reinman and B. Calder, “Predictive Techniques for Aggressive
Load Speculation,” Proc. 31st Ann. ACM/IEEE Int’l Symp. Micro-
architecture, Nov. 1998.

[45] M.T. Schmitz, B.M. Al-Hashimi, and P. Eles, “Energy-Efficient
Mapping and Scheduling for DVS Enabled Distributed Embedded
Systems,” Proc. Design Automation and Test in Europe Conf., pp. 514-
521, 2002.

[46] T. Sherwood, S. Sair, and B. Calder, “Predictor-Directed Stream
Buffers,” Proc. 33rd Ann. ACM/IEEE Int’l Symp. Microarchitecture,
Dec. 2000.

[47] T. Simunic, L. Benini, P. Glynn, and G.D. Micheli, “Dynamic
Power Management for Portable Systems,” Proc. Int’l Conf. Mobile
Computing and Networking, Aug. 2000.

[48] J.E. Smith, “A Study of Branch Prediction Strategies,” Proc. Eighth
Ann. Symp. Computer Architecture, May 1981.

[49] M.B. Srivastava, A.P. Chandrakasan, and R.W. Brodersen, “Pre-
dictive System Shutdown and Other Architecture Techniques for
Energy Efficient Programmable Computation,” IEEE Trans. VLSI
Systems, vol. 4, no. 1, pp. 42-55, Mar. 1996.

[50] A. Weisel, B. Beutel, and F. Bellosa, “Cooperative IO—A Novel IO
Semantics for Energy-Aware Applications,” Operating Systems
Design and Implementation, pp. 117-129, 2002.

[51] A. Weissel, B. Beutel, and F. Bellosa, “Cooperative I/O—A Novel
I/O Semantics for Energy-Aware Applications,” Proc. Fifth Symp.
Operating System Design and Implementation, Dec. 2002.

[52] C. Young, N. Gloy, and M.D. Smith, “A Comparative Analysis of
Schemes for Correlated Branch Prediction,” Proc. 22nd Ann. Int’l
Symp. Computer Architecture, June 1995.

[53] H. Zeng, C.S. Ellis, A.R. Lebeck, and A. Vahdat, “ECOSystem:
Managing Energy as a First Class Operating System Resource,”
Proc. Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, pp. 123-132, 2002.

[54] Q. Zhu, F.M. David, Y. Zhou, C.F. Devaraj, P. Cao, and Z. Li,
“Reducing Energy Consumption of Disk Storage Using Power-
Aware Cache Management,” Proc. 10th Int’l Symp. High-Perfor-
mance Computer Architecture, Feb. 2004.

[55] Q. Zhu, A. Shankar, and Y. Zhou, “PB-LRU: A Self-Tuning Power
Aware Storage Cache Replacement Algorithm for Conserving
Disk Energy,” Proc. 18th Int’l Conf. Supercomputing, June 2004.

Chris Gniady received the BS degree in
electrical and computer engineering from Pur-
due University in 1997 and the PhD degree in
2005 from the School of Electrical and Computer
Engineering at Purdue University. He is an
assistant professor of computer science at the
University of Arizona. His research focuses on
providing personalized computing by adopting
software and hardware to the user’s behavior.
He uses instruction-based prediction and user

behavior monitoring to optimize energy and performance in computer
systems. He is a member of the IEEE.

Ali R. Butt received the BSc (Hons) degree in
electrical engineering from the University of
Engineering and Technology Lahore, Pakistan,
in 2000. He is currently a PhD candidate in
computer engineering at Purdue University,
where he also served as the president of the
Electrical and Computer Engineering Graduate
Student Association for 2003 and 2004. His
research interests lie broadly in distributed
systems and operating systems. In particular,

he has explored distributed resource sharing systems spanning multiple
administrative domains, applications of peer-to-peer overlay networking
to resource discovery and self-organization, and techniques for ensuring
fairness in sharing of such resources. His research in operating systems
focuses on techniques for improving the efficiency of modern file
systems via innovative buffer cache management. He is a member of
USENIX, the ACM, and the IEEE.

Y. Charlie Hu received the MS and MPhil
degrees from Yale University in 1992 and the
PhD degree in computer science from Harvard
University in 1997. He is an assistant professor
of electrical and computer engineering and
computer science at Purdue University. From
1997 to 2001, he was a research scientist at
Rice University. His research interests include
operating systems, distributed systems, net-
working, and parallel computing. He has pub-

lished more than 70 papers in these areas. He received the Honda
Initiation Grant Award in 2002 and the US National Science Foundation
CAREER Award in 2003. He served as a TPC vice chair for the 2004
International Conference on Parallel Processing, and a cofounder and
TPC cochair for the International Workshop on Mobile Peer-to-Peer
Computing. He is a member of USENIX, the ACM, and the IEEE.

Yung-Hsiang Lu (S’90-M’03) received the PhD
degree in electrical engineering from Stanford
University, California, 2002. He is an assistant
professor in the School of Electrical and Com-
puter Engineering and, by courtesy, the Depart-
ment of Computer Science at Purdue University,
West Lafayette, Indiana. In 2004, he received
the US National Science Foundation Career
Award for studying energy management by
operating systems. His research focuses on

energy management for computer systems, mobile robots, sensor
networks, and image processing. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

658 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


